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У реальному світі існує безліч сценаріїв оптимізації з великою кількістю об-
межень та цільових функцій, які за своєю природою є розривними, неліній-
ними, невипуклими та мультимодальними. Крім того, задачі оптимізації є 
багатовимірними зі змішаними типами змінних, такими як цілі, дійсні, дис-
кретні, двійкові, та мають різний діапазон значень, що вимагає нормалізації. 
Отже, простір пошуку задачі не завжди може бути гладким. Таким чином, 
еволюційні алгоритми почали використовуватися і розвиватися в обчислю-
вальних процесах та вирішенні складних інженерних завдань, а також у ме-
тодах штучного інтелекту. У запропонованій роботі розглянуто сукупність 
методів оцінки оптимальних параметрів тренувальних функцій з викорис-
танням еволюційних та генетичних алгоритмів пошуку в порівнянні з ро-
зширеним CMA-ES-алгоритмом. Проаналізовано метаевристичні алгорит-
ми оптимізації ALO, ABCO, GA, PSO та класичний CMA-ES, які ґрунтують-
ся на поведінці живих організмів в реальних природних середовищах. Для 
аналізу використано метод Монте–Карло, який дає можливість зробити ви-
сновки про розподіл кількості обчислень цільової функції. В роботi також 
запропоновано розширення алгоритму CMA-ES з використанням сумiшей 
нормальних розподiлiв з невизначеною величиною розмірності суміші та з 
відомим базовим розподілом для оцінки оптимальних значень відомих тес-
тових функцій. Розроблений алгоритм побудовано за припущенням багато-
пiковостi розподiлу параметрiв складних систем, у тому числі гіперпарамет-
рів нейронних мереж та параметрів стохастичних диференціальних рівнянь. 
Дослідження показують, що з ростом кількості піків для розширеного CMA-
ES-алгоритму кількість звернень до цільової функції спадає і тим самим підт-
верджує ефективність запропонованого розширеного алгоритму CMA-ES. Од-
нак для малої розмірності n  вибір великої кількості піків є недоцільним. Дані 
властивості свідчать про існування взаємозалежності між розмірністю почат-
кової задачі та кількістю вибраних піків.  

Ключовi слова: сумiш розподiлiв, оптимiзацiя гiперпараметрiв, генетичні 
алгоритми, CMA-ES-алгоритм, метод Монте–Карло, стохастичні диферен-
ціальні рівняння. 
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Вступ 

Дослідженням методів оцінки параметрів чи гіперпараметрів складних систем 
присвячено велику кількість робіт, зокрема [1–8]. Основні проблеми у задачі 
оцінки повязані зі складністю алгоритмів, які використовуються у задачах оцінки 
параметрів стохастичних диференціальних рівнянь та інших складних систем. 
У даній роботі основну увагу сконцентровано на розширеному алгоритмі стратегії 
еволюційної адаптації на основі коваріаційної матриці (Covariance Matrix 
Adaptation Evolution Strategy — CMA-ES). Розглянемо більш детально класичний 
CMA-ES-алгоритм та його модифікації. Наприклад, у [9] представлено метод 
стратегії диференціальної еволюції (DES) — алгоритм, що є чимось середнім між 
диференціальною еволюцією (DE) та CMA-ES. DES використовує комбінації 
різницевих векторів між архівними індивідами і одновимірними гауссівськими 
випадковими векторами вздовж напрямків минулих зсувів середніх точок. 
DES-метод певною мірою відповідає CMA-ES, але обробляє точки, а не роз-
поділи. Згідно з експериментальними результатами DES показує швидкість 
лінійної збіжності для квадратичних функцій у широкому спектрі чисел обу-
мовленості матриці Гессе. Чисельні результати, представлені у статті, показують, 
що DES конкурентоспроможний порівняно з CMA-ES під час як локальної, так 
і глобальної оптимізації. 

У [10] пропонується новий варіант CMA-ES, названий AEALSCE, для задач 
оптимізації в неперервній області. AEALSCE отримано шляхом інтеграції CMA-ES 
з двома стратегіями, які можуть коригувати еволюційні напрямки та збагачувати 
різноманітність популяції індивідів. Автори пропонують нову стратегію адаптації 
анізотропного власного значення (AEA), що адаптує область пошуку до оптима-
льних еволюційних напрямків та анізотропно масштабує власні значення коваріа-
ційної матриці на основі виявлення локального ландшафту (local fitness landscape) 
відповідності: 
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де ~ (0, ),j jNδ λ ν  вказує на j -й власний вектор коваріаційної матриці, jλ  — j -те 

власне значення коваріаційної матриці відповідно. 
Інша стратегія називається стратегією локального пошуку (LS), яка виконується 

у власній системі координат і як локальний метод експлуатації може збагатити різно-
манітність популяції. Згідно з статистичними результатами експериментів запропо-
нований авторами алгоритм AEALSCE не поступається іншим алгоритмам ефек-
тивної точності. 

В [11] запропоновано модифікований метод обробки обмеження блоку (box 
constraint) для CMA-ES. Також, як і в [10], ідея полягає в оптимізації без обме-
жень завдяки введенню штучного фітнес-ландшафту (artificial fitness landscape), 
де функція штрафу додається до значень функції в найближчих допустимих роз-
вязках, адаптуючи штрафні коефіцієнти, що визначають чутливість обмежень до 
значення цільової функції, він створює «розумний» ландшафт віртуальної функції 
за межами допустимої області. Оптимізація працює доти, доки не буде досягнуто 
розумних штрафних коефіцієнтів. Експериментальні результати показують, що 
запропонований алгоритм може не збігатися з функціями показникового мно-
жника, тоді як запропонований у роботі алгоритм демонструє збіжність. 

Застосування гібридизованої стратегії еволюції методу адаптації коваріа-
ційної матриці крос-ентропії (CE-СMAES) запропоновано в [12]. Представлений 
CE-CMA-ES використовує перехресну ентропію для глобального дослідження 
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простору пошуку та стратегію адаптації коваріаційної матриці для локальної 
експлуатації. Основна новизна алгоритму CE-CMA-ES — це адаптивний меха-
нізм зміни розміру кроку (стандартного відхилення), що контролюється шля-
хом еволюції і є сумою послідовних кроків у кожному вимірі. Порівняльний ана-
ліз показує, що CE-CMA-ES досягає кращих результатів порівняно з сучасни-
ми алгоритмами. 

У [13] розроблено метод самоадаптації коваріаційної матриці з відштовхува-
льними субпопуляціями (RS-CMSA), який гібридизує та обєднує кілька концепцій 
і технік з різних існуючих методів, таких як точки табу в пошуку табу, нормалізо-
вана відстань Махаланобіса тощо. RS-CMSA в основному складається зі стратегії 
еволюції методу адаптації коваріаційної матриці (CMSA-ES), підсиленої елітарні-
стю, як основної пошукової системи кількох субпопуляцій однакового розміру. 
RS-CMSA показав значну перевагу над іншими методами (NMMSO та NEA2), які 
також тестувалися на більш складних композитних функціях.  

У [14] автор розглядає непараметричне моделювання вхідних просторів в оп-
тимізації чорної скриньки в просторах Гільберта відтворюючого ядра (RKHS). Це 
моделювання призводить до проблеми функціональної оптимізації, предметною 
областю якої є функціональний простір RKHS, що дозволяє проводити оптиміза-
цію дуже великого класу функцій. Автор пропонує CMA-ES-RKHS, узагальнений 
алгоритм CMA-ES, здатний виконувати оптимізацію функцій чорної скриньки в 
RKHS. Результати CMA-ES-RKHS показують явне виконання функціональної оп-
тимізації та подолання проблеми підбору значень початкових параметрів. 

Дві основні задачі 

Задача 1. У роботах [1, 2] розглянуто проблему мінімізації дисперсії випад-
кового процесу, що описує динаміку розвитку сукупності клітин { }1 2 3, ,x x x  сис-
темою стохастичних диференціальних рівнянь  
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 (1) 

де ( ), 0iW t t ≥  — стандартні вінеровські процеси, що визначаються кореляційною 
матрицею  
 6

1( ) ;ij ijR R ==  

, , qβ γ  — невідомі константи системи, які необхідно оцінити; ( )tα  — невідома 
функція, яка зазвичай належить деякому класу. Наприклад, у роботах [15, 16] роз-
глянуто клас поліноміальних функцій, тобто  

 { }0( ) ... , .k
kt A t k Nα ∈ = α + +α ∈  
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Більш складні простори функцій розглянуто у роботі [17], де як клас функцій ( )tα  
розглянуто раціональні функції  
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Основна проблема при аналізі системи (1) полягає в оцінці невідомих пара-
метрів  

 ( ) 3, , , ,q R R A+β γ α ∈ × ×Ξ , 

де Ξ  — простір додатно визначених квадратних матриць розмірності 6 6×  з оди-
ничними діагональними елементами, а критерій оптимальності визначається за 
допомогою наступного функціоналу якості: 

 2

1
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n
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i
J q R c E x t x

=
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У формулі (2) ( )ix t  позначає розвязок системи (1) у моменти часу ,it  ix  — 
відомі значення процесу, який потрібно оцінити, ic  — нормуючі константи, хара-
ктер яких диктується оптимізаційною задачею. У формулі (2) важливими складо-

вими є математичні сподівання відхилень 2( ) .i iE x t x−  Слід зауважити, що із-за 

складного вигляду правої частини системи (1) у загальному випадку неможливо 

знайти аналітичний вигляд 2( )i iE x t x−  як функції від невідомих параметрів 

( , , , , ).q Rβ γ α  Тому для оцінки 2( )i iE x t x−  найчастіше використовується метод 

Монте–Карло з модифікаціями [18–22]. Одним з недоліків методів Монте–Карло  
є неперервна лінійна залежність складності алгоритму від кількості симуляцій ,M  
тобто складність методів Монте–Карло рівнятиметься О(М). З іншого боку, для 
пошуку оптимального набору параметрів  

 3( , , , , )
ˆ ˆˆ ˆˆ( , , , , ) arg min ( , , , , )q R R Aq R J q R

+β γ α ∈ × ×Ξβ γ α = β γ α   (3) 

варто визначити метод з невисокою складністю. Оскільки досліджувані парамет-
ри розглядаються в неперервній області, для пошуку оптимальних параметрів 
найчастіше використовують еволюційні та генетичні алгоритми пошуку [23–26], 
які в свою чергу неперервно лінійно залежні від кількості частинок (особин) P   
в даному алгоритмі. Якщо узагальнити, то складність алгоритму пошуку оптима-
льних параметрів ˆ ˆˆ ˆˆ( , , , , )q Rβ γ α  рівняння (1) та відповідної оптимізаційної задачі (3)  
з генетичним алгоритмом у ролі оновлення параметрів та алгоритму Монте–Кар-

ло для обчислення 2( )i iE x t x−  буде мати складність ( ) ,O M P T∗ ∗  де T  —  

величина розбиття на інтервалі 
1

[0, max ].i
i n

t
≤ ≤

 Також дану методику можна викорис-

товувати для задач з точками концентрації, модель яких розглянута в [27]. 
Задача 2. Друга задача, яка потребує покращень алгоритмів пошуку, — це 

оцінка параметрів нейронних мереж [4, 28–31]. Для нейронних мереж невеликої 
розмірності надають перевагу алгоритмам «грубої сили», а саме, алгоритмам по-
шуку по сітці, алгоритмам випадкового пошуку по сітці та їх модифікаціям. Проте 
для нейронних мереж великої розмірності дані тривіальні підходи вимагають ве-
ликої кількості обчислень, тому використовуються байєсівські, градієнтні та гене-
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тичні алгоритми. З оптимізаційних алгоритмів оцінки гіперпараметрів нейронних 
мереж особливу увагу слід приділити стратегії еволюційної адаптації на основі 
коваріаційної матриці [3–8]. Основна ідея CMA-ES-стратегії полягає у виборі но-
вих особин у генетичному алгоритмі на основі деякого базового розподілу (зазви-
чай нормального закону розподілу ( , )N a Σ  при середньому значенні ),a  диспер-
сія Σ  якого оновлюється на кожній ітерації (епосі) на основі нових обчислених 
особин з найоптимальнішими значеннями на основі критерію якості (2) чи точно-
сті нейронної мережі для оптимізації гіперпараметрів нейронних мереж.  

Алгоритм CMA-ES або його розширення можуть використовуватися як для 
задачі оптимізації параметрів системи стохастичних диференціальних рівнянь (1), 
так і для пошуку оптимальних гіперпараметрів нейронних мереж. Основний не-
долік алгоритму CMA-ES — однопіковість базового розподілу та, як наслідок, ве-
лика дисперсія при оцінці параметрів. Дану проблему можна проілюструвати на-
ступним простим прикладом багатопікової функції:  

 
2

1
1 2

1

sin( )
( ) ,

n
i i

T n
i i

x
f x

x
=

=

∑
=

∑
 (4) 

де 1( , ..., ) .n
nx x x R= ∈  На рис. 1 зображено функцію ( )f x  (4) у двовимірному 

просторі, тобто при 2n =  для [ ]220, 20 .x∈ − Проблема використання еволю-

ційних чи генетичних алгоритмів, зокрема, полягає у визначенні регіону, в яко-
му знаходиться шуканий максимум чи мінімум. Крім того, на основі методу 
CMA-ES коваріаційна матриця при невдалому початковому значенні не буде 
збігатися зі значенням, яке дозволяло б концентруватися навколо оптимального 
значення функції (4).  
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Рис. 1 

Як зазначалося вище, у даній роботі проаналізовані деякі класичні генетичні 
алгоритми та розширений CMA-ES-алгоритм [32]. Основною новизною даного 
алгоритму є заміна одновікових класичних розподілів CMA-ES на суміші розпо-
ділів з невизначеними коефіцієнтами. В роботі [32] наведено покрокову реаліза-
цію CMA-ES-алгоритму, причому оцінку параметрів нормальної суміші пропону-
ється оцінювати, використовуючи EM-алгоритм.  
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Аналіз на основі методу Монте–Карло 

Розглянемо аналіз декількох класичних еволюційних алгоритмів пошуку 
оптимального значення для відомих функцій і порівняємо отримані результати 
з відповідними результатами для розширеного алгоритму CMA-ES, описаного 
вище. Як класичні алгоритми використовуватимемо метаевристичні алгоритми 
оптимізації.  

• ALO (Ant Lion Optimization) — це метаевристичний алгоритм, що імітує 
механізм полювання мурашиних левів у природі. Він має пʼять основних процесів 
полювання на здобич: установка пасток, ловля мурах, очікування, виявлення 
та затримання здобичі. Математична модель ALO включає такі кроки: ініціалі-
зація, фаза руху, фаза оновлення, завершення [33]. Рух мурашиних левів моде-
люється рівнянням  

 1
, , , ,

,

() ( ),t t t
i j i j best j i j

i j

randx x x x
D

+ = + × −  

де ,
t
i jx  — положення i -го мурашиного лева в j -му вимірі в момент часу ,t  

,best jx  — найкраща позиція рою в j -му вимірі, ,i jD  — діапазон j -го виміру, 

()rand  — випадкове число від 0 до 1. Алгоритм повторюється доти, доки не буде 
виконано критерій зупинки.  

• ABCO (Artificial Bee Colony Optimization) — алгоритм, заснований на пове-
дінці медоносних бджіл, які шукають джерело їжі та повідомляють про її місце-
знаходження іншим бджолам. Алгоритм використовує набір правил для моделю-
вання поведінки медоносних бджіл. Модель складається з трьох основних компо-
нентів: зайнятих, безробітних бджіл-годувальниць та джерел їжі [34]. Алгоритм 
ABCО включає такі етапи: ініціалізація, фаза працевлаштування бджіл, фаза 
бджіл-спостерігачів, фаза бджіл-розвідників, завершення. Бджола оновлює свій 
стан на основі рівняння 

 1
, , , ,( ),t t t t

i j i j ij i j k jx x x x+ = + ϕ × −  

де ,
t
i jx  — положення i -ї бджоли-глядача в j -му вимірі в момент часу ,t  ijϕ  — 

випадкове число між – 1 і 1, а ,
t
k jx  — положення випадково вибраної бджоли, що 

працює, відмінної від ,i  в j -му вимірі в момент часу .t  Алгоритм завершує ро-
боту при виконанні критерію зупинки, наприклад, при досягненні максимальної 
кількості ітерацій або пошуку задовільного рішення. 

• GA (Genetic Algorithm) — алгоритм, заснований на принципах генетики та 
еволюції, використовує набір правил для моделювання процесу природного від-
бору, який підтримує популяцію потенційних рішень (окремих особин) та розви-
ває їх протягом поколінь. Оператори відбору, схрещування та мутації використо-
вуються для відтворення та генетичного розмаїття популяції ,P  що складається  
з N  особин, кожна з яких є потенційним розвʼязком задачі оптимізації. Населен-
ня можна уявити як { }1 2, , ..., NP x x x= -представлення ix  особи в популяції, що 

часто кодується як хромосома. Надалі особини відбираються для відтворення з 
урахуванням їх показників пристосованості, і алгоритм повторюється доти, доки 
не буде виконано критерій зупинки [35]. 

• PSO (Particle Swarm Optimization) — це алгоритм ройового інтелекту, який 
моделює соціальну поведінку зграї птахів чи зграйної риби. Алгоритм починаєть-



70 ISSN 2786-6491 

ся із сукупності частинок, і кожна частинка — це потенційний розвязок проблеми 
оптимізації. Частинки рухаються через простір пошуку залежно від власного 
кращого становища і кращого становища рою. Алгоритм має таку математичну 
модель: ініціалізація, оцінка, оновлення швидкості, оновлення позиції, завершен-
ня. Оновлення швидкості моделюється рівнянням 

 1
, , 1 , , 2 ,() ( ) () ( ),t t t t

i j i j i j i j j i jv w v c rand pbest x c rand gbest x+ = × + × × − + × × −  

де ,
t
i jv  — швидкість i -ї частки в j -му вимірі в момент часу ,t  w  — інерційна 

вага, 1c  і 2c  — коефіцієнти прискорення, ()rand  — випадкове число від 0 до 1, 

,i jpbest  — найкраще положення i -ї частки у j -му вимірі, а jgbest  — най-
краща позиція рою в j -му вимірі. Алгоритм завершує роботу при виконанні 
критерію зупинки [36]. 

• CMA-ES — алгоритм з особливим видом стратегії чисельної оптимізації, 
що належить до сімейства стратегій еволюції (ES). Це стохастичний алгоритм 
оптимізації без похідних, який широко застосовується до неопуклих і нелінійних 
завдань оптимізації, особливо у безперервній галузі. Алгоритм має таку математичну 
модель: ініціалізація; оцінка рішень; вибір рішень-кандидатів; адаптація коваріа-
ційної матриці обраних рішень-кандидатів; генерація нових рішень-кандидатів, 
що генеруються з адаптованого пошукового розподілу; завершення [37]. Процес 
адаптації моделюється рівнянням 

1 T T
1 1 1(1 ) ( )( ) ( )( ) ,t t t t t t t t t t t

c i i iiC c c C c p y y y y c w y y y yµ+
µ µ == − − + × × − − + × − −∑  

де tC  — коваріаційна матриця в момент часу ,t  1c  і cµ  — швидкість навчання, 

cp  — параметр оновлення першого рангу, ty  — найкращий кандидат у момент 

часу ,t  ty  — середнє значення вибраних рішень-кандидатів у момент часу ,t   

µ  — кількість обраних рішень-кандидатів, t
iw  — вага i -го обраного кандидата  

в момент часу .t  
Основна відмінність між алгоритмами ALO, ABCO, GA, PSO та CMA-ES 

полягає в тому, як вони моделюють поведінку тварин або природні процеси та 
способи пошуку оптимального рішення. Ще одна відмінність полягає в тому, що  
у PSO немає генетичних операторів, таких як схрещування та мутація, наявних  
у GA та CMA-ES. Кожен алгоритм має свої сильні і слабкі сторони, і вибір алго-
ритму залежить від конкретної задачі оптимізації. 

Для аналізу використаємо метод Монте–Карло з 410I =  симуляціями для на-
ступних функцій [38]: 

 2 2 2 2
2 2 1 1( ) 100( ) (1 ) , ,Tf x x x x x R= − + − ∈    

 
3 2 2 2 4

3 1
1

( ) (100( ) (1 ) ), ,T i i i
i

f x x x x x R+
=

= − − − ∈∑    

 { } { }1 1
2

4 1 1 1 2( ) ( ( ) ( ) ( )) (1 )T A Af x I g x h x j x I x= + + + − +  

 { }2
2

2 2 21000 ( ( ) ( ) ( )), ,AI g x h x j x x R+ + + ∈    

де { }AI  — індикатор події ,A  множини 1A  та 2A  задаються співвідношенням  
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де 1 2 3, , ,t t t ty o o o  — фінансові показники, розглянуті в [37],  

 { }6
1

( ) log( ( , )) (1 ) log(1 ( , )) ,
T

T t t t t
t

f x y F x b y F x b
=

= + − −∑    

де ( , )tF x b  визначає емпіричну функцію розподілу, що залежить від невідомого 

параметра { }0, 1 ,b∈  

 7
1

( ) (2 1)sgn( ).
n

T i i
t

f x y x b
=

= −∑    

Основним показником швидкодії алгоритму у даному дослідженні буде кіль-
кість звернень до функції, для якої шукаємо максимум. Надалі CMA1, CMA2, 
CMA5, CMA10 — результати для розширеного CMA-ES-алгоритму з 1, 2, 5 та 10 
піками відповідно.  

Проведемо спочатку аналіз функції (4), перевагою дослідження якої є за-

лежність від розмірності простору пошуку оптимального значення nx R∈ . 
Згадані вище генетичні алгоритми програмно реалізовані за допомогою мови 
Python з використанням модуля CMA. Результати моделювання на основі методу 
Монте–Карло наведено на рис. 2. Як видно з рис. 2, з ростом кількості піків для 
розширеного CMA-ES-алгоритму кількість звернень до цільової функції 1Tf   
і мінімальна кількість звернень при всіх значеннях розмірності простору n  
для 5 та 10 піків у розширеному CMA-ES-алгоритмі спадають. Крім того, для 
малої розмірності n  вибір великої кількості піків недоцільний.  

Середні значення кількості звернень до функції 1Tf  із середньоквадратичними 

відхиленнями (в дужках) при 410I =  симуляцій наведені в табл. 1, з якої видно, що 
середньоквадратичне відхилення значно нижче для CMA5 та CMA10 для ве-
ликих значень розмірності n , це підтверджує ефективність розширеного алго-
ритму. 

Проаналізуємо також відповідні значення функцій 2 7 ,T Tf f−  представлених 
у табл. 2 (середні значення кількості звернень до функцій 2 7T Tf f−  з середньо- 

квадратичними відхиленнями (в дужках) при 410I =  симуляцій). Як бачимо, збері-
гається тенденція вибору кількості піків для розширеного CMA-ES-алгоритму; 
для задач більшої розмірності кількість піків повинна бути більшою. Дані влас-
тивості свідчать про існування взаємозалежності між розмірністю початкової 
задачі та кількістю вибраних піків.  
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Рис. 2  

Таблиця 1 
n ALO ABCO GA PSO CMA1 CMA2 CMA5 CMA10 
1 653,29 

(40,29) 
17760,57 

(4,86) 
11053,35 
(407,69) 

5670 
(289,13) 

253,434 
(23) 

97,85 
(28,4) 

46,9 
(31,9) 

317,69 
(54,1) 

2 801,12 
(43,55) 

17770,57 
(174,57) 

18812,8 
(3558,68) 

10260 
(2740,64) 

255,714 
(23,05) 

98,28 
(35,1) 

27,5 
(33,7) 

420,36 
(61,9) 

3 676,17 
(44,08) 

18711,64 
(425,82) 

29092,2 
(10125,89) 

12445,0 
(4250,23) 

390,201 
(31,48) 

135,15 
(38,4) 

106,77 
(40,9) 

294,2 
(72,3) 

4 788,62 
(48,28) 

19875,02 
(548,51) 

21582,25 
(6503,63) 

15577,5 
(5007,7) 

545,424 
(64,09) 

196,57 
(52,4) 

50,47 
(51,8) 

588,93 
(73,4) 

5 895,02 
(54,92) 

21724,72 
(1064,06) 

23019,37 
(7686,432) 

16417,5 
(5594,08) 

735,248 
(218,27) 

280,97 
(73,6) 

227,32 
(84,3) 

535,98 
(93,6) 

10 1398,5 
(152,4) 

30484,31 
(7233,62) 

16607,22 
(4432,16) 

17452,5 
(8794,08) 

3099,11 
(575,27) 

1783,78 
(129,9) 

956,94 
(145,7) 

759,67 
(98,4) 

15 1775,5 
(403,29) 

29811,17 
(9955,86) 

14805,83 
(4016,91) 

17740,0 
(8116,33) 

6035,376 
(878,96) 

2697,28 
(154,5) 

716,63 
(184,1) 

714,67 
(129,3) 

20 2004 
(611,56) 

28858,22 
(5285,7) 

14930,58 
(4204,75) 

18782,5 
(6876,74) 

9791,484 
(1542,77) 

3449,49 
(430,87) 

1614,28 
(287,5) 

1036,53 
(256,8) 

50 2400,5 
(705,3) 

30397,71 
(8156,89) 

11687,08 
(1231,79) 

20420,0 
(8866) 

56514,825 
(12220,98) 

38626,37 
(1002,4) 

9267,20 
(503,4) 

807,64 
(383,7) 

100 3000,8 
(806,23) 

31289,91 
(9665,79) 

11083,29 
(608,27) 

19605 
(9676,14) 

173977,32 
(76227,7) 

96187,69 
(1985,4) 

36216,10 
(1498,1) 

1072,23 
(789,3) 

Таблиця 2 

f  ALO ABCO GA PSO CMA1 CMA2 CMA5 CMA10 

2Tf  1053,2 
(321,24) 

26868,59 
(9304,66)  

16740,95 
(5551,51) 

11557,5 
(4412,91)  

587,4 
(87,9)  

478,1 
(83,1)  

543,1 
(93,4)  

567,4 
(132,1)  

3Tf  2014,3 
(615,24)  

22473,09 
(4393,99)  

27562,27 
(13830,33) 

14448,25 
(6771,35) 

11933,4 
(148,07)  

8560,23 
(200,2)  

7934,23 
(200,2)  

9678 
(298,45)  

4Tf  749,875 
(57) 

17802,31 
(5,74) 

12287,37 
(740,11) 

7875,25 
(1620,49)  

135,73 
(32,44)  

111,34 
(43,12)  

189,86 
(86,31) 

231,81 
(92,84)  

5Tf  1290,7 
(462,86)  

38657,57 
(7813,46)  

25345,70 
(8129,27) 

11658,5 
(4513,03)  

519,49 
(42,84)  

456,11 
(44,29)  

387,83 
(51,7)  

322,4 
(53,11)  

6Tf  575 
(3,78) 

17850,4 
(3,52) 

10729 
(4,56) 

5500 
(7,95) 

20,46 
(12,63)  

24,19 
(22,84)  

20,32 
(13,65)  

19,28 
(14,56)  

7Tf  575 
(2,1) 

17850,6 
(4,22) 

24631,14 
(7196,34)  

5500 
(9,67) 

20,79 
(12,83)  

21,75 
(18,12)  

19,4 
(22,31)  

18,32 
(25,63)  

 f T
1(x

) 

 n 
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Висновок 

Проведено порівняльний аналіз метаевристичних алгоритмів оптимізації оці-
нки параметрів складних систем. Запропоновано розширений алгоритм стратегії 
еволюційної адаптації на основі коваріаційної матриці для оцінки параметрів 
складних систем. Розширений CMA-ES базується на основі використання сумі-
шей розподілів з невизначеною величиною розмірності суміші та з відомим базо-
вим розподілом. Дослідження показують, що з ростом кількості піків для розши-
реного CMA-ES-алгоритму кількість звернень до цільової функції спадає, що  
і підтверджує ефективність запропонованого розширеного алгоритму CMA-ES. 
Однак для малої розмірності n  вибір великої кількості піків недоцільний. Дані 
властивості свідчать про існування взаємозалежності між розмірністю початкової 
задачі та кількістю вибраних піків.  
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In the real world, there are many optimization scenarios with a large number of 
constraints and objective functions that are discontinuous, nonlinear, nonconvex, 
and multimodal in nature. In addition, optimization problems are multidimen-
sional with mixed variable types such as integer, real, discrete, binary, and have 
a different range of values, which requires normalization. Therefore, the prob-
lem search space may not always be smooth. Thus, evolutionary algorithms be-
gan to be used and developed in computational processes and solving complex 
engineering tasks, as well as in artificial intelligence methods. The proposed 
work considers a set of methods for estimating the optimal parameters of train-
ing functions using evolutionary and genetic search algorithms in comparison 
with the extended CMA-ES algorithm. The metaheuristic optimization algo-
rithms ALO, ABCO, GA, PSO and classical CMA-ES, which are based on the 
behavior of living organisms in real natural environments, are analyzed. The 
Monte Carlo method was used for the analysis, which makes it possible to draw 
conclusions about the distribution of the number of calculations of the objective 
function. The work also proposes an extension of the CMA-ES algorithm using 
mixtures of normal distributions with an undefined dimension of the mixture and 
with a known base distribution for estimating optimal values of known test func-
tions. The developed algorithm is built according to the assumption of mul-
tipeaked distribution of parameters of complex systems, including hyperparame-
ters of neural networks and parameters of stochastic differential equations. Re-
search shows that with the increase in the number of peaks for the extended 
CMA-ES algorithm, the number of calls to the objective function decreases and 
thus confirms the effectiveness of the proposed extended CMA-ES algorithm. 
However, for low dimensionality, n  choosing a large number of peaks is im-
practical. These properties suggest the existence of interdependence between the 
dimension of the initial problem and the number of selected peaks. 

Keywords: mixture distribution, hyperparameters optimization, genetic algorithms, 
CMA-ES algorithm, Monte–Carlo method, stochastic differential equations. 
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