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Зі зростанням об’ємів даних для обробки та з ускладненням задач з обробки
даних науковці та спеціалісти з індустрії поступаються складністю та швид-
кістю моделей штучних нейронних мереж (ШНМ) на користь покращення їх
апроксимуючих здатностей. Підвищення складності моделей, зокрема збіль-
шення глибини та кількості шарів, призводить до небажаних ефектів, таких
як зникаючі та вибухаючі градієнти. Комерційні моделі ШНМ часто вико-
ристовують кусково-лінійні активаційні функції типу ReLU для уникнення
обчислювальних складнощів та прискорення навчання. Хоча кусково-лінійні
активаційні функції і доказали ефективність у комерційних моделях на при-
кладі згорткових моделей (Сonvolutional Neural Networks — CNN), для кла-
сифікації зображень вони, як правило, мають фіксовану форму, що обмежує
здатність моделі до оптимізації та адаптування до поточної задачі. Запро-
поновано адаптивну кусково-лінійну активаційну функцію (Adaptive Piece-
Wise Activation — APWA) як адаптивну альтернативу для фіксованих куско-
во-лінійних активацій. ОсновоюAPWA-функції є адаптивне нечітке перетво-
рення вхідного сигналу, реалізоване множиною функцій належності з ада-
птивними параметрами підсилення вихідного сигналу. Як і кусково-лінійні
активаційні функції, APWA позбавлена ефектів вибухаючого та зникаючо-
го градієнтів, а також відносно проста в обчисленні, що зменшує тривалість
навчання та сприяє прямому поширенню в мережах з нейронами на основі
APWA. Показано ефективність нейронів та моделей на основі APWA на при-
кладі двох різних наборів даних для класифікації зображень, а також двох
моделей різного рівня складності. Моделі з APWA адаптують форму актива-
ційних функцій у процесі навчання, що покращує точність класифікації по-
рівняно з базовими моделями, які не є адаптивними.

Ключові слова: модель нейронної мережі, адаптивне нечітке перетворення,
активаційна функція.
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Вступ

Здатність до навчання на основі даних у комбінації з властивостями універсаль-
ної апроксимації сприялаширокому поширеннюштучних нейронних мереж (ШНМ)
у сучасних системах обробки інформації [1]. Основою початкових моделей ШНМ є
елементарний персептронФ. Розенблата [2], де властивості універсального апрокси-
матора забезпечуються суперпозицією сигмоїдальних активаційних функцій [3, 4],
що стоять на виході кожного з нейронів моделі. Глибокі нейронні мережі (Deep
Neural Networks — DNNs) розроблені на основі ідей традиційних ШНМ, але апро-
ксимаційні здатності глибоких мереж розширені шляхом ускладнення архітектури
мережі та збільшення кількості шарів і, відповідно, налаштовних параметрів [5].
Збільшення кількості шарів та параметрів мережі призводить до значних обчислю-
вальних труднощів в DNN, а саме, ефектів зникаючого та вибухаючого градієнтів,
які сповільнюють процес навчання та, в крайніх випадках, призводять до передча-
сної зупинки прогресу в процесі навчання. Для подолання цих проблем новітні гли-
бокі моделі, такі як GPT-3 [6] та CoAtNet [7], використовують надлишкові зв’язки,
складні механізми уваги, а також лінійні та випрямляючі активаційні функції з по-
кращеними властивостями прямого поширення інформації.

Сигмоїдальні функції часто замінюються на кусково-задані лінійні активаційні
функції для подолання обчислювальних складнощів в DNN. Кусково-задані функції,
такі як випрямлений лінійний вузол (ReLU) [8] та його модифікації, не призводять до
ефектів зникаючого та вибухаючого градієнтів через властивості їх похідних фун-
кцій. Одночасно такі кусково-задані активаційні функції не задовольняють умови
теореми Дж. Цибенко [3], по факту втілюючи кусково-лінійну апроксимацію з обме-
женою точністю, а досягнення бажаної якості моделі потребує збільшення загаль-
ної кількості шарів, нейронів та налаштовних параметрів. Як альтернатива можливе
збільшення апроксимаційної здатності мережі шляхом заміни існуючих активацій-
них функцій такими, що здатні адаптуватись до задачі та змінювати форму в процесі
навчання подібно до синаптичних ваг.

Водночас нейрони з подвійним нечітким перетворенням [9] мають відносно
складну структуру, що вимагає додаткових обчислень та сповільнює процес навча-
ння. Таким чином, є сенс звернутись до більш простих структур.

Метою дослідження є розробка адаптивної активаційної функції на основі нечі-
ткого перетворення, що збільшує апроксимаційну здатність мережі порівняно з фун-
кціями типу ReLU, але має більш просту структуру щодо подвійного нечіткого пе-
ретворення.

У даній роботі пропонуємо адаптивну кусково-задану активаційну функцію
(Adaptive Piece-Wise Activation — APWA) як адаптивну заміну для фіксованих
кусково-заданих активаційних функцій. Для оцінки ефективності нейронів з APWA
використовуємо існуючі архітектури ШНМ, порівнюючи мережі ReLU та APWA
із задачами класифікації зображень.

1. Принцип роботи, структура та процес навчання нейрона з APWA

Робота нейрона з APWA заснована на принципі нечіткого перетворення вхідного
сигналу. Структура нейрона включає в себе вузли та налаштовні параметри стандар-
тного нейрона типу Adaline [10], а також елементи неофаззі нейрона (NFN) [11] як
нелінійне перетворення, що має відносно високу швидкість, а також придатне для
обробки інформації в потоковому режимі [12].

Нейрон з APWA має двошарову структуру (рис. 1). Перший шар містить на-
бір налаштовних синаптичних ваг wj = (wj0,wj1, . . . ,wjn), що перетворюють вектор
вхідних значень x(t) = (1, x1(t), . . . , xn(t))T розмірністю (n + 1) у внутрішній сигнал
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активації zj(t):

zj(t) =
n∑
i=0

wjixi(t) = wTj x(t)

де (n + 1) відповідає розмірності вхідного вектора, j = 1, 2, . . . , h — індекс нейрона
в шарі мережі, h — кількість нейронів у шарі, t = 1, 2, . . . , τ — індекс чергового
екземпляра сигналу в потоці вхідних даних, τ — число вхідних екземплярів.
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Рис. 1

Другий шар— нелінійний синапс APWA, що виконує нечітке перетворення вну-
трішнього сигналу активації zj(t). Він містить у собі m функцій належності gj(t) =
= (gj1(zj(t)), . . . , gjm(zj(t)))T, вихід яких помножується на m налаштовних ваг uj =
= (uj1, . . . , ujm)T та складається у сигнал:

ŷj(t) =
m∑
k=1

ujkgjk(zj(t)) = uTj zj(t) (1)

або у скалярну форму:

ŷj(t) = φj(zj(t)) =
m∑
k=1

ujkgjk
( n∑

i=1
wjixi(t)

)
.

З властивостей нечіткого перетворення [13] видно, що таке перетворення дозво-
ляє апроксимувати існуючі активаційні функції загального призначення на задано-
му інтервалі zj,min ≤ zj(t) ≤ zj,max з довільним рівнем точності, а також синтезувати
нові шляхом налаштування вектора ваг uj для оптимізації цільової функції J(t).

Як нелінійні функції належності використовуємо набір стандартних рівномірно
розподілених трикутних функцій такої форми:

gjk(zj) =


zj−cj,k−1
cjk−cj,k−1 =

zj−cj,k−1
Δc

, zj ∈
[
cj,k−1, cjk

]
,

cj,k+1−zj
cj,k+1−cjk =

cj,k+1−zj
Δc

, zj ∈
[
cjk, cj,k+1

]
,

0, zj /∈
[
cj,k−1, cj,k+1

]
.

(2)

Таким чином, якщо сигнал внутрішньої активації належить до інтервалу визна-
чення функції APWA zj,min ≤ zj(t) ≤ zj,max, то cj1 = zj,min, cjm = zj,max, а також
Δc =

cj−cjk
m−1 , де cjk — центр координат по вхідному сигналу функції gjk(zj).

Оскільки функції належності (2) реалізують рівномірне розбиття вхідного про-
стору на інтервалі визначення, тобто для будь-яких сусідніх функцій дійсним є

gj,k−1(zj) + gjk(zj) = gjk(zj) + gj,k+1(zj) = 1,

то нелінійне перетворення (1) для zj(t) ∈
[
cjk, cj,k+1

]
можна записати

ŷ(t) =
m∑
k=1

ujkgjk(zj(t)) = ujkgjk(zj(t)) + uj,k+1gj,k+1(zj(t)) =
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=
cj,k+1ujk − cjkuj,k+1

Δc
+
(
uj,k+1 − ujk

)
zj(t)

Δc
=

= νj0,k,k+1 + νj1,k,k+1zj(t) = νj0,k,k+1 + νj1,k,k+1
n∑
i=0

wjixi(t). (3)

Згідно з виразом (3), в один момент часу t активізуються лише дві сусідні функції
належності: gjk(zj(t)) та gj,k+1(zj(t)), отже, тільки два набори ваг: ujk та uj,k+1 відповід-
но, потребують налаштування. Таким чином, загальна складність процесу навчання
не залежить від кількості функцій m, а пропорційна значенню n + 3, де n визнача-
ється кількістю вхідних сигналів нейрона. Треба зазначити, що загальна кількість
параметрів елементарного персептрона складає n+1, а отже, відмінність у складно-
сті навчання між таким персептроном та нейроном з APWA незначна.

Таким чином, зв’язок між вагами ujk, uj,k+1 та νj0,k,k+1,νj1,k,k+1 сусідніх функцій
визначається простими виразами:{

ujk = νj0,k,k+1 + cjkνj1,k,k+1,
uj,k+1 = νj0,k,k+1 + cj,k+1νj1,k,k+1.

Розглянемо процес навчання нейрона з APWAна основі мінімізації традиційного
локального квадратичного критерію:

Jj(t) = 0, 5ℓ2j (t) = 0, 5
(
yj(t) − ŷj(t)

)2 = 0, 5(yj(t) − νj0 − νj1wTj x(t))2 =
= 0, 5

(
yj(t) − νj0 − νj1zj(t)

)2 = 0, 5(yj(t) − uTj gj(t))2,
де yj(t) — еталонний сигнал, ℓj(t) — різниця між еталоном та сигналом на виході
нейрона, а індекси k, k + 1 значень νj0,k,k+1, νj1,k,k+1 опущені для стислості запису.

Ваги uj нелінійного синапсу APWA в j-му нейроні можуть бути налаштовані за
градієнтною процедурою:

ujk(t) = ujk(t − 1) + ζ̃(t)ℓj(t)gjk(zj(t)),
або у векторній формі:

uj(t) = uj(t − 1) + ζ̃(t)
(
yj(t) − uTj (t − 1)gj(t)

)
gj(t),

де ζ̃(t) — параметр швидкості навчання, gj(t) — вихід функції належності нейрона.
Обчислення можуть бути спрощені шляхом налаштування на кожному кроці t

лише тих синаптичних ваг, котрі відповідають активним функціям належності:

νj0(t) = νj0(t − 1) + ζ̃(t)
(
yj(t) − νj0(t − 1) − νj1(t − 1)zj(t)

)
=

= νj0(t − 1) + ζ̃(t)ℓj(t),

νj1(t) = νj1(t − 1) + ζ̃(t)
(
yj(t) − νj0(t − 1) − νj1(t − 1)zj(t)

)
zj(t) =

= νj1(t − 1) + ζ̃(t)ℓj(t)zj(t).

Для налаштування синаптичних ваг wj першого шару нейрона використовується
стандартне дельта-правило [14]:

wji(t) = wji(t − 1) + ζ(t)δj(t)xi(t),

де δj(t) = ℓj(t)φ′j(zj(t)) = ℓj(t)νj1(t), ζj(t) — параметр швидкості навчання для синапти-
чних ваг. У векторній формі маємо

wj(t) = wj(t − 1) + ζ(t)ℓj(t)νj1(t)x(t). (4)

З виразу (4) видно, що дельта-похибка лінійно залежить від похибки на виході
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нейрона, що дозволяє спростити та прискорити процес навчання нейронів з APWA
порівняно з елементарним персептроном з сигма-функцією.

2. Багатошаровий персептрон на основі нейронів з APWA

Розглянемо загалом процес навчання на прикладі тришарової архітектури шту-
чної нейронної мережі. На рис. 2 ілюструється її загальна структура.
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Рис. 2

Мережа включає в себе n0 = n входів, n1 нейронів з APWA— у першому прихо-
ваному шарі, n2 —у другому та n3 = h—у вихідному шарі. Кожен вхідний елемент
представлений (n + 1) × 1-вектором x(t) =

(
1, x1(t), . . . , xi(t), . . . , xn(t)

)T, а вихідний
та еталонний сигнали — h × 1-векторами ŷ(t) =

(
ŷ1(t), ŷ2(t), . . . , ŷj(t), . . . , ŷh(t)

)T та
y(t) =

(
y1(t), y2(t), . . . , yj(t), . . . , yh(t)

)T.
Як цільова функція використовується критерій

J(t) =
h∑
j=1

Jj(t) = 0, 5
h∑
j=1

(
yj(t) − ŷj(t)

)2 .
Оптимізація цільової функції відбувається шляхом налаштування синаптичних

ваг w[l]ji та ν[l]jp , де p = 0, 1, l = 1, 2, 3 — індекс шару, hj — число нейронів у шарі l,
j = 1, . . . , hl — індекс нейрона в шарі, i = 0, 1, . . . , nl — індекс входу нейрона.

Процес навчання заснований на процедурі зворотного поширення помилки. На
відміну від стандартної процедури для елементарного персептрона, налаштування
нейрона з APWA включає налаштування параметрів активаційної функції. Проце-
дура в загальному випадку може бути визначена як

Δν[l]jp (t) = ν[l]jp (t) − ν
[l]
jp (t − 1) = −ζ̃

[l](t)dJ(t)
dν[l]jp

,

Δw[l]jp (t) = w[l]ji (t) − w
[l]
ji (t − 1) = −ζ

[l](t) dJ(t)
dw[l]

ji
,

де основним кроком є обчислення часткових похідних dJ(t)
dν[l]jp

, dJ(t)
dw[l]

ji
.

Найпростішою, з точки зору обчислень, є процедура оновлення для синаптичних
ваг вихідного шару (l = 3):

Δν[3]jp (t) = −ζ̃
[3](t) dJ(t)dŷj(t)

dŷj(t)
dν[3]jp

,

Δw[3]ji (t) = −ζ
[3](t) dJ(t)

dz[3]j (t)
dz[3]j (t)
dw[3]

ji
,

або у розширеному вигляді:
Δν[3]j0 (t) = ζ̃[3](t)ℓj(t),
Δν[3]j1 (t) = ζ̃[3](t)ℓj(t)z[3]j (t),
Δw[3]ji (t) = ζ[3](t)δ[3]j (t)y[2]i (t) = ζ[3](t)ℓj(t)ν[3]j1 (t)y

[2]
i (t).

(5)
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Аналогічно визначимо процедуру для другого прихованого шару (l = 2):

Δν[2]jp (t) = −ζ̃[2](t) dJ(t)
dν[2]jp

= −ζ̃[2](t) dJ(t)
dy[2]j (t)

dy[2]j (t)
dν[2]jp

,

Δw[2]ji (t) = −ζ[2](t) dJ(t)
dw[2]

ji
= −ζ[2](t) dJ(t)

dz[2]j (t)
dz[2]j (t)
dw[2]

ji
=

= −ζ[2](t) dJ(t)
dy[2]j (t)

dy[2]j (t)
dz[2]j (t)

y[1]i (t) = ζ[2](t)δ[2]j (t)y[1]i (t).

(6)

Основним кроком тут є визначення часткової похідної з рівняння (6):

−
dJ(t)
dy[2]j (t)

= −
h3∑
i=1

(
dJ(t)
dz[3]i (t)

dz[3]i (t)
dy[2]j

)
=

=
h3∑
i=1

(
−

dJ(t)
dz[3]i (t)

)
d

dy[2]j

( h2∑
s=1

w[1]is (t)y
[2]
s (t)

)
=

h2∑
s=1

δ[3]s (t)w[3]sj (t). (7)

Звідcи отримуємо наступне:

δ[2]j (t) =
dφ[2]

(
z[2]j (t)

)
dz[2]j

h3∑
i=1

δ[3]i (t)w[3]ij (t) = ν[2]j1 (t)
h3∑
i=1

δ[3]i (t)w[3]ij (t),

де ν[2]j0 та ν[2]j1 визначаються як

ν[2]j0 (t) = ν[2]j0 (t − 1) + ζ̃
[2](t)

( h3∑
i=1

δ[3]i (t)w[3]ij (t)
)
,

ν[2]j1 (t) = ν[2]j1 (t − 1) + ζ̃
[2](t)

( h3∑
i=1

δ[3]i (t)w[3]ij (t)
)
z[2]j (t).

Налаштування першого прихованого шару (l = 1) виконується за відношенням
Δν[1]j0 (t) = ζ̃[1](t)

(∑h2
i=1 δ

[2]
i (t)w[2]ij (t)

)
,

Δν[1]j1 (t) = ζ̃[1](t)
(∑h2

i=1 δ
[2]
i (t)w[2]ij (t)

)
z[1]j (t),

Δw[1]ji (t) = ζ[1](t)δ[1]j (t)xi(t),

де δ[1]j (t) = ν[1]j1 (t)
∑h2

i=1 δ
[2]
i (t)w[2]ij (t).

У разі мережі з довільно великою кількістю шарів процес навчання шару з інде-
ксом l виконується за відношенням

Δν[l]j0 (t) = ζ̃[l](t)
(∑hl+1

i=1 δ
[l+1]
i (t)w[l+1]ij (t)

)
,

Δν[l]j1 (t) = ζ̃[l](t)
(∑hl+1

i=1 δ
[l+1]
i (t)w[l+1]ij (t)

)
z[l]j (t),

Δw[l]ji (t) = ζ[l](t)δ[l]j (t)y
[l−1]
i (t),

δ[l]j (t) = ν[l]j1 (t)
∑hl+1

i=1 (t)δ
[l+1]
i w[l+1]ji (t).

(8)

Таким чином, відношення (8) є узагальненням виразів (5)–(7).
З точки зору процесу навчання, основною відмінністю запропонованої мережі

порівняно з традиційним багатошаровим персептроном з довільною кількістю ша-
рів є те, що дана мережа налаштовує активаційну функцію в процесі навчання від-
повідно до цільової функції та умов вирішуваної задачі.

3. Експериментальні дослідження
Порівнюємо продуктивність APWA з продуктивністю функції ReLU у складі

повнозв’язного шару нейронів у двох моделях згорткових нейронних мереж (CNN):
Міжнародний науково-технічний журнал
Проблеми керування та інформатики, 2023, № 6 99



LeNet-5 [15] та KerasNet [16]. Базові реалізації використовують нелінійну функцію
ReLU для всіх згорткових та повнозв’язних шарів, окрім двох, останній з яких вико-
ристовує Softmax для відображення класів на виході моделі. Похідні варіанти мереж
застосовують APWA як активаційну функцію у передостанньому повнозв’язному
шарі. Всі інші властивості мережі та процедури навчання залишаються спільними
між усіма реалізаціями. Експеримент виконаний із застосуванням Python 3.10, бі-
бліотеки PyTorch 2.0 [17] та комп’ютера з RTX A4000.

Продуктивність версій згорткових ШНМ оцінена на наборах даних Fashion-
MNIST [18] та CIFAR-10 [19]. Розмірність та кількість даних, використаних в екс-
перименті, співпадає з тими, що надані в роботах [18, 19], розбиття між кількістю
вхідних даних для тренування до кількості даних для перевірки складає 5:1. Кожен
з каналів вхідних зображень закодований у вигляді чисел з плаваючою точкою в ді-
апазоні [0,0;+1,0]. Для значень класів зображень використовується пряме кодування
(one hot encoding).

Дані, використані для тренування, доповнюються шляхом горизонтального від-
дзеркалення з вірогідністю 50%, а також випадкового зсуву пікселів з максимальним
зміщенням у 0,1 раз. Аугментація вимкнена під час оцінки продуктивності мережі
на тестовому наборі даних (test set).

LeNet-5 має чотири шари:
• згортковий шар зі згорткою 5 x 5 та 20 вихідними каналами, вибірка за макси-

мальним значенням 2 x 2, функція активації ReLU;
• згортковий шар зі згорткою 5 x 5 та 50 вихідними каналами, вибірка за макси-

мальним значенням 2 x 2, функція активації ReLU;
• повнозв’язний шар з 500 вихідними ознаками, функція ReLU або APWA;
• повнозв’язний шар з 10 вихідними ознаками, активаційна функція SoftMax.
KerasNet складається з шести шарів:
• згортковий шар зі згорткою 3 x 3, 32 вихідними каналами та 1 x 1 відступом

(pad), функція активації ReLU;
• згортковий шар зі згорткою 3 x 3, 32 вихідними каналами, без відступу, фун-

кція активації ReLU, вибірка (pooling) за максимальним значенням розміром 2 x 2
та dropout з вірогідністю 25 %;

• згортковий шар 3 x 3, 64 вихідних канали та 1x1 відступ, функція ReLU;
• згортковий шар 3 x 3, 64 вихідних канали, без відступу, функція ReLU, вибірка

за максимальним значенням 2 x 2 та dropout (p = 0, 25);
• повнозв’язний шар з 512 вихідними ознаками, активаційна функція ReLU або

APWA, dropout на виході (p = 0, 5);
• повнозв’язний шар з 10 вихідними ознаками, активаційна функція SoftMax.
Адаптивні функції активації в нейронах з APWA мають 14 налаштованих пара-

метрів та 14 відповідних функцій належності. Ваги адаптивних функцій у різних
нейронах повністю незалежні, отже, APWA в кожному нейроні (у кожному каналі)
може отримати унікальну форму за результатами навчання.

Область визначення активаційної функції [−1, 0; +1, 0] покривають 12 трикутних
функцій належності, розподілених рівномірно. Значення за межами області визна-
чення покриваються двома додатковими функціями типу «рампа» (ramp function):

gj0(zj) =


1, zj ∈ (−∞, cj0),
cj1−zj
cj1−cj0 , zj ∈

[
cj0, cj1

]
,

0, zj ∈ (cj1, +∞),
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gjm(zj) =


0, zj ∈ (−∞, cj0),
zj−cj,m−1
cjm−cj,m−1 , zj ∈

[
cj,m−1, cjm

]
,

1, zj ∈ (cjm, +∞).

В експерименті порівнюється три способи ініціалізації початкових значень па-
раметрів uk в нейронах APWA:

• Ramp — у порядку рівномірного зростання від 0,0 до +1,0;
• Const1 — константою +1,0;
• Random — рівномірним випадковим розподілом у діапазоні [−1, 0; +1, 0].
Решта параметрів, такі як синаптичні ваги wj, ініціалізується відповідними про-

цедурами за замовчуванням з PyTorch.
Навчання всіх варіантів мереж проводиться протягом 100 епох з розміром мі-

нівибірки 64 елементи та оптимізатором RMSprop. Початкова швидкість навчання:
ζ(0) = 1 ·10−4, після обробки кожної мінівибірки з набору даних для навчання швид-
кість зменшується на 1 · 10−6.

Для простоти приймаємо ζ(t) = ζ̃(t), тобто значення швидкості навчання на ко-
жному кроці t для всіх параметрів моделі співпадають.

4. Аналіз експериментальних даних

Реєструємо значення похибки на навчальному наборі даних та точність розпі-
знавання на тестовому наборі для кожного з варіантів мережі. Навчені моделі збері-
гаються для подальшого аналізу форми активаційних функцій.

У таблиці наведені результати навчання на наборах даних Fashion-MNIST та
CIFAR-10 (найкраща отримана точність класифікації та епоха, за якої був отрима-
ний цей показник точності) для кожного з оцінених варіантів мережі, наборів даних
та стартових форм функцій.

Таблиця
Fashion-MNIST CIFAR-10

Мережа Активаційна функція Точність, % Епоха Точність, % Епоха
LeNet-5 ReLU 91,48 98 76,11 95
LeNet-5 APWA Ramp 91,30 92 76,90 98
LeNet-5 APWA Random 92,29 76 77,09 89
LeNet-5 APWA Const1 92,13 94 76,25 96
KerasNet ReLU 91,21 75 79,43 99
KerasNet APWA Ramp 92,24 98 79,80 100
KerasNet APWA Random 93,19 94 82,32 93
KerasNet APWA Const1 92,20 92 79,80 97

Загалом варіанти мережі з нейронами на основі APWA показують кращі резуль-
тати порівняно з базовими реалізаціями, що використовують ReLU, як на наборі
даних CIFAR-10, так і Fashion-MNIST. Серед всіх варіантів ініціалізації APWA най-
краще себе зарекомендував варіант з випадковою ініціалізацією параметрів.

На рис. 3, 4 (процес навчання мережі архітектури KerasNet на наборах Fashion-
MNIST і CIFAR-10 відповідно) ілюструють залежність показників точності на тесто-
вому наборі (test accuracy) та похибки навчання (training loss) від епохи для KerasNet.

Варто зазначити, що реалізація KerasNet з параметрами функції APWA, ініціа-
лізованими випадково, навчається швидше та показує меншу тенденцію до перена-
вчання (overfitting) порівняно з іншими активаційними функціями у всіх випадках,
окрім LeNet-5 на наборах Fashion-MNIST та CIFAR-10. Еталонний варіант мере-
жі KerasNet з ReLU так само показує високу схильність до перенавчання на наборі
Fashion-MNIST.

З даних рис. 3 та 4 видно, що константна ініціалізація затримує процес навча-
ння та підвищує похибку на початкових етапах, оскільки APWA-функція з такими
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вагами не змінює значення на виході в залежності від входу, а отже, блокує пряме
проходження інформації, поки градієнтна процедура не адаптує ваги.

Рис. 3

Рис. 4

На рис. 5 зображено форму функції APWA, ініціалізованої константними пара-
метрами, за результатами навчання. Цікавою особливістю є синусоїдо-подібна фор-
ма функції, особливо виражена в мережі KerasNet на наборі CIFAR-10.

Рис. 5
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На рис. 6 представлено форму функції APWA, ініціалізованої випадково, за ре-
зультатами навчання, що показала себе найкращою в процесі оцінки точності. Варто
зазначити сильну нелінійність отриманих функцій.

Рис. 6

На рис. 7 показано форму функції APWA, ініціалізованої як Ramp-функція, за
результатами навчання. У цьому разі функція зберігає свою загальну форму, але з
набором даних CIFAR-10 деформується в районі x ≈ 0.

Рис. 7

Висновок

ПредставленоAPWAта нейрон на її основі як альтернатива стандартним кусково-
заданим активаційним функціям, таким як ReLU, що широко застосовуються в гли-
боких нейронних мережах. Основною відмінністю мереж з APWA, порівняно з еле-
ментарним персептроном Ф. Розенблата, є використання нелінійних синапсів на
основі нечіткого перетворення замість фіксованих активаційних функцій.
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Синапси APWA реалізують нечітке перетворення в його адаптивній формі, а та-
кож дозволяють виконувати апроксимацію існуючих активаційних функцій на інтер-
валі з довільним рівнем точності, що визначається кількістю функцій належності.

Форма активаційної функції APWA налаштовується згідно з поточною задачею
окремо для кожного з нейронів мережі, що надає їй поглиблені апроксимаційні мо-
жливості, а також дозволяє отримати кращі результати (точності тощо) в процесі
навчання, що експериментально підтверджено в даній роботі.
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As the industry deals with growing datasets and more complex data processing
challenges, researchers and enterprise specialists trade artificial neural network
model complexity and speed for increased approximation capabilities. An in-
crease in the model complexity, particularly in its number of layers and depth,
leads to undesired computational effects like vanishing and exploding gradients.
The production models often employ piece-wise linear activation functions, sim-
ilar to ReLU, to avoid computational difficulties and improve the learning speed.
While the piece-wise linear activation functions have proven their effectiveness in
production models, namely in convolutional neural networks (CNN), such func-
tions are usually constrained in their form, limiting the model’s ability to optimize
and adapt to the current task. We propose an Adaptive Piece-Wise Activation
(APWA) function as an adaptive replacement for the fixed piece-wise linear acti-
vation functions. The core of the APWA function is an adaptive fuzzy transform
of the input signal, implemented by a set of membership functions with adaptive
output gains. Like the piece-wise linear units, APWA does not suffer from the
effects of exploding and vanishing gradients and is relatively simple to compute,
reducing the learning and inference time for networks with APWA-based neurons.
We demonstrate the effectiveness of APWA-based neurons on two different image
classification sets and twomodel architectures of distinct complexities. During the
learning, the models with APWA adapt their activation function form, providing
improved classification accuracy compared to the baseline non-adaptive variants.

Keywords: neural network model, adaptive fuzzy transform, activation function.
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