МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ЕНЕРГЕТИЧНИХ ОБ'ЄКТІВ І СИСТЕМ

ISSN 2522-4344 (Online), ISSN 1562-8965 (Print). The problems of general energy, 2021, 3(66): 4–13 doi: https://doi.org/10.15407/pge2021.03.004

УДК 621.3:519.8 С.В. ШУЛЬЖЕНКО, канд. техн. наук, ст. наук. співр., ORCID: 0000-0002-7720-0110 Інститут загальної енергетики НАН України, вул. Антоновича, 172, м. Київ, 03150, Україна

УРАХУВАННЯ РЕЖИМІВ ЕКСПЛУАТАЦІЇ ДВОКОРПУСНИХ ЕНЕРГОБЛОКІВ ТЕС У МОДЕЛІ МАТЕМАТИЧНОГО ПРОГРАМУВАННЯ ОПТИМАЛЬНОГО ЗАВАНТАЖЕННЯ ЕЛЕКТРОСТАНЦІЙ ЕНЕРГОСИСТЕМИ

Наведено математичні формули, використання яких як додаткових обмежень математичної моделі лінійного програмування пошуку оптимального розподілення навантаження електростанцій енергосистеми при покритті графіка електричних навантажень дозволяє врахувати можливість експлуатації дубль-блоків ТЕС України як в однокорпусному (використовується один котел), так і в двокорпусному (використовується два котла) режимах. Такі режими широко використовуються, зокрема, на вугільних ТЕС Об'єднаної енергосистеми України, що за рахунок фактичного розширення діапазону регулювання дозволяє підвищити гнучкість енергосистеми вцілому, особливо в умовах значної частки електроенергії генерованої вітровими та сонячними електростанціями.

К лючові с лова: енергетична система, графік навантаження енергосистеми, теплова електростанція, двокорпусний котлоагрегат, модель лінійного програмування.

Наявні значні обсяги встановленої потужності вітрової та сонячної енергетики в складі Об'єднаної енергосистеми (ОЕС) України, а також очікуване подальше зростання потужностей відновлюваної енергетики, оскільки її розвиток підтримується законодавством України [1-3] об'єктивно ускладнює режими роботи решти, традиційних, генеруючих потужностей енергосистеми. У 2020 р. задля підтримки належного рівня балансової надійності енергосистеми на законодавчому рівні оператору системи передачі України (НЕК «Укренерго») було дозволено обмежувати «надлишкові» обсяги генерації потужності вітрових та сонячних електростанцій – Закон України «Про ринок електричної енергії» був доповнений нормою щодо можливості обмеження генерації електроенергії виробленої об'єктами відновлюваної енергетики [4], а згодом були прийняті і відповідні підзаконні нормативні акти, які врегульовують як технічні, так і фінансові питання таких обмежень. Наразі «у зв'язку із змінами до Правил ринку, які були внесені постановою НКРЕКП №2818 від 30.12.2020 року та набрали чинності з 1 січня 2021 року,

© С.В. ШУЛЬЖЕНКО, 2021

НЕК «Укренерго» ... здійснює компенсацію за невідпущену в результаті диспетчерського обмеження електроенергію з ВДЕ ... лише тим виробникам, які приєдналися до публічного договору на зменшення навантаження та підключені до Системи керування обмеженнями ВДЕ ..., для виробників, які не приєднані до публічного договору на зменшення навантаження, не підключені до Системи керування обмеженнями ВДЕ та не мають можливості ... забезпечити передання телеметричних даних в режимі реального часу, не буде підстав для отримання оплати послуги зі зменшення навантаження в обсягах невідпущеної електричної енергії» [5, 6]. Поточний стан впровадження вітрових та сонячних генеруючих потужностей до ОЕС України свідчить, що фактично в енергосистемі вичерпані ресурси гнучкості для подальшого нарощування потужностей мінливої відновлюваної генерації, а отже актуальною є задача суттєвого підвищення гнучкості енергосистеми. Одним із таких засобів підвищення гнучкості є оптимізація режимів експлуатація існуючих двокорпусних енергоблоків вугільних ТЕС, що вимагає коректного моделювання їх участі у покритті графіків електричних навантажень енергосистеми.

Незважаючи на те, що двокорпусні енергоблоки ТЕС достатньо широко розповсюджені у світі і не є інженерним рішенням, притаманним лише для ОЕС України, моделювання режимів їх експлуатації здійснюється як окремих технологічних об'єктів [7-9] без урахування режимів генерації потужності всіма типами електростанцій, що забезпечують покриття навантаження енергосистеми. У статті наведено математичні формули, використання яких як додаткових обмежень математичної моделі лінійного програмування пошуку оптимального розподілення навантаження електростанцій енергосистеми при покритті графіка електричних навантажень дозволяє врахувати можливість експлуатації дубль-блоків ТЕС України як в однокорпусному (використовується один котел), так і в двокорпусному (використовується два котла) режимах, що дозволяє разом моделювати режими експлуатації всіх типів генеруючих потужностей, задіяних у покритті навантаження енергосистеми. Введення додаткових обмежень, що дозволяють коректно моделювати два режими експлуатації двокорпусного блоку ТЕС, є розвитком моделі математичного програмування, яка описана у [10–13].

Двокорпусні енергоблоки ТЕС фактично можуть експлуатуватись у двох умовно незалеж-

них режимах, причому між двома режимами є зона, в який наявний «розрив» потужності, яку генерує енергоблок (рис. 1 [14]). За умови використання одного котла (лінія 1 на рис. 1) енергоблок здатний генерувати електричну потужність у діапазоні 38-50% від його номінальної встановленої потужності, а в разі використання двох котлів (лінія 2 на рис. 1) енергоблок генерує потужність у діапазоні 58-100% від номінальної. Між цими режимами є «розрив», що дорівнює діапазону 50; 58%. Таким чином, хоча фактично енергоблок є єдиним технологічним об'єктом, у лінійних оптимізаційних моделях через розривність залежності величини генерації потужності від обсягу споживання палива його неможливо описати однією змінною, яка здатна визначати режим експлуатації такого енергоблоку в повному діапазоні – від мінімального рівня генерації (38% від номінальної встановленої потужності) і до 100%. Це вимагає, на відміну від підходу, який наведений у [15] і передбачає розглядати лише один з можливих режимів (одно- або двокорпусний) експлуатації енергоблоку, застосувати додаткові змінні, що дозволять коректно врахувати обидва режими експлуатації в межах однієї моделі математичного програмування.

Рис. 1. Нормативні питомі витрати палива на відпуск електроенергії для двокорпусного блоку 300 МВт: 1 – однокорпусний режим експлуатації енергоблоку (потужність генерації в діапазоні 38–50%,
 2 – двокорпусний режим (потужність генерації в діапазоні 58–100%), 3 – лінійна інтерполяція залежності питомої витрати палива від навантаження енергоблоку в діапазоні 58–82%, 4 – лінійна інтерполяція залежності питомої витрати палива від навантаження енергоблоку в діапазоні 58–100%

Для урахування можливості використання двох режимів для двокорпусних енергоблоків ТЕС множину, яка містить всі типи енергоблоків ТЕС (K^{TEC}) у моделі [12] розділимо на дві підмножини $K^{TEC} \supseteq K^{TEC1} \bigcup K^{TEC2} : (K^{TEC1} \cap K^{TEC2} = \emptyset) - під$ множина K^{TEC1} містить типи енергоблоків TEC, що обладнані одним котлоагрегатом (для України це енергоблоки номінальною потужністю 100, 150, 200, 300 MBт), а підмножина *К^{ТЕС2}* містить типи двокорпусних енергоблоків ТЕС (для України це енергоблоки номінальною потужністю 800 та 300 МВт). Також аналогічно розділимо множину U^{TEC} , яка містить перелік енергоблоків певного типу – $U^{TEC} \supseteq U^{TEC1} \bigcup U^{TEC2} : (U^{TEC1} \cap U^{TEC2} = \emptyset).$ Для урахування режимів експлуатації двокорпусних енергоблоків введемо множину F^{TEC2} яка буде містити два режими експлуатації, але теоретично може містити довільну кількість, наприклад, режим експлуатації енергоблока, що описується лінією 2 на рис. 1 (двокорпусний режим) може бути розділений на два режими – той, що відповідає частині лінії 2, яка є горизонтальною (питомі обсяги споживання палива є незмінними), та тій частині лінії 2, що інтерпольована лінією 3 (питомі обсяги споживання палива зростають відповідно до зменшення генерації потужності). У моделі будемо використовувати індекс $f \in F^{TEC2}$, який відповідає певному режиму експлуатації двокорпусного енергоблока. Також змініться використання індексу k, що відповідає типу генеруючої потужності, яка може бути використана в енергосистемі для покриття навантаження, зо-крема: $k \in K \setminus (K^{PS} \bigcup K^{TEC1} \bigcup K^{TEC2})$ або, що те саме $k \in K \setminus (K^{PS} \bigcup K^{TEC})$ – генеруючі потужності, що підключені до енергосистеми, за виключенням ГАЕС (цьому типу генерації відповідає підмножина K^{PS}) та всіх ТЕС (як однокорпусних, так і двокорпусних), зокрема, ТЕЦ, АЕС, ГЕС, ВЕС, СЕС; $k \in K^{TEC1}$ – на відміну від моделі [12], в якій цей індекс використовується для ідентифікації типу енергоблоків з множини $K^{TEC} \supseteq K^{TECT} \bigcup K^{TEC2}$ тут будемо явно визначати який тип енергоблоків ідентифікує індекс, у цьому випадку – однокорпусний тип енергоблоків ТЕС (множина K^{TECI}). Індекс $\in U^{TEC1}$ – аналогічно до моделі [12] ідентифікує кількість енергоблоків певного типу, але виключно з підмножини К^{ТЕС1}. Для представлення в моделі двокорпусних енергоблоків будемо використовувати множину V^{TEC2}, в якій містяться всі наявні двокорпусні енергоблоки, відповідно індекс $v \in V^{TEC2}$ використовується для моделювання кожного такого енергоблоку.

З урахуванням модифікованих множин та індексів критерій оптимізації моделі [12] буде таким:

$$\sum_{t=1}^{T} \left[\sum_{k=1}^{K \setminus (K^{PS} \cup K^{TEC})} p_{kt}^{G} c_{k}^{G} + \sum_{k=1}^{KEC1} \sum_{u=1}^{U^{TEC1}} p_{kut}^{TEC1} c_{ku}^{TEC1} + \sum_{k=1}^{K^{PS}} \sum_{u=1}^{V^{KPS}} (y_{kut}^{G} P_{kut}^{G} c_{kut}^{G} - y_{kut}^{P} P_{kut}^{P} c_{kut}^{P}) + z_{t}^{I} c_{t}^{I} + z_{t}^{E} c_{t}^{E} \right] + \sum_{t=1}^{T} \sum_{v=1}^{V^{TEC2}} \sum_{f=1}^{TEC2} p_{vft}^{TEC2} c_{vf}^{TEC2} \rightarrow \min.$$
(1)

Перший член критерію (1) такий же, як і в моделі [12] за виключенням того, що в ньому використовуються тільки однокорпусні енергоблоки ТЕС, а другий член враховує участь двокорпусних енергоблоків, які використовуються у відповідному режимі при покритті електричних навантажень енергосистеми (p_{yfl}^{TEC2} – змінна, що відповідає незмінному обсягу генерації потужності в певному режимі певним двокорпусним енергоблоком протягом певного періоду моделювання, c_{yf}^{TEC2} – собівартість генерації електроенергії енергоблоком у відповідному режимі експлуатації).

Перепишемо також обмеження (2) моделі [12], яке вимагає дотримання суворого балансу між обсягом виробництва, «умовного» експорту та імпорту і рівнем потреби в електричній потужності для кожного періоду часу:

$$\sum_{k=1}^{K \setminus (K^{PS} \cup K^{TEC})} p_{kt}^{G} + \sum_{k=1}^{K^{TEC1}} \sum_{u=1}^{U^{TEC1}} p_{kut}^{TEC1} + \sum_{v=1}^{V^{TEC2}} \sum_{f=1}^{F^{TEC2}} p_{vft}^{TEC2} + \sum_{k=1}^{K^{PS}} \sum_{u=1}^{U^{KPS}} (y_{kut}^{G} P_{kut}^{G} - y_{kut}^{P} P_{kut}^{P}) + z_{t}^{I} - z_{t}^{E} = D_{t}; \forall t \in T.$$
(2)

У рівнянні (2), аналогічно до (1), для урахування потужності, що генерується енергоблоками теплових електростанцій, окремий член використовується для однокорпусних енергоблоків (другий член рівняння) та окремий член для двокорпусних (третій член), причому кожен з двокорпусних енергоблоків може працювати в одному із режимів з множини F^{TEC2} .

У моделі [12] формули (3)–(11) описують роботу енергоблоків ТЕС відповідно до припущення, що вони використовуються лише в одному режимі. Ці рівняння лишаються без змін, але замість множини K^{TEC} слід використовувати множину K^{TEC1} , аналогічно замість U^{TEC} слід використовувати множину U^{TEC1} , тобто сфера дії рівнянь поширюється лише на однокорпусні енергоблоки. Моделювання участі кожного з множини двокорпусних енергоблоків в покритті графіків електричних навантажень з урахуванням можливих режимів їх використання описується наступною залежністю, яка додається у модель [12] як обмеження:

$$\sum_{f=1}^{F^{TEC2}} r_{vft}^{TEC2} \le 1; \forall v \in V^{TEC2}; \forall t \in T,$$
(3)

де r_{yft}^{TEC2} – булева (бінарна) змінна(и), яка може приймати значення 0 (нуль) – двокорпусний енергоблок не використовується в певному режимі протягом певного періоду моделювання або 1 (один) – енергоблок у відповідний період використовується. Якщо енергоблок взагалі не використовується в жодному режимі, то всі змінні r_{yft}^{TEC2} будуть дорівнювати 0 (нулю), а оскільки сума змінних, ліва частина обмеження, має бути не більшою за 1 (один), то це гарантує що протягом кожного періоду моделювання (години) може бути використаний лише один режим експлуатації двокорпусного блоку.

Також до моделі [12] необхідно додати формули аналогічні до формул (3)–(11), але які описують умови залучення до покриття навантаження енергосистеми двокорпусних енергоблоків. Кількість стартів енергоблоку для кожного режиму експлуатації обмежується окремо:

$$\sum_{t=1}^{T} s_{vft}^{TEC2} \le N_{vf}^{TEC2}; \forall v \in V^{TEC2}; \forall f \in F^{TEC2}, \quad (4)$$

де s_{vft}^{TEC2} – булева (бінарна) змінна(и), сума значень якої для всього горизонту моделювання не може перевищувати значення максимальної заданої кількості стартів енергоблоку у певному режимі – N_{vf}^{TEC2} .

Також визначимо час безперервної експлуатації енергоблоку в певному режимі після його старту:

$$o_{vft}^{GTEC2} = \begin{bmatrix} \sum_{m=1}^{t} S_{vfm}^{TEC2} : t \le M_{vf}^{TEC2}, \\ \sum_{m=t-M_{vf}}^{t} S_{vfm}^{TEC2} : t > M_{vf}^{TEC2}, \\ \forall t \in T; \forall v \in V^{TEC2}; \forall f \in F^{TEC2}, \end{bmatrix}$$
(5)

де o_{vft}^{GTEC2} – булева (бінарна) змінна(и), значення якої для кожного періоду моделювання дорівнює 1 (один), якщо енергоблок в цей період експлуатується в певному режимі і дорівнює 0 (нуль), якщо не експлуатується, причому, сума значень цієї змінної має точно дорівнювати заданій тривалості експлуатації енергоблоку у певному режимі (M_{vf}^{TEC2}) за умови, що вже відбувся старт його експлуатації – змінна s_{vft}^{TEC2} для певного періоду прийняла значення 1 (один).

Обмеження мінімальної та максимальної потужності, яку здатен генерувати кожен двокорпусний енергоблок у певному режимі визначається так:

$$o_{vft}^{GTEC2} G_{vf}^{MIN} \le p_{vft}^{TEC2} \le o_{vft}^{GTEC2} G_{vf}^{MAX};$$

$$\forall t \in T; \forall v \in V^{TEC2}; \forall f \in F^{TEC2}, \qquad (6)$$

де G_{vf}^{MIN} і G_{vf}^{MAX} – мінімальна та максимальна потужність генерації відповідно. Для покриття нерівномірності графіка споживання потужностей двокорпусний енергоблок передбачено використовувати в режимі слідування за навантаженням, але можливості збільшення (7) та зменшення (8) потужності є обмеженими, що формалізовано так:

$$o_{vft}^{GTEC2} p_{vf}^{\Delta UP} \ge \begin{bmatrix} 0: t \le 1, \\ p_{vft}^{TEC2} - p_{vf(t-1)}^{TEC2} : t > 1, \\ \forall t \in T; \forall v \in V^{TEC2}; \forall f \in F^{TEC2}, \\ -o_{vft}^{GTEC2} p_{vf}^{\Delta DOWN} \ge \begin{bmatrix} 0: t \le 1, \\ p_{vft}^{TEC2} - p_{vf(t-1)}^{TEC2} : t > 1, \end{bmatrix}$$
(7)

$$\forall t \in T; \forall v \in V^{TEC2}; \forall f \in F^{TEC2}, \qquad (8)$$

де $p_{vf}^{\Delta UP}$ – визначене дозволене збільшення потужності двокорпусного енергоблоку, що працює в певному режимі відносно попереднього періоду моделювання, $p_{vf}^{\Delta DOWN}$ – визначене дозволене зменшення потужності відносно попереднього періоду.

Також для кожного етапу моделювання забезпечення вимоги щодо наявних вторинних резервів на завантаження (9) та розвантаження (10) для ТЕС має визначатись із урахуванням режимів експлуатації як однокорпусних, так і двокорпусних енергоблоків:

$$o_{kt}^{GTEC1}G_{k}^{MAX} - p_{kt}^{TEC1} + o_{vft}^{GTEC2}G_{vf}^{MAX} - p_{vft}^{TEC2} \ge L_{w}^{UP};$$

$$\forall k \in K^{TEC1}; \forall v \in V^{TEC2}; \forall f \in F^{TEC2};$$

$$\forall w \in K^{TEC1} \bigcup V^{TEC2}; \forall t \in T, \qquad (9)$$

$$p_{kt}^{TEC1} - o_{kt}^{GTEC1} G_k^{MIN} + p_{vft}^{TEC2} - o_{vft}^{GTEC2} G_{vf}^{MIN} \ge L_w^{DOWN};$$

$$\forall k \in K^{TEC1}; \forall v \in V^{TEC2}; \forall f \in F^{TEC2};$$

$$\forall w \in K^{TEC1} \bigcup V^{TEC2}; \forall t \in T,$$
(10)

де L_w^{UP} (L_w^{DOWN}) – визначене значення вторинного резерву на завантаження (з верхнім індексом UP) та розвантаження (з верхнім індексом DOWN), що мають забезпечити енергоблоки TEC протягом всього періоду, що моделюється.

Крім описаних вище додаткових рівнянь, що дозволяють в моделі [12] враховувати використання двокорпусного енергоблоку в режимі експлуатації одного котла, також використовувався режим обмеження генерації ВЕС та СЕС для кожного інтервалу моделювання (режим № 3, описаний у [13]), тобто для ВЕС та СЕС допускалось незалежне застосування змінного обмежуючого коефіцієнту навантаження для кожного часового інтервалу, для чого у модель були додані і використовувались відповідні математичні формулювання (формули (2.7)–(2.10), надані у статті [13]).

Отже для розрахунків використовувалась модель математичного програмування, яка є синтезом моделей, описаних у [12] та [13], а також із доданими обмеженнями, описаними в цій статті.

Для виконання розрахунків використана вхідна інформація та припущення, які детально описані у [13], але із такими відмінностями:

- можливість імпорту та експорту електроенергії з енергосистеми був заборонений, тобто моделювався ізольований стан, в якому баланс між споживанням та виробництвом забезпечується виключно наявними в енергосистемі генеруючими потужностями;

- для участі в покритті потужності споживанні використовувався енергоблок номінальною встановленою потужністю 800 МВт з діапазоном регулювання 540–750 МВт, а також енергоблоки ТЕС встановленою номінальної потужністю 300 МВт – як двокорпусні, так і однокорпусні, використання інших енергоблоків, встановленою потужністю 100, 150, 200 було заборонено;

- для енергоблоків ТЕС встановленою потужністю 300 МВт були задані такі діапазони регулювання: для енергоблоку номінальною потужністю 300 МВт, що оснащений котлоагрегатом з одним котлом або двокорпусного блоку, який працює в режимі використання двох котлів, зміна потужності генерації задана в діапазоні 178–280 МВт; для двокорпусного блоку, що працює в режимі використання одного котла (одним корпусом котлоагрегату) заданий діапазон становить – 108–145 МВт;

- для енергоблоку ТЕС 800 МВт кількість стартів протягом діапазону моделювання (24 год) задана в кількості 1 (один), а тривалість експлуатації 24 год; для однокорпусного блоку ТЕС 300 МВт — кількість стартів протягом доби не перевищує 2 (два), час експлуатації — не більше 24 год; для двокорпусного блоку кількість стартів в кожному режимі — 4 (чотири), час експлуатації — не більше 12 год.

Результати розрахунків за умови використання енергоблоків ТЕС 300 МВт у діапазоні регулювання 178–280 МВт (варіант № 1) наведені на рис. 2 та табл. 1 (у цьому випадку використовуються лише енергоблоки ТЕС з котлоагрегатами із одним котлом, а якщо котлоагрегат складається з двох котлоагрегатів, то використання однокорпусного режиму заборонено). Альтернативний варіант розрахунків (варіант № 2) виконано за умови можливості комбінованого використання енергоблоків ТЕС 300 МВт, тобто дозволяється

Рис. 2. Результати оптимізації завантаження генеруючих потужностей при покритті навантаження ОЕС України для 13 жовтня 2018 р. за умови заборони використання енергоблоків ТЕС 300 МВт у однокорпусному режимі

Таблиця 1. Результати оптимізації завантаження генеруючих потужностей
при покритті навантаження ОЕС України для 13 жовтня 2018 р. за умови заборони використання
енергоблоків ТЕС 300 МВт в однокорпусному режимі, МВт

		· ·						
Час, год	АЕС+ ТЕЦ+ БлокСт	ВЕС (Ген. обмежена/ Коеф. вик., %)	СЕС (Ген.обмежена/ Коеф. вик., %)	ТЕСвуг	ГЕС	ГАЕС (Нас/Ген)	Кількість блоків (300 / 300_1корп)	Резерви на ТЕС (Нав/ Розв)
01	7566	1749,5 / 72	0 / 0	4751	642	0 / 0	18 / 0	1179 / 1007
02	7570	1749,5 / 72	0 / 0	4571	200	0 / 0	18 / 0	1359 / 827
03	7571	1749,5 / 74	0 / 0	4434	200	0 / 0	18 / 0	1496 / 690
04	7582	1749,5 / 72	0 / 0	4293	200	0 / 0	18 / 0	1637 / 549
05	7575	1749,5 / 72	0 / 0	4473	231	0 / 0	18 / 0	1457 / 729
06	7574	1749,5 / 72	0 / 0	4653	502	0 / 0	18 / 0	1277 / 909
07	7622	1749,5 / 71	104,4 / 100	4643	645	0 / 0	18 / 0	1287 / 899
08	7653	1749,5 / 70	534,2 / 100	4463	778	0 / 0	18 / 0	1467 / 719
09	7679	1749,5 / 81	1842,1 / 100	4264	613	0 / 0	18 / 0	1666 / 520
10	7699	1749,5 / 78	2898,2 / 100	4064	200	216,5 / 0	18 / 0	1866 / 320
11	7719	1749,5 / 72	3296,1 / 88	4224	256	637,5 / 0	18 / 0	1706 / 480
12	7735	1749,5 / 75	3296,1 / 81	4197	200	637,5 / 0	18 / 0	1733 / 453
13	7728	1749,5 / 76	3296,1 / 80	4155	200	928,0 / 0	18 / 0	1775 / 411
14	7669	1749,5 / 76	3296,1 / 85	4334	342	1187,5 / 0	18 / 0	1596 / 590
15	7667	1749,5 / 90	3296,1 / 98	4483	200	1187,5 / 0	18 / 0	1436 / 750
16	7665	1606,7 / 100	2523,7 / 100	4694	305	680,5 / 0	18 / 0	1236 / 950
17	7676	1381,6 / 100	1363,2 / 100	4944	774	0 / 0	23 / 0	2386 / 310
18	7729	1459,2 / 100	460,5 / 100	5194	1141	0 / 512	23 / 0	2136 / 560
19	7746	1749,5 / 84	0 / 0	5811	1329	0 / 1024	23 / 0	1886 / 810
20	7769	1749,5 / 83	0 / 0	6101	1329	0 / 1061	23 / 0	1636 / 1060
21	7778	1749,5 / 82	0 / 0	5944	1329	0 / 873	23 / 0	1386 / 1310
22	7828	1749,5 / 76	0 / 0	5926	1071	0 / 361	23 / 0	1458 / 1238
23	7813	1749,5 / 73	0 / 0	5622	571	0 / 324	23 / 0	1708 / 988
24	7811	1749,5 / 80	0 / 0	5412	242	0 / 0	23 / 0	1918 / 778
За добу	184424	41188	26207	115657	13500	5475 / 4155		

однокорпусний та двокорпусний режим використання енергоблоків із двома котлами і одночасно енергоблоків з одним котлом (рис. 3 та табл. 2).

Результати розрахунків для варіанта № 1 (рис. 1, табл. 1) забезпечують збалансованість між споживанням та генерацією електроенергії за умови обмеження відпуску електроенергії як від вітрових, так і від сонячних електростанцій. Для вітрових електростанцій обсяг обмежень за добу в порівнянні із оригінальним (необмеженим) профілем генерації ВЕС становить 11632 МВт·год, а для СЕС – 2708 МВт·год. Протягом доби використовується 18 блоків включно до 16-ої години, а починаючи із 17-ої для покриття пікових навантажень додатково завантажується ще 5 енергоблоків.

Результати розрахунків для варіанта № 2 (рис. 2, табл. 2) свідчать, що для забезпечення збалансованості між споживанням та генерацією електроенергії також необхідно застосовувати обмеження відпуску електроенергії як від вітрових, так і від сонячних електростанцій. Для вітрових електростанцій обсяг обмежень за добу в порівнянні із оригінальним (необмеженим) профілем генерації ВЕС становить 6442 МВт·год (що на 5190 МВт·год менше порів-

Рис. 3. Результати оптимізації завантаження генеруючих потужностей при покритті навантаження ОЕС України для 13 жовтня 2018 р. за умови використання енергоблоків ТЕС 300 МВт як в двокорпусному, так і в однокорпусному режимі

	енергоблоків ТЕС 300 МВт як в двокорпусному, так і в однокорпусному режимі, МВт										
Час, год	АЕС+ ТЕЦ+ БлокСт	ВЕС (Ген. обмежена/ Коеф. вик., %)	СЕС (Ген.обмежена/ Коеф. вик., %)	ТЕСвуг	ГЕС	ГАЕС (Нас/Ген)	Кількість блоків (300 / 300_1корп)	Резерви на ТЕС (Нав/ Розв)			
01	7566	1999,5 / 82	0 / 0	4462	682	0 / 0	14 / 4	928 / 998			
02	7570	1999,5 / 82	0 / 0	4322	200	0 / 0	14 / 4	1068 / 858			
03	7571	1999,5 / 85	0 / 0	4185	200	0 / 0	14 / 4	1205 / 721			
04	7582	1999,5 / 82	0 / 0	4044	200	0 / 0	14 / 4	1346 / 580			
05	7575	1999,5 / 82	0 / 0	4223	232	0 / 0	14 / 4	1167 / 759			
06	7574	1999,5 / 82	0 / 0	4403	503	0 / 0	14 / 4	987 / 939			
07	7622	1999,5 / 81	104,4 / 100	4365	674	0 / 0	14 / 4	1025 / 901			
08	7653	1999,5 / 80	534,2 / 100	4175	816	0 / 0	14 / 4	1215 / 711			
09	7679	1999,5 / 93	1842,1 / 100	3975	652	0 / 0	14 / 4	1415 / 511			
10	7699	1999,5 / 89	2898,2 / 100	3814	200	216,5 / 0	14 / 4	1576 / 350			
11	7719	1999,5 / 82	3296,1 / 88	3974	256	637,5 / 0	14 / 4	1416 / 510			
12	7735	1999,5 / 86	3296,1 / 81	3947	200	637,5 / 0	14 / 5	1588 / 375			
13	7728	1999,5 / 87	3296,1 / 80	3948	200	928,0 / 0	14 / 5	1587 / 376			
14	7669	1999,5 / 86	3296,1 / 85	4154	273	1187,5 / 0	14 / 5	1381 / 582			
15	7667	1940,5 / 100	3296,1 / 98	4293	200	1187,5 / 0	14 / 5	1201 / 762			

Таблиця 2. Результати оптимізації завантаження генеруючих потужностей при покритті нарантаження ОЕС України для 13 жортня 2018 р. за умори рикористання

21	7811	1999,5 / 91	0 / 0	5205	200	070	18/0	1393/813
24					200	0 / 0	10/6	1505 / 012
23	7813	1999,5 / 84	0 / 0	5465	479	0 / 324	18 / 7	1480 / 965
22	7828	1999,5 / 87	0 / 0	5769	979	0 / 361	18 / 7	1210 / 1235
21	7778	1999,5 / 94	0 / 0	5774	1250	0 / 873	18 / 7	1171 / 1274
20	7769	1999,5 / 95	0 / 0	5852	1329	0 / 1061	18 / 7	1281 / 1164
19	7746	1999,5 / 96	0 / 0	5562	1329	0 / 1024	18 / 7	1551 / 894
18	7729	1459,2 / 100	460,5 / 100	5124	1211	0 / 512	18 / 7	1821 / 624
17	7676	1381,6 / 100	1363,2 / 100	4854	864	0 / 0	18 / 7	2091 / 354
16	7665	1606,7 / 100	2523,7 / 100	4584	372	680,5 / 0	18 / 5	2071 / 300
Час, год	АЕС+ ТЕЦ+ БлокСт	ВЕС (Ген. обмежена/ Коеф. вик., %)	СЕС (Ген.обмежена/ Коеф. вик., %)	ТЕСвуг	ГЕС	ГАЕС (Нас/Ген)	Кількість блоків (300 / 300_1корп)	Резерви на ТЕС (Нав/ Розв)

Урахування режимів експлуатації двокорпусних енергоблоків ТЕС у моделі математичного програмування оптимального завантаження електростанцій енергосистеми

няно з результатами для варіанта № 1, а для СЕС, так само як і для варіанта № 1 – 2708 МВт·год. Протягом доби разом із енергоблоками із одним котлоагрегатом використовуються також двокорпусні енергоблоки, що працюють з використанням одного корпусу котлоагрегату: використовується 4 блоки включно до 11-ої години, починаючи із 12-ої і до 16-ої додається ще один енергоблок, протягом пікових навантажень за відсутності генерації потужності сонячними електростанціями, використовується 7 енергоблоків.

Для обох варіантів розрахунків навантаження гідроагрегатів ГАЕС, а також енергоблоків АЕС співпадає, також співпадає добовий обсяг генерації електроенергії ГЕС, хоча щогодинне навантаження гідроагрегатів ГЕС протягом доби відрізняється. Обсяг виробництва електроенергії ТЕС за добу для варіанта № 1 є більшим на 5190 МВт год порівняно з варіантом № 2, що відповідає різниці між обсягом генерації електроенергії вітровими електростанціями для цих варіантів.

Обсяги споживання вугілля протягом доби вугільними енергоблоками ТЕС здійснені із використанням зміни питомих показників (рис. 1) залежно від навантаження та режиму використання як однокорпусних, так і двокорпусних енергоблоків і наведені у табл. 3.

Час,		Варіант	№ 1 Варіант № 2			2
год	TEC 800	TEC 300	ТЕС 300 – 1 корпус	TEC 800	TEC 300	ТЕС 300 – 1 корпус
01	280	1504	0	280	1223	187
02	280	1451	0	280	1178	187
03	280	1410	0	280	1138	187
04	280	1367	0	272	1102	187
05	280	1422	0	280	1143	194
06	280	1475	0	280	1184	209
07	280	1472	0	280	1161	223
08	280	1419	0	276	1120	209
09	273	1364	0	269	1078	194
10	265	1307	0	261	1034	194
11	258	1364	0	254	1078	208
12	250	1361	0	246	1060	234
13	243	1355	0	239	1067	234

Таблиця 3. Споживання вугілля вугільними енергоблоками ТЕС залежно від режиму їх використання, тонна

Час,	Варіант № 1			Варіант № 2			
год	TEC 800	TEC 300	ТЕС 300 – 1 корпус	TEC 800	TEC 300	ТЕС 300 – 1 корпус	
14	242	1410	0	246	1109	251	
15	235	1464	0	242	1151	269	
16	242	1516	0	250	1267	287	
17	250	1667	0	257	1325	327	
18	257	1739	0	265	1381	353	
19	265	1810	0	272	1435	379	
20	272	1878	0	280	1488	403	
21	280	1945	0	280	1540	379	
22	280	1924	0	280	1551	353	
23	272	1857	0	272	1497	327	
24	280	1788	0	265	1444	298	
За добу	6402	37270	0	6405	29750	6270	
Разом	43672			M 43672 42435			

Як видно з табл. 3, режим навантаження енергоблоків ТЕС, відповідно до варіанту № 2, незважаючи на те, що режим експлуатації ТЕС з одним корпусом котлоагрегату потребує значно більших питомих витрат вугілля потребує менше вугілля – за варіантом № 1 добове споживання становить 43,7 тис. т, а за варіантами № 2 – 42,4 тис. т (на 1,3 т менше).

Наведена в статті математична модель реалізована на мові MathProg [16] з використанням пакету оптимізації GLPK [17]. Розрахунки за варіантом № 1 та № 2 здійснювались на комп'ютері з процесором Intel i5 2.9 GHz 2019 року випуску. Для прискорення розрахунків було задане допустиме відхилення 5%, замість 0,1% яке використовується як стандартне. Час, необхідний для розрахунку за варіантом № 1, становить менше 30 с, а за варіантом № 2 потрібно більше ніж 240 с для одного розрахунку. Таке суттєве збільшення тривалості пошуку рішення пояснюється збільшенням кількості цілочислових змінних, що з урахуванням того, що матриця обмежень містить майже в два рази більше рядків ніж стовпчиків (після підготовки вхідної матриці вона містить більше 3300 рядків і більше 1800 стовпчиків) суттєво ускладнює реалізацію оптимізаційного алгоритму GLPK. Такий значний час розрахунків вимагає використання суттєво більш потужних засобів обчислювальної техніки при використанні цих моделей для у задачах дослідження розвитку генеруючих потужностей, оскільки виконання розрахунків для календарного року буде потребувати більше 24 год лише власне для обчислень. У випадку вирішення задачі оптимізації навантаження генеруючих потужностей для певної доби час, який необхідний для розрахунків є прийнятним.

ВИСНОВКИ

1. Поточний стан впровадження вітрових та сонячних генеруючих потужностей до ОЕС України свідчить, що фактично в енергосистемі вичерпані ресурси гнучкості для подальшого нарощування потужностей мінливої відновлюваної генерації, а отже актуальною є задача суттєвого підвищення гнучкості енергосистеми. Одним із таких засобів підвищення гнучкості є оптимізація режимів експлуатація існуючих двокорпусних енергоблоків вугільних ТЕС, що вимагає коректного моделювання їх участі у покритті графіків електричних навантажень енергосистеми.

2. У статті запропоновано математичні формули, використання яких як додаткових обмежень математичної моделі лінійного програмування пошуку оптимального розподілення навантаження електростанцій енергосистеми при покритті графіка електричних навантажень дозволяє врахувати можливість експлуатації дубль-блоків ТЕС України як в однокорпусному (використовується один котел), так і двокорпусному (використовується два котла) режимах, що дозволяє разом моделювати режими експлуатації всіх типів генеруючих потужностей задіяних у покритті навантаження енергосистеми. Описані у статті додаткові обмеження по суті є розвитком моделі математичного програмування, опис якої наведено в попередніх публікаціях автора за 2020 р.

3. Розрахунки показують, що запропоновані додаткові обмеження дозволяють більш гнучко навантажувати енергоблоки ТЕС, що веде до зменшення обмежень на відпуск потужності відновлюваними джерелами енергії, зменшує виробництво електроенергії ТЕС, що спалюють органічне паливо. Незважаючи на те, що режим експлуатації ТЕС з одним корпусом котлоагрегату потребує значно більших питомих витрат вугілля порівняно з двокорпусним режимом добове споживання вугілля є меншим, що об'єктивно підвищує екологічність теплової енергетики.

4. Час, необхідний для розрахунку навантажень енергосистеми протягом доби із використанням запропонованої моделі, становить більше ніж 240 с, що приблизно у вісім разів більше, ніж для базової (неудосконаленої) моделі. Таке суттєве збільшення тривалості пошуку рішення пояснюється збільшенням кількості цілочислових змінних, що з урахуванням того, що матриця обмежень містить майже в два рази більше рядків ніж стовпчиків суттєво ускладнює реалізацію оптимізаційного алгоритму GLPK. Такий значний час розрахунків вимагає використання суттєво більш потужних засобів обчислювальної техніки при використанні цих моделей у задачах дослідження розвитку генеруючих потужностей, оскільки виконання розрахунків для календарного року буде потребувати більше 24 год лише власне для обчислень. У випадку вирішення задачі оптимізації навантаження генеруючих потужностей для певної доби час, який необхідний для розрахунків є прийнятним, і використання запропонованої моделі є цілком можливим.

Роботу виконано за напрямом «Підтримка пріоритетних для держави наукових досліджень і науково-технічних (експереметальних) розробок» бюджетної програми КПКВ 6541230

1. Про ратифікацію Угоди про асоціацію між Україною, з однієї сторони, та Європейським Союзом, Європейським співтовариством з атомної енергії і їхніми державами-членами, з іншої сторони: Закон України від 16.09.2014 № 1678-VII. Відомості Верховної Ради (BBP), 2014, № 40, ст. 2021

2. Угода про асоціацію між Україною, з однієї сторони, та Європейським Союзом, Європейським співтовариством з атомної енергії і їхніми державами-членами, з іншої сторони. URL: https://zakon.rada.gov.ua/ laws/show/984 011#n2820 (дата звернення: 22.07.2021).

3. Про ринок електричної енергії України: Закон України від 13.04.2017 №2019-VIII. Відомості Верховної Ради (ВВР), 2017, № 26-27. 312 с.

4. Про внесення змін до деяких законів України щодо удосконалення умов підтримки виробництва електричної енергії з альтернативних джерел енергії: Закон України від 21.07.2020 р. № 810-IX. URL: https://zakon.rada.gov.ua/ laws/show/810-20#n95 (дата звернення: 22.07.2021).

5. До уваги виробників електроенергії з ВДЕ: щодо компенсації обмежень у 2021 році. Київ: НЕК «Укренерго», 2021. URL: https://ua.energy/electricity-market/ do-uvagy-vyrobnykiv-elektroenergiyi-z-vde-shhodokompensatsiyi-obmezhen-u-2021-rotsi/ (дата звернення: 19.07.2021).

6. Виробникам з ВДЕ. Київ: НЕК «Укренерго», 2021. URL: https://ua.energy/uchasnikam_rinku/vyrobnykam-z-vde/ (дата звернення: 19.07.2021).

7. Maddah, H.; Sadeghzadeh, M.; Ahmadi, M.H.; Kumar, R.; Shamshirband, S. Modeling and Efficiency Optimization of Steam Boilers by Employing Neural Networks and Response-Surface Method (RSM). *Mathematics* 2019, 7, 629. https://doi.org/10.3390/math7070629

8. Yan Xie, Xin Liu, Chaoqun Zhang, Jun Zhao & Heyang Wang. (2021). Coupled heat transfer model for the combustion and steam characteristics of coal-fired boilers. *Engineering Applications of Computational Fluid Mechanics*, 15:1, 490—502. https://doi.org/10.1080/1994206 0.2021.1890227

9. Zheng, Shu & Luo, Zi-Xue & Zhang, Xiangyu. (2011). Distributed parameters modeling for evaporation system in a once-through coal-fired twin-furnace boiler. *International Journal of Thermal Sciences*. 20. 2496—2505. https://doi.org/10.1016/j.ijthermalsci.2011.07.010

10. Шульженко С.В., Тюрютіков О.І., Тарасенко П.В. Модель математичного програмування з цілочисельними змінними визначення оптимального режиму завантаження гідроагрегатів гідроакумулюючих електростанцій при покритті добового графіку електричних навантажень енергосистеми України. *Проблеми загальної енергетики*. 2019. Вип. 4(59). С. 1—23. https:// doi.org/10.15407/pge2019.04.013

11. Shulzhenko S., Turutiukov O. and Bilenko M. Mixed integer linear programming dispatch model for power system of Ukraine with large share of baseload nuclear and variable renewables. 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), 2020. pp. 363—368. https://doi.org/10.1109/ESS50319.2020.9160222

12. Шульженко С.В., Тюрютіков О.І., Іваненко Н.П. Модель математичного програмування з цілочисельними змінними визначення оптимального складу та завантаження енергоблоків теплових електростанцій та гідроагрегатів гідроакумулюючих електростанцій при покритті добового графіка електричних навантажень енергосистеми України. *Проблеми загальної енергетики*. 2020. Вип. 1(60). С. 14—23. https://doi.org/10.15407/pge2020.01.014

13. Шульженко С.В. Оптимізація диспетчеризації генеруючих потужностей енергосистеми за умови обмеження генерації вітрових та сонячних електростанцій. *Проблеми загальної енергетики*. 2020. Вип. 4(63). С. 14—23. https://doi.org/10.15407/pge2020.04.014

14. Стан теплової енергетики України, перспективи її оновлення та модернізації. Міністерство енергетики та вугільної промисловості України, 2005. URL: http://mpe. kmu.gov.ua/minugol/control/ publish/article?art id=94031

15. Шульженко С.В. Врахування витрат палива теплової електростанції методом «від'ємної» складової в моделі лінійного програмування пошуку оптимального розподілення навантаження електростанцій енергосистеми. *Проблеми загальної енергетики*. 2019. Вип. 3(58). С. 4—10. https://doi.org/10.15407/pge2019.03.004

16. Makhorin Andrew. Modeling Language GNU MathProg / Language Reference – for GLPK. – Version 4.58. February 2016. URL: http://ftp.gnu.org/gnu/glpk/ glpk-4.63.tar.gz (дата звернення: 19.07.2021).

17. GLPK (GNU Linear Programming Kit). URL: https:// www.gnu.org/software/glpk/ (дата звернення: 19.07.2021).

Надійшла до редколегії: 27.07.2021