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We consider one-dimensional periodic-on-average bi-layered models with random perturbations in dielectric 
constants of both basic slabs composing the structure unit-cell. We show that when the thicknesses da and db of 
basic layers are essentially nonequal, da ≠ db, the localization length Lloc is described by the universal expression 
for two cases: (a) both layers are made from right-handed materials (the RH–RH model), (b) the a layers are of a 
right-handed material while the b layers are of a left-handed material (the RH–LH model). For these models the 
derived expression for Lloc includes all possible correlations between two disorders. However, when da = db the 
RH–LH model exhibits a highly nontrivial properties originated from inhomogeneous distribution of the phase 
of propagating wave, even in the case of white-noise disorder. We analytically show that in this case the locali-
zation length diverges in the conventional second order in perturbation parameters. Therefore, recently numeri-
cally discovered anomalies in Lloc are due to the next order of approximation. On the other hand, for the RH–RH 
model the general expression for Lloc remains valid for da = db as well. 

PACS: 72.15.Rn Localization effects (Anderson or weak localization); 
42.25.Dd Wave propagation in random media; 
42.70.Qs Photonic bandgap materials. 

Keywords: Anderson localization, photonic crystals, metamaterials. 
 

1. Introduction 

Due to progress in nano- and material science, the study 
of wave propagation and electron transport in periodic one-
dimensional (1D) systems has attracted much attention 
(see, e.g., Ref. 1 and references therein). The systems of 
particular interest are bi-layer structures in optics and elec-
tromagnetics, or semiconductor superlattices and arrays of 
alternating quantum wells and barriers in electronics. The 
interest to this subject is due to a possibility to create struc-
tures with prescribed properties of transmission and/or 
reflection. New perspectives in this direction are related to 
unconventional optic properties of metamaterials. 

One of the practical problems is the influence of disord-
er that cannot be avoided in real experiments. The disorder 
can be originated from fluctuations of the thickness of lay-
ers (positional disorder) or from variations of the medium 
parameters, such as permittivity and permeability for elec-
tromagnetic waves or the barrier height for electrons 
(compositional disorder). Typically, the disorder is treated 

as an unwanted effect, however, recently it was understood 
that it can be a promising candidate for targeted manipula-
tion of transport properties. Indeed, the correlations in the 
disorder may result in unusual features of transport. In par-
ticular, it was shown, both theoretically [2–8] and experi-
mentally [9–11], that specific long-range correlations can 
significantly enhance or suppress the wave localization in a 
desired window of frequency. 

As is well known, the transmission through any 1D dis-
ordered system is governed by Anderson localization (see, 
e.g., Refs. 8,12,13 and references therein). The principal 
concept of this phenomenon is that all transport characte-
ristics depend solely on the ratio loc/L L  between the 
structure length L  and localization length locL  of eigen-
states. Such a universal dependence manifests itself, for 
example, in the famous expression for the self-averaging 
logarithm of the transmittance ,LT  

 locln = 2 / .LT L L〈 〉 −  (1) 
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Here, the angular brackets 〈 〉…  stand for averaging over 
the disorder. In agreement with the concept of single para-
meter scaling, there are only two characteristic regimes in 
1D disordered structures, namely, the regimes of ballistic 
and localized transport. The ballistic transport occurs when 
the localization length locL  is much larger than the sample 
length .L  In this case the samples are practically fully 
transparent since its average transmittance is close to unity, 

 loc loc1 2 / for .LT L L L L〈 〉 ≈ −  (2) 

In the opposite case when locL  is much smaller than ,L  
the 1D disordered structures exhibit localized transport. In 
this case the average transmittance is exponentially small,  

 loc locexp( 2 / ) for .LT L L L L〈 〉 ≈ −  (3) 

As one can see, in the localization regime a 1D disordered 
system perfectly (with an exponential accuracy) reflects 
quantum or classical waves because of strong localization 
of all eigenstates. This brief analysis shows how one can 
control the transport by manipulating the value of localiza-
tion length in comparison with the system size. 

In spite of a remarkable progress in understanding the 
main features of the wave (electron) propagation through 
random structures, the majority of studies are based on 
numerical methods [14–25]. Giving the important results 
the numerical approaches obviously suffer from the lack of 
generality being restricted by specific values of parame-
ters. As for the analytical results, they are mainly refer to 
simplest models with white-noise disorder [26–30] or to 
the correlated disorder with delta-like potentials in the An-
derson [2] or Kronig–Penney models [4,31]. 

In this paper we address the 1D models with periodic-
on-average bi-layered structures with weakly disordered 
parameters. In comparison with Refs. 32 and 33 where the 
case of random thicknesses of slabs was considered, here 
we focus on the model with weakly disordered refractive 
indices of both slabs. The main attention is paid to the 
comparison between normal stacks (when both layers are 
of normal material) and mixed stacks (with alternating 
normal and meta-material layers). First, we review the re-
cent study of the structures with different thicknesses of 
two basic layers [34,35]. Here we derive the unique analyt-
ical expression for the localization length loc ,L  which is 
valid in a large range of model parameters, and can be ap-
plied to various physical realizations. The key point of our 
approach is that we explicitly take into account possible 
correlations within two disorders of each layer type as well 
as between them. Second, we extend our analytical analy-
sis to the particular case of equal thicknesses of basic lay-
ers, see Ref. 23. We show that in this specific case the 
standard perturbation theory fails if one of two basic stacks 
is made from a left-handed material. Specifically, the loca-
lization length diverges in the conventional second order in 
perturbation parameters, thus leading to anomalous proper-
ties of scattering. 

2. Problem formulation 

The model describes the propagation of electromagnetic 
waves of frequency ω  along an infinite array of two alter-
nating a  and b  layers. Every kind of slabs is respectively 
specified by the dielectric permittivity , ,a bε  magnetic 
permeability , ,a bμ  corresponding refractive index 

, , ,= ,a b a b a bn ε μ  impedance , , ,= /a b a b a bZ nμ  and wave 

number , ,= / .a b a bk n cω  We consieder two cases: (a) 
when both a  and b  slabs consist of a right-handed (RH) 
optic materials, and (b) when a  slabs are of RH-material 
and b  layers are of left-handed (LH) material. In what 
follows, the combination of RH–RH slabs is referred to the 
homogeneous stack whereas the array of RH–LH layers is 
called mixed stack. 

As is known, for the RH medium all optic parameters 
are positive. On the contrary, for the LH material the per-
mittivity, permeability and corresponding refractive index 
are negative, however the impedance remains positive. 
Every alternating slab has the constant thickness ad  or 

,bd  respectively, so that the size d  of the unit ( , )a b  cell 
is also constant, = .a bd d d+  

As was noted in Ref. 33, when the impedances of two 
basic a  and b  slabs are matched, = ,a bZ Z  the localiza-
tion length diverges and the perfect transparency emerges, 
while a positional disorder itself persists. In the following, 
we analyze the effect of compositional disorder in a stack-
structure whose unperturbed counterpart consists of per-
fectly matched basic a  and b  layers. Specifically, follow-
ing Ref. 23, we admit that a disorder is incorporated via the 
dielectric constants ,a bε  only, so that 

2( ) = [1 ( )] , = 1,a a an nε + η μ   

1( ) = 1 ( ), ( ) = [1 ( )] ;a a a an n n Z n n −+ η + η  (4a) 

2( ) = [1 ( )] , = 1,b b bn nε ± + η μ ±  

1( ) = [1 ( )], ( ) = [1 ( )] .b b b bn n n Z n n −± + η +η  (4b) 

Here integer n  enumerates the unit ( , )a b  cells. The upper 
sign stands for the RH material while the lower one is as-
sociated with LH medium. 

Without disorder, , ( ) = 0,a b nη  the homogeneous 
RH–RH structure is just the air without any stratification, 
while the mixed RH–LH array represents the so-called 
ideal mixed stack ( = = 1,a aε μ  = = 1)b bε μ −  with per-
fectly matched slabs ( = = 1).a bZ Z  Therefore, both the 
unperturbed RH–RH and RH–LH stacks are equivalent to 
the homogeneous media with the refractive index ,n  thus 
resulting in no gaps in their linear spectrum, 

 
| |

= / , = .a b

a b

d d
n c n

d d
±

κ ω
+

 (5) 
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The random sequences ( )a nη  and ( )b nη  describing 
the compositional disorder, are statistically homogeneous 
with zero average, , ( ) = 0,a b n〈η 〉  and binary correlation 
functions defined by 

 2( ) ( ) = ( ),a a a an n K n n′ ′〈η η 〉 σ −  (6a) 

 2( ) ( ) = ( ),b b b bn n K n n′ ′〈η η 〉 σ −  (6b) 

 2( ) ( ) = ( ).a b ab abn n K n n′ ′〈η η 〉 σ −  (6c) 

The averaging ...〈 〉  is performed over the whole array or 
due to the ensemble averaging, that is assumed to be 
equivalent. The auto-correlators ( )aK r  and ( )bK r  as well 
as the cross-correlator ( )abK r  are normalized to unity, 

(0) = (0) = (0) = 1,a b abK K K  and decrease with an in-
crease of the distance | |=| |r n n′−  between the cell indices 
n  and .n′  The variances 2

aσ  and 2
bσ  are obviously posi-

tive, however, the term 2
abσ  can be of arbitrary value (pos-

itive, negative or zero). We assume the compositional dis-
order to be weak, i.e., 

 2 2 2
, , , ,1, ( ) 1;a b a b a b a bk dσ σ  (7) 

that allows us to develop a proper perturbation theory. In 
this case all transport properties are entirely determined by 
the randomness power spectra ( ),a kK  ( ),b kK  and 

( ),ab kK  defined by the standard relations 

 
=

( ) = ( )exp( ),
r

k K r ikr
∞

−∞
−∑K  (8a) 

 1( ) = ( )exp( ).
2

K r dk k ikr
π

−π
π ∫ K  (8b) 

By definition (6), all the correlators ( ),aK r  ( )bK r  and 
( )abK r  are real and even functions of the difference 

=r n n′−  between cell indices. Therefore, the correspond-
ing Fourier transforms ( ),a kK  ( )b kK  and ( )ab kK  are real 
and even functions of the dimensionless wave number .k  
It should be also stressed that according to rigorous ma-
thematical theorem, the power spectrum ( )kK  is non-
negative for any real sequence. 

Within any of a  or b  layers the electric field of the 
wave ( ) exp( )x i tψ − ω  obeys the 1D Helmholtz equation 
with two boundary conditions at the interfaces between 
neighboring slabs,   

 
2

2
, ,2 ( ) = 0,a b a b

d k x
dx

⎛ ⎞
+ ψ⎜ ⎟⎜ ⎟

⎝ ⎠
 (9a) 

 1 1( ) = ( ), ( ) = ( ).a i b i a a i b b ix x x x− −′ ′ψ ψ μ ψ μ ψ (9b) 

The x-axis is directed along the array of bi-layers perpen-
dicular to the stratification, with = ix x  standing for the 
interface coordinate. 

3. Basic expressions 

The general solution of Eq. (9a) within the nth ( , )a b  
cell can be presented in the following form, 

 [ ]( ) = ( )cos ( )a a an a anx x k x xψ ψ − +   

 [ ]1 ( )sin ( )a a an a ank x k x x− ′+ ψ −  (10a) 

inside na  layer, where ;an bnx x x≤ ≤  

 [ ]( ) = ( )cos ( )b b bn b bnx x k x xψ ψ − +   

 [ ]1 ( )sin ( )b b bn b bnk x k x x− ′+ ψ −  (10b) 

inside nb  layer, where ( 1) .bn a nx x x +≤ ≤ The coordinates 
anx  and bnx  refer to the left-hand edges of successive 
na  and nb  layers. Note that =bn an ax x d−  and 

( 1) = .a n bn bx x d+ −  The solution (10) gives a useful rela-
tion between the wave function ,a bψ  and its derivative 

,a b′ψ  at the opposite boundaries of the same a  or b  layer, 

1( ) = ( )cos ( ) ( )sin ( ),a bn a an a a a an ax x n k x n− ′ψ ψ ϕ + ψ ϕ� �   

 ( ) = ( )sin ( )a bn a a an ax k x n′ψ − ψ ϕ +�   

 ( ) cos ( );a an ax n′+ψ ϕ�  (11a) 

1
( 1)( ) = ( )cos ( ) ( )sin ( ),b a n b bn b b b bn bx x n k x n−
+ ′ψ ψ ϕ + ψ ϕ� �   

 ( 1)( ) = ( )sin ( )b a n b b bn bx k x n+′ψ − ψ ϕ +�   

 ( ) cos ( ).b bn bx n′+ψ ϕ�  (11b) 

The corresponding phase shifts ( )a nϕ�  and ( )b nϕ�  depend 
on the cell index n  via random refractive indices (4), 

( ) = ( ) = [1 ( )], = / ;a a a a a a an k n d n d cϕ ϕ +η ϕ ω�  (12a) 

( ) = ( ) = [1 ( )], = / .b b b b b b bn k n d n d cϕ ϕ + η ϕ ±ω�  (12b) 

By combining Eqs. (11) with boundary conditions (9b) at 
=i bnx x  and ( 1)= ,i a nx x +  one can write the recurrent 

relations for two opposite edges of the whole nth unit 
( , )a b  cell, 

 1 1= , = .n n n n n n n n n nQ A Q B P P C Q D P+ ++ − +  (13) 

Here the “coordinate” nQ  and “momentum” nP  are 

 = ( ) = ( / ) ( ),n a an n a anQ x and P c x′ψ ω ψ  (14) 

with indices n  and 1n +  standing for left and right edges 
of the nth cell. The factors nA , nB , nC , nD  read 

 1= cos cos sin sin ,n a b a b a bA Z Z−ϕ ϕ − ϕ ϕ� � � �  (15a) 

 = sin cos cos sin ,n a a b b a bB Z Zϕ ϕ + ϕ ϕ� � � �  (15b) 

 1 1= sin cos cos sin ,n a a b b a bC Z Z− −ϕ ϕ + ϕ ϕ� � � �  (15c) 

 1= cos cos sin sin .n a b a b a bD Z Z −ϕ ϕ − ϕ ϕ� � � �  (15d) 
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They depend on the cell number n  due to random refrac-
tive indices (4) that enter into both the impedances 

, ( )a bZ n  and phase shifts , ( ).a b nϕ�  It is noteworthy that the 
recurrent relations (13) can be treated as the Hamiltonian 
map of trajectories in the phase space ( , )Q P  with discrete 
time n  for a linear oscillator subjected to time-depended 
parametric force. 

With vanishing disorder, , ( ) = 0,a b nη  the factors (15) 
do not depend on the cell index (time) .n  Therefore, in 
line with map (13), the trajectory ,n nQ P  creates a circle in 
the phase space ( , )Q P  that is an image of the unperturbed 
motion, 

 1 = cos sin ,n n nQ Q P+ γ + γ   

 1 = sin cos .n n nP Q P+ − γ + γ  (16) 

The unperturbed phase shift γ  over a single unit ( , )a b  
cell is defined as  

 = = ( ) / .a b a bd d cγ ϕ + ϕ ω ±  (17) 

This result is in a complete correspondence with the spec-
trum (5) taking into account that the Bloch wave number 

=| | / .dκ γ  
Having the circle (16), it is suitable to pass to polar 

coordinates nR  and nθ  via the standard transformation 

 = cos , = sin .n n n n n nQ R P Rθ θ  (18) 

By direct substitution of Eq. (18) into map (16), one can 
see that for the unperturbed trajectory the radius nR  is 
conserved, while the phase nθ  changes by the Bloch phase 
γ  in one step of time ,n  

 1 1= , = .n n n nR R+ +θ θ − γ  (19) 

Evidently, the random perturbations, , ( ) 0,a b nη ≠  give 
rise to a distortion of the circle (19) that is described by the 
Hamiltonian map (13) with randomized factors (15). With 
the use of definition (18), one can readily rewrite this dis-
ordered map in the radius-angle presentation. The corres-
ponding exact recurrent relations read 

 
2

2 2 2 21 2 2
2 = ( ) ( )cos sinn

n n n n n n
n

R
A C B D

R
+ + θ + + θ +   

 ( ) sin 2 ,n n n n nA B C D+ − θ  (20a) 

 1
tan

tan = .
tan

n n n
n

n n n

C D
A B+
− + θ

θ
+ θ

 (20b) 

Equations (20) constitute the complete set of equations in 
order to derive the localization length locL  according to its 
definition via the Lyapunov exponent λ  [36,37], 

 
2

1

loc

1= ln .
2

n

n

Rd
L R

+⎛ ⎞
≡ λ 〈 〉⎜ ⎟

⎝ ⎠
 (21) 

Note that in Eq. (21) the averaging is performed along the 
trajectory specified by nR  and .nθ  

Here we should emphasize the following. In the ideal 
mixed stack ( = = 1,a aε μ  = = 1,b bε μ −  = = 1)a bZ Z  
the wave spectrum (5) is singular. Specifically, when 
thicknesses ad  and bd  are equal, = ,a bd d  the phase ve-
locity /c n  diverges and the Bloch phase γ  vanishes. As a 
result, the circle (19) presenting the unperturbed map, de-
generates into a point in the phase space ( , ).Q P  Therefore, 
the perturbation theory has to be developed in a different 
way depending on the value, finite or vanishing, of the 
Bloch phase .γ  For this reason, in what follows we per-
form the separate analysis for =a bd d  case when consi-
dering the RH–LH stack-structure. 

4. Bi-layer array with finite Bloch phase 

In this section we assume the arbitrary relation between 
slab thicknesses, ad  and ,bd  for the homogeneous RH–RH 
bi-layer array, however, for mixed RH–LH stack-structure 
we assume only different thicknesses of basic slabs, 

.a bd d≠  In this case the Bloch phase has finite value, 
0,γ ≠  and the localization length can be derived in the stan-

dard way already used in the previous studies [2–4,31,33,34]. 
Specifically, we expand the coefficients (15) up to the 
second order in the perturbation parameters , ( ) 1.a b nη  
In doing so, one can expand only the factors containing the 
impedances , ( ).a bZ n  As to the random phase shifts 

, ( ),a b nϕ�  they can be replaced with their unperturbed val-
ues , ,a bϕ  see definitions (12). This fact becomes clear if 
we take into account the conclusion of Ref. 33. The phase 
disorder contributes to the Lyapunov exponent only when 
the unperturbed impedances are different. The quite cum-
bersome calculations allow us to derive the perturbed map 
for the radius nR  and angle ,nθ  

 
2

1
2 = 1 ( ) ( ) ( ) ( )n

a a n b b n
n

R
n V n V

R
+ + η θ + η θ +   

 2 2( ) ( ) ( ) ( ) ,a a b b a b abn W n W n n W+η + η + η η  (22a) 

 1 = ( ) ( ) ( ) ( ).n n a a n b b nn U n U+θ − θ + γ η θ + η θ  (22b) 

Here the functions standing at random variables , ( )a b nη  
are described by the expressions: 

 ( ) = 2sin sin(2 ),a n a n aV θ − ϕ θ −ϕ  (23a) 

 ( ) = 2sin sin(2 ),b n b n aV θ − ϕ θ − γ − ϕ  (23b) 

 2 2= 2 , = 2 ,sin sina a b bW Wϕ ϕ  (23c) 

 = 4sin sin cos ;ab a bW ϕ ϕ γ  (23d) 

 ( ) = sin cos(2 ),a n a n aU θ − ϕ θ −ϕ  (23e) 

 ( ) = sin cos(2 ).b n b n aU θ − ϕ θ − γ − ϕ  (23f) 
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In Eqs. (23) we keep only those terms that contribute to the 
localization length locL  in the first nonvanishing order of 
approximation. Note that in Eq. (22) the factors ,a bV  con-
taining nθ  are always multiplied by , ( ),a b nη  therefore, 
only linear terms in the perturbation are needed in the re-
current relation (22) for the angle .nθ  

Now, in order to evaluate the Lyapunov exponents one 
has to substitute Eq. (22) into Eq. (21) and expand the lo-
garithm within the quadratic approximation in the pertur-
bation parameters , ( ).a b nη  In this approximation one can 
treat the terms 2 ( ),a nη  2 ( )b nη  and ( ) ( )a bn nη η  as uncorre-
lated with factors (23) containing the angle variable .nθ  It 
is important that performing the averaging we assume the 
distribution of phase nθ  to be homogeneous, i.e., the cor-
responding distribution function ( ) = 1/ 2 .ρ θ π  One can 
show that this assumption is valid apart from the case 

= 0,γ  i.e., when we consider the ideal mixed RH–LH 
stack-structure with = .a bd d  After some algebra we arrive 
at the final expression for the Lyapunov exponent, 

 2 22 2

loc

1 1= = (2 ) (2 )sin sin
2 2a a a b b b

d
L

λ σ γ ϕ + σ γ ϕ +K K   

 2 (2 )sin sin cos .ab ab a b+σ γ ϕ ϕ γK  (24) 

As one can expect, the result (24) is symmetric with re-
spect to the permutation of slab indices .a b↔  

The expression (24) for the Lyapunov exponent λ  con-
sists of three terms. The first two terms contain the auto-
correlators (2 )a γK  or (2 ),b γK  they are originated from 
the correlations between solely a  or solely b  slabs, re-
spectively. The third term depends on the cross-correlator 

(2 )ab γK  that emerges due to cross-correlations between 
two disorders a  and .b  

Equation (24) is universal and applicable for both ho-
mogeneous RH–RH and mixed RH–LH stack-structures. 
The only difference between these cases is the sign in the 
unperturbed phase shift = / .b bd cϕ ±ω  This affects the 
value (17) of the Bloch phase γ  and changes the sign at 
the third cross-correlation term. 

For both homogeneous RH–RH and mixed RH–LH 
stack-structures, the Lyapunov exponent typically obeys 
the conventional frequency dependence, 

 2
loc= / when 0.d Lλ ∝ ω ω→  (25) 

However, specific correlations in the disorders of the refrac-
tive indices taken into account in Eq. (24), may result in a 
quite unusual ω -dependence. In this respect, of special in-
terest are long-range correlations leading to significant de-
crease or increase of the localization length loc ( )L ω  in the 
predefined frequency window. Due to these correlations one 
can enhance or suppress the localization in the systems with 
compositional disorder (see, e.g., Refs. 9 and 10). 

The expression for the Lyapunov exponent ( )λ ω  mani-
fests emergence of the Fabry–Perot resonances associated 
with multiple reflections inside a  or b  slabs from the in-
terfaces. These resonances occur when the wave frequency 
ω  meets the conditions, 

,/ = / or / = / , = 1, 2,3,a a b b a bc s d c s d sω π ω π …  (26) 

At the resonances the factor sin aϕ  or sin bϕ  in Eq. (24) 
vanishes, resulting in the resonance increase of the locali-
zation length loc .L  When only one type of the basic layers 
is disordered, i.e., Eq. (24) contains only one correspond-
ing term, the resonances give rise to the divergence of 

loc ( ).L ω  In the special case when the ratio between ad  
and bd  is a rational number, / = / ,a b a bd d s s  some re-
sonances from different types of layers coincide. This also 
leads to the divergence of the localization length. The un-
expected feature of these resonances is that they are quite 
broad due to vanishing of smooth trigonometric functions. 
As was shown in Refs. 27, 28, 32, 33, in the case of posi-
tional disorder the terms entering the Lyapunov exponent 
and related to auto-correlations between the same type of 
slabs display the Fabry–Perot resonances associated with 
the other type of layers. On the contrary, in the case of 
compositional disorder the corresponding terms in Eq. (24) 
manifest the Fabry–Perot resonances belonging to the same 
type of slabs. 

As an example, let us consider the particular case of the 
white-noise disorders for a  and b  slabs,  

 2 = 0, ( ) = ( ) = 1.ab a bk kσ K K  (27) 

In this case the Lyapunov exponent for both homogeneous 
RH–RH and mixed RH–LH stack-structures takes a quite 
simple form,  

 2 22 2

loc

1= = ( ).sin sin
2 a a b b

d
L

λ σ ϕ +σ ϕ  (28) 

Numerical results perfectly confirm this dependence, 
see Fig. 1. The more detailed comparison for / 1d cω  
and / 1d cω  also shows a nice correspondence. The 
data shown here are obtained with the use of Eqs. (20) 
without any approximation. One can see that for a long 
enough sample and weak disorder the analytical expression 
(28) perfectly corresponds to the data, apart from random 
fluctuations. For each case only one realization of the dis-
order was used, and the fluctuations can be smoothed out 
by an additional ensemble averaging. In order to see 
whether our predictions can be applied in experiment, we 
also used a quite short sample, = 100,N  and strong dis-
order, 0.3.a bσ ≈ σ ≈  The result shows that the analytical 
expression is also valid in average, however, the fluctua-
tions around the smooth analytical curve are larger. 
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5. Mixed RH–LH stack with vanishing Bloch phase 

As we already noted, the expression (24) for the Lyapu-
nov exponent is valid for  both the homogeneous RH–RH 
and mixed RH–LH bi-layer array when the Bloch phase (17) 
is essentially different from zero. In this case the unper-
turbed map (19) does not degenerate, and nothing special 
arises for the evaluation of the Lyapunov exponent. Physi-
cally this is related to the fact that the unperturbed phase nθ  
rotates when passing the sample of length = /N L d  result-
ing in a homogeneous randomization. This happens every-
where provided the Bloch phase γ  are irrational with re-
spect to 2 .π  Note that in this case the θ-distribution can be 
regarded as homogeneous even without the disorder. 

The situation is completely different in the case when 
the wave phase = a bγ ϕ + ϕ  vanishes after passing the 
unit ( , )a b  cell. This happens in the ideal mixed RH–LH 
stack with =a bd d  because after passing the RH a-layer, 
the phase shift is = / ,a ad cϕ ω  however, it is exactly can-

celed by another shift, = / =b a ad cϕ −ω −ϕ  in the next 
LH b-slab. As one can see, the circle (19) presenting the 
unperturbed map, degenerates into a single point in the 
phase space ( , ),Q P  and, therefore, the unperturbed phase 
distribution is simply delta-function. This means that with 
a weak disorder, the phase distribution should not be ex-
pected as homogeneous one. 

In what follows, for simplicity we consider the ideal 
mixed stack whose refractive indices, an  and bn , are per-
turbed by two independent white-noise disorders with the 
same strength [23,29], 

2 2 2 2= , = 0, ( ) = ( ) = 1;a b ab a bk kσ σ ≡ σ σ K K  (29a) 

= , i.e., = and = 0.a b a bd d ϕ −ϕ ≡ ϕ γ  (29b) 

The phase distribution ( )ρ θ  can be found in the similar 
way as was described in Refs. 31, 36. The starting point is 
the exact recurrent relation (20b) between 1n+θ  and .nθ  
By expanding this expression up to the second order in 
perturbation parameters , ( ),a b nη  one obtains 

2
1 = [ ( ) ( )] ( ) ( ) ( ),n n a b n n nn n v v v+ ′θ − θ − η −η θ + σ θ θ  (30) 

where we introduced the function  

 ( ) = sin cos(2 ).v θ ϕ+ ϕ θ−ϕ  (31) 

In deriving Eq. (30), we kept the linear terms proportional 
to ( ),a nη  ( )b nη  and substituted the terms 2 ( ),a nη  2 ( )b nη  
by 2 2 2( ) = ( ) = .a bn n〈η 〉 〈η 〉 σ  Also, we explicitly took into 
account the condition ( ) ( ) = 0a bn n〈η η 〉  that directly fol-
lows from Eqs. (6) and (29a). This approximation is suffi-
cient in order to obtain the distribution of phases nθ  in the 
second order of perturbation. As a result, the expression 
(30) takes the form of the stochastic Ito equation [38] 
which can be associated with the Fokker–Plank equation 
for the distribution function ( , )P tθ  (see also Ref. 37), 

The next step is to obtain the differential equation for 
the probability density ( ).ρ θ  In the case of weak disorder 
the corresponding Fokker–Plank equation for the distribu-
tion function ( , )P tθ  has a relatively simple form, 

2 2 2 2
2 2

2 2
( )= ( , ) ( ) ( , ) .

2
P dvP t v P t

dt

⎡ ⎤∂ ∂ σ ∂ θ⎡ ⎤σ θ θ − θ⎢ ⎥⎣ ⎦ ∂θ θ∂ ∂θ ⎢ ⎥⎣ ⎦
(32) 

Here the “time” t  is the same as the length N  of a sample 
along which the evolution of phase θ  occurs. 

Since we are interested in the stationary solution of this 
equation, ( ) ( , )P tρ θ ≡ θ → ∞ , the equation for ( )ρ θ  reads  

 
2

2 2
2

1( ) ( ) ( ) ( ) = 0.
2

d d dv v
d dd

⎡ ⎤⎡ ⎤ρ θ θ − ρ θ θ⎢ ⎥⎣ ⎦ θ θ⎣ ⎦θ
 (33) 

Here the dependence on the variance 2σ  has disappeared 
due to the rescaling of time, 2 .t t→σ  Therefore, in this 
approximation the phase probability density ( )ρ θ  does not 
depend on the disorder variance 2.σ  Note that the only 

Fig. 1. (color online) Lyapunov exponent versus frequency for
mixed RH–LH material (a) and RH–RH media (b). For both cas-
es 0.006, = 0.6, = 0.4, = 1a b a bd d cσ ≈ σ ≈  and the length of
sequences is 6= 10 .N  Smooth curve corresponds to Eq. (28). 
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function ( )v θ  entering the diffusive equation (33), is peri-
odic with the period π . Consequently, its solution ( )ρ θ  
should be also periodic with the same period. In addition, 

( )ρ θ  should satisfy the normalization condition,  

 
0

( ) = ( ), ( ) = 1.d
π

ρ θ+ π ρ θ θρ θ∫  (34) 

One can easily obtain that the solution of Eqs. (33) and 
(34) is 

 2 21( ) = / ( ), = .sinJ v Jρ θ θ ϕ − ϕ
π

 (35) 

Our results indicate that the phase distribution ( )ρ θ  
strongly depends on the phase shift ϕ , and is highly inho-
mogeneous in the limit = / 1,a ad cϕ ≡ ϕ ω  i.e., for 
small values of the wave frequency ω . Some examples of 
the distribution function ( )ρ θ  for different values of ϕ  are 
shown in Fig. 2. This figure clearly demonstrates that with 
a decrease of ω  the distribution ( )ρ θ  starts to be very 
sharp in the vicinity of = / 2.θ π  

It is worthwhile to note that the situation for the vanish-
ing value of γ  is somewhat similar to that emerging for 
the Anderson and Kronig–Penney models at the band 
edges. Indeed, in these models the unperturbed Bloch 
phase γ  also vanishes when approaching the band edges. 
This leads to a highly nonhomogeneous distribution of 
perturbed phase, and, as a result, to a nonstandard depen-
dence of the Lyapunov exponent on the model parameters. 

In the considered model of the mixed RH–LH array, the 
crucial difference is that the effect related to the value = 0γ  
emerges independently of the frequency ω . This is in con-
trast with the case of Anderson and Kronig–Penney models 
for which the zero Bloch phase occurs at band edges only, 
therefore, for specific values of frequency. Thus, one can 
expect that for mixed RH–LH bi-layer stacks with the spe-
cific condition = ,a bd d  the dependence of the Lyapunov 
exponent on the model parameters has to be highly non-

trivial. This fact can be seen from Fig. 3 which shows how 
the dependence of the Lyapunov exponent on frequency ω  
is affected by the relation between ad  and .bd  

The data in this figure clearly display that when ad  ap-
proaches ,bd  the standard dependence 2λ ∝ ω  that is 
known to be a generic case for small ω , alternates by a 
very unusual dependence 6.λ ∝ ω  The latter result was 
found numerically in Ref. 23 and later on, was discussed in 
Refs. 29,30. From Fig. 3 one can also see that for the ho-
mogeneous RH–RH stack-structure the conventional de-
pendence (25) remains valid even in the specific case of 

= .a bd d  As was shown above, in this case the Lyapunov 
exponent λ  is described by the generic expression (24) 
that for homogeneous RH–RH array is valid for any rela-
tion between ad  and .bd  

The Lyapunov exponent can be derived according to 
definition (21) and exact Hamiltonian map (20) for the 
radius .nR  Its expansion within the second order of ap-
proximation in the disorder , ( )a b nη  gives 

 2= 2 sin cos(2 ) ( ) .n nvλ σ ϕ〈 θ −ϕ θ 〉  (36) 

The averaging in this expression has to be performed with 
the distribution function ( )ρ θ  determined by Eqs. (35) and 
(31). Since the denominator ( )v θ  in Eq. (35) is the same 
as the coefficient in Eq. (36), we come to the remarkable 
result that the Lyapunov exponent (36) vanishes for any 
value of the phase shift ϕ ! This means that in order to 

Fig. 2. (color online) Stationary distribution ( )ρ θ  for various
values of =ω ϕ  in rescaled units = 1,ad  = 1.c  Broken curves
correspond to numerical data with an ensemble average for
N = 106, 107, 108 for ω = 2π/5, 2π/7, 2π/15, respectively. Smooth
curves present the analytical expression (35). 
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Fig. 3. (color online) Inverse Lyapunov exponent versus the res-
caled frequency ω  with the variance of disorder 2 = 0.02σ  and 
sequence length 6= 10 .N  The data are obtained with an ensem-
ble averaging over 100 realizations of disorder; mixed RH–LH 
array with =a bd d (a), the same for = 0.99a bd d (b), the same 
for = 0.1a bd d (c), homogeneous RH–RH array with =a bd d (d). 
For comparison, the dot-dashed lines show two frequencies de-
pendencies discussed in the text. 
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derive the nonvanishing Lyapunov exponent, one has to 
obtain the expressions for both the phase distribution ( )ρ θ  
and the ratio 2 2

1 /n nR R+  in the next order of perturbation, by 
expanding them up to the fourth order in disorder which is 
not a simple task. Thus, one can expect that the Lyapunov 
exponent for the ideal mixed RH–LH stack with = ,a bd d  
should be proportional to 4σ  in contrast with the conven-
tional quadratic dependence, 2.λ ∝ σ  Our extensive numer-
ical and analytical studies confirm this expectation. 
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