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We show that a fluid filling the space between metallic cylinders arranged in a two-dimensional lattice exhi-
bits anisotropic dynamic mass for sound waves propagating through the lattice, if its unit cell is anisotropic. Us-
ing the plane-waves expansion method we derive (in the long wavelength limit) a formula for the effective mass 
tensor of the metafluid. The proposed formula is very general — it is valid for arbitrary Bravais lattices and arbi-
trary filling fractions of the cylinders. We apply our method to a periodic structure with very high anisotropy, 
when other known methods fail. In particular, we calculate the effective mass tensor for sound waves in air with 
embedded lattice of aluminum cylinders having rectangular cross sections, and obtain excellent agreement with 
experiment. The proposed method of calculation may find numerous applications for tailoring of metafluids with 
prescribed anisotropy.  

PACS: 62.65.+k Acoustical properties of solids; 
43.20.+g General linear acoustics. 
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1. Introduction 

Anisotropy is a property which is usually associated 
with crystal solids. Fluids and glasses are naturally isotrop-
ic in the absence of external fields. Anisotropy may, how-
ever, be artificially stimulated by embedding periodic 
structures in naturally isotropic fluids. Then these artificial 
structures — so called phononic crystals — may have very 
unusual properties, see, e.g. [1]. Within a narrow band of 
frequencies of sound the effective mass and the effective 
elastic modulus of specially designed phononic crystals 
may become anisotropic, take negative values, or acquire 
abnormally large imaginary part. Due to such “strange” 
properties that do not exist for natural materials these ar-
tificial structures are usually called metamaterials or meta-
fluids [2–5]. Since metamaterial behavior is due to multiple 
scattering of waves and internal acoustic resonances within 
periodic medium, the corresponding metamaterial parame-
ters like mass density, elastic bulk modulus, and index of 

refraction, are essentially dynamical (effective). Static 
properties of a metamaterial remain “normal”, i.e., they do 
not exhibit any anomalies. 

Acoustic metamaterials have been intensively studied in 
the last decade, mostly because of their useful applications 
in acousto-electronics and medical acoustics. In particular, 
an acoustic superlens with tunable focal length based on 
metamaterial has been demonstrated [6] and also the sub-
wavelength resolution has become possible due to the ability 
of a metamaterial with negative index of refraction to catch 
the evanescent modes from an object [7]. Another applica-
tion of metamaterials is related to the problem of invisible 
cloaking of objects. Cloaking device provides advanced 
stealth technology that will cause a solid object to be partial-
ly or completely undetectable for radars and sonars. Modern 
progress in this field is due to so-called transformation op-
tics [8] and transformation acoustics [9]. These techniques 
use a coordinate transformation in a wave equation (written 
for dielectric or elastic medium) which minimizes the scat-
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tering cross-section for the cloaked object. The transforma-
tion optics is based on the invariance of 3D Maxwell's equa-
tions under coordinate transformations [10]. The invariance 
means that the form of the wave equation is conserved under 
the coordinate transformation but the dielectric and magnetic 
properties of the medium are renormalized within a finite 
size layer around the object. This renormalization requires 
coordinate-dependent and tensorial constitutive relations 
within the cloaking layer [8]. Such relations do not exist for 
natural optical materials, nevertheless they have been rea-
lized using artificial structures possessing the required in-
homogeneity and anisotropy in the long wavelength limit 
[11,12]. 

While the wave equation for light that follows from the 
Maxwell's equations in many senses is similar to the wave 
equation in elastic media, the latter does not possess the 
necessary invariance [13]. Absence of such invariance 
strongly limits the transformation-based applications in 
acoustics, in particular, realization of acoustic cloaking [9]. 
There is, however, one important special case with one-to-
one correspondence between the electromagnetic and the 
acoustic wave equation. This is the case when the proper-
ties of a medium are independent on one of the coordinates 
(e.g. on the coordinate z ) and the wave equations can be 
written in two dimensions [14]. A possibility of acoustic 
cloaking of a long cylinder has been demonstrated in 
Ref. 15. It is worth mentioning that in this case the invisi-
ble cloak consists of a set of concentric layers of parallel 
cylinders, i.e., it can be easier realized in practice [16–18]. 

Acoustic cloak in two-dimensions requires a finite-
width layer of a fluid with anisotropic (and inhomogene-
ous) mass density, i.e., the mass density is not a scalar but 
a 2×2 tensor ikρ  with different radial and azimuthal com-
ponents [15]. It was shown, using multiple-scattering 
theory, that an anisotropic 2D lattice of rigid cylinders em-
bedded in a fluid may provide anisotropy which is neces-
sary for acoustic cloaking [17]. A different way to produce 
anisotropic fluid based on radially periodic corrugated 
acoustic cavities has been recently proposed in [19,20]. 

Here we propose an analytic approach for calculation of 
the effective mass density tensor for a phononic crystal of 
solid cylinders embedded in a fluid. The method is based 
on the plane-wave expansion of the wave equation in the 
long wavelength limit (homogenization). As an example 
we consider anisotropic lattice of steel cylinders in air and 
show that our results for the components of the mass densi-
ty tensor are in complete agreement with the recent numer-
ical and experimental results obtained for the same struc-
ture [21,22]. 

2. Effective medium parameters for periodic 
arrangement of solid cylinders in a fluid 

We consider a 2D periodic structure of solid cylinders 
with arbitrary shaped cross-sections and their axes being 

parallel to axis z . The cylinders are embedded in a non-
viscous fluid. Since a fluid supports propagation of only 
longitudinal waves and the solid cylinders are assumed to 
be pairwise disjoint, i.e., not touching one another (cermet 
geometry), the transverse waves are suppressed. Thus, the 
propagating mode is longitudinal and its phase velocity is 
expressed as follows:  

 eff

eff
( ) = .

B
c

ρ
n  (1) 

Here effB  and effρ  are the effective bulk modulus and the 
effective mass density of the periodic composite medium. 
In general case a periodic medium is dispersive, i.e., the 
speed of sound depends on the Bloch vector k . Here we 
consider the long wavelength limit, 1ka , when the de-
tails of the periodic structure with typical size of the unit 
cell a  are not well resolved at the wavelength 2 / kπ . Due 
to lack of resolution (that is equivalent to lack of diffrac-
tion) the lowest band of a phononic crystal is always linear, 

= kcω , i.e., the speed of sound is a well-defined quantity 
in the long wavelength limit,  
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The lack of diffraction does not mean that the micro-
structure of the medium is completely “ignored” by the 
propagating wave. One of the manifestations of this fact is 
the dependence of the speed of sound in Eq. (1) on the di-
rection of propagation in the plane of periodicity, = / kn k . 
This dependence is the source of anisotropy in the mass 
density. 

It has been known since the fundamental study of Wood 
[23] that the averaging of the bulk modulus and mass den-
sity over the wavelength does not necessary lead to the 
corresponding volume averages. Moreover, the result of 
averaging depends on the polarization of the propagating 
elastic wave. For longitudinal sound the reciprocal of the 
bulk modulus is averaged  
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where cB  and fB  are the elastic moduli of the cylinders 
and fluid, respectively, and f  is the filling fraction occu-
pied by the cylinders. Since effB  is a scalar which does 
not absorb any feature of the composite but f , all the de-
tails of the periodic microstructure are attributed to the 
effective mass density. The latter was first calculated by 
Berryman [24] for the case of isotropic composite (square 
lattice of circular cylinders). He used the approach similar 
to the Maxwell–Garnet approximation known for the di-
electric composites [25], and for the effective mass of a 
fluid with embedded circular cylinders arranged in a 
square lattice obtained the following formula:  

 eff
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This old result has been recently justified by the mul-
tiple-scattering theory [26]. Although Eq. (4) is in a good 
agreement with the experiment [27], it is formally valid for 
small values of the filling fraction, 1f  (or 1 1f− ). 
It is also not applicable for the non-square lattices and for 
the cylinders with non-circular cross-section. 

To obtain more general result which is valid for any 
Bravais lattice and any contrast between the acoustic im-
pedances of the constituents, we use the method of plane 
waves. The long wavelength limit for the speed of sound in 
3D periodic fluid-fluid system (e.g. air bubbles in water) 
was calculated in Ref. 28. This result is equally valid for 
2D phononic crystal of solid cylinders embedded in fluid, 
since the transverse mode is suppressed. The speed of 
sound [28] can be written in the form of Eq. (2) with effec-
tive elastic modulus given by Eq. (3) and the effective 
mass density eff ( )ρ n  which contains the information on 
the microstructure of the phononic crystal  
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Here G  and ′G  are the reciprocal lattice vectors of 2D 
periodic structure, 1[ ]−…  implies inversion of the matrix in 
the brackets, and ( )ν G  are the Fourier components of the 
periodic function 1 / ( )ρ r   

 1 = ( ) exp( ).
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iν
ρ
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G

G G r
r
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Equation (5) is exact, it takes into account all the dy-
namical and geometrical details of the periodic structure 
which affect propagation of sound in the long wavelength 
limit. In practice, the inversion of the matrix and sum over 
G  and ′G  require numerical calculation with finite num-
ber of reciprocal lattice vectors, i.e., with finite number of 
plane waves. It was shown that the sums over G  and ′G  
converge rapidly with number of the plane waves [29], 
therefore numerical calculation of the sum is not a time 
consuming procedure at all. 

For unit cells possessing third (or higher) rotational axis 
of symmetry the dependence on the unit vector n  in the 
right-hand-side disappears, i.e., in the long wavelength 
limit these periodic structures are isotropic. Otherwise, 
Eq. (5) gives an ellipse for the effective mass eff ( )ρ n  in 
the xy  plane. In particular, for 2D lattice with rectangular 
symmetry the inverse dynamical mass density along x- and 
y-direction can be written as follows:  
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For a rectangular lattice with periods xa  and ya  along 
axes x  and y , respectively, the reciprocal lattice vectors 
are = 2 /x xG m aπ  and = 2 /y yG n aπ , where m  and n  are 
integers. 

3. Numerical results and discussion 

We calculate the dynamic mass density for a phononic 
crystal of air background and solid cylindrical inserts. The 
background air has static mass density = 1.29fρ  kg/m 3  
and the bulk modulus = 141fB  kPa. The inserts are alu-
minum cylinders with = 2712.63cρ  kg/m 3  and 

= 68.9cB  Gpa arranged in a square lattice with a period 
= 0.953a  cm. The cylinders have a rectangular cross sec-

tion with sides xb  and yb . We calculate the effective mass 
density as a function of filling fraction 2= /x yf b b a , 
keeping the same aspect ratio / = 5y xb b  as was used in 
[21] and [22]. 

The Fourier components ( )ν G  of the inverse density 
( )ρ r  for this structure are  
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The matrix ( , ) = ( )A ν⋅ −′ ′ ′G G G G G G  to be inverted in 
Eqs. (7) and (8) has the following diagonal  
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and off-diagonal  
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elements. 
To calculate the elements xρ  and yρ  of the mass den-

sity tensor we substitute Eqs. (9)–(12) into Eqs. (7) and (8). 
The number of plane waves used in numerical calculations 
is = 4726N  that guarantees less than 1%  of numerical 
error. The result is shown in Fig. 1 for the interval of the 
filling fractions from zero to the maximum value of 0.2 
(close packing structure). Both elements of the mass density 
tensor increase monotonically with filling fraction due to 
increase of inertia of the structure containing more metal. 
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However, the increase of the mass density along axis x  is 
much more drastical. When the spacing between the cy-
linders becomes very narrow, 0.2f → , the mass density 

xρ  exhibits practically singular behavior. Making the 
spacing very narrow one can obtain a metafluid with very 
high level of anisotropy, / 1x yρ ρ . This increase of 
dynamic mass density occurs since for the narrow spacings 
an essential part of sound energy propagates through the 
metal, which has practically infinite mass density as com-
pared to air. 

4. Conclusions 

We propose a new exact formula for the effective mass 
density of periodic metafluids which is valid in the long 
wavelength limit. The obtained result for the effective 
mass density of air with embedded aluminum cylinders is 
very close to the experimental and numerical values ob-
tained recently in Refs. 21 and 22. Our formula is free 
from limitations over the geometry and the physical para-
meters of the periodic structure; it provides high accuracy 
of calculations with relatively low number of plane waves. 
The result of this study may be useful for design of artifi-
cial metamaterials with high level of anisotropy that are 
necessary for fabrications of acoustic cloaks. 

This work is supported by the US Department of Ener-
gy grant # DE-FG02-06ER46312. 
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Fig. 1. Dynamical mass density (normalized to the density of air)
calculated from Eqs. (7) and (8) vs filling fraction. Arrow indi-
cates the filling fraction = 0.14f  of the phononic crystal studied
in Refs. 21 and 22. At = 0.14f  we obtained the values

air/ = 2.70xρ ρ  and air/ = 1.19yρ ρ  that are indistinguishable
from those reported in [21] and [22]. Insert shows the unit cell of
the phononic crystal. 
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