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We investigate resonant interaction of conduction electrons with an electromagnetic field that irradiates a 
point contact between a ferromagnetic and a normal metal in the presence of a strong magnetic field of order 1 T. 
We show that electron spin-flips caused by resonant absorption and stimulated emission of photons result in a 
sharp peak in the magnetic-field dependence of the point-contact resistance. The height of the peak is shown to 
be directly proportional to the net rate of energy transfer to the electromagnetic field in the point contact due to 
absorption and stimulated emission of photons. Estimations indicate that our theory can serve as a basis for the 
explanation of recent experiments [A.M. Kadigrobov et al., New J. Phys. 13, 023007 (2011)].  

PACS: 72.25.–b Spin polarized transport; 
73.40.Jn Metal-to-metal contacts; 
75.76.+j Spin transport effects; 
85.75.–d Magnetoelectronics, spintronics, devices exploiting spin polarized transport or integrated 
magnetic field. 

Keywords: point-contact spectroscopy, hot electrons, stimulated photon emission, spin-polarized injection. 

 
 

1. Introduction 

Forcing a current to go through a nanoconstriction is 
one of the most efficient methods available for creating 
highly nonequilibrium distributions of electrons in metals. 
Electrical current densities as high as 9 210 A / cm , which 
are unattainable in bulk metals, are easily achieved in point 
contacts with a diameter of a few nanometers [1]. The ab-
sence of Joule heating (which crucially limits electrical 
current densities in bulk metals) is ensured in microcon-
tacts by the smallness of their size relative to the characte-
ristic energy-relaxation length, ελ , of the “hot” electrons. 
The same condition is responsible for another remarkable 
feature of point contacts, which is that the excess energy of 

the hot electrons can be directly controlled by the voltage 
applied to the system. This is because the voltage drop 
occurs almost entirely in the point contact, since the cur-
rent density quickly becomes negligible as the distance to 
the contact increases [1]. The ease by which the energy of 
hot electrons can be controlled makes it possible to scan 
the channels for inelastic electron scattering. This is the 
basis for point-contact spectroscopy of elementary excita-
tions in metals and semiconductors [2,3]. 

Experiments with point contacts between two different 
metals present a new unique possibility for injecting hot 
electrons from one metal to the other and allow for compara-
tive studies of the spectra of different materials in a single 
experiment. An important feature of heterocontacts is the 
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focussing property of the point-contact interface, which 
leads to selective passage of hot electrons through the con-
tacts depending on the orientation of their momenta (due to 
effects of refraction and total internal reflection) [4]. 

The electron spin does not effect the scattering of hot 
electrons if the point-contact metals are nonmagnetic. If 
magnetic point contacts are used, however, the electron 
spin degree of freedom becomes an essential element of 
the point-contact spectroscopy. This is because the ex-
change interaction shifts the energy levels of electrons with 
different spins with respect to each other. The spin-split 
energy levels may result in a highly spin-polarized electron 
system in the sense that both the total electron density and 
the electron density of states at the Fermi level may be 
very different for the different spin projections. Another 
consequence of the spin-splitting is that a new spectroscop-
ic effect — electron–photon scattering — becomes possi-
ble in magnetic structures. In nonmagnetic metals elec-
tron–photon scattering is not allowed by the energy- and 
momentum conservation laws, but in magnetic point con-
tacts such scattering manifests itself as a resonant process 
accompanied by electron spin-flips. This raises the ques-
tion of the effect of this scattering on the electrical conduc-
tance of point contacts. The objective of our paper is to 
develop a theory of the electron–photon scattering in point 
contacts and its effect on the conductance. We are mainly 
concerned with the properties of magnetic contacts be-
tween two different magnetic metals or between one mag-
netic and one nonmagnetic one [5]. 

A microcontact between two different magnetic metals 
results in a “focusing” of injected hot electrons in spin 
space — an effect known as spin-dependent electron 
tunneling [6–9]. Due to this effect an excess spin density is 
accumulated in the point-contact region in conjunction 
with a concentration of the current. Under certain condi-
tions such an accumulation is accompanied by an inverse 
population of the spin-split electron energy levels [10–12]. 
If this is the case, we show that electron–photon scattering 
results in the generation of coherent photons, which leads 
to an enhancement of the electromagnetic field propagating 
through the point contact. This effect has been observed 
experimentally [13]; in Sec. 5 we discuss the possibility of 
building a terahertz laser based on this phenomenon. Re-
cently, photon emission from ferromagnetic metal junc-
tions was also observed [14]. 

Below, we will first outline the formalism to be used for 
calculating the electrical current through the model point 
contact. The relative weakness of the electron–photon inte-
raction then allows us to proceed in two steps. In the first 
step we calculate the inverse electron spin population ac-
cumulated in the contact region to zeroth order in the elec-
tron–photon interaction strength, while in the second step 
we find the induced photocurrent in the presence of radia-
tion as well as the resulting change in the point-contact 
resistance to first order in the electron–photon interaction. 

2. Formulation of the problem 

The system under consideration is a point contact be-
tween two metals (labelled 1 and 2 in Fig. 1) under elec-
tromagnetic irradiation. Metal 1 is a ferromagnetic metal 
while metal 2 is either a ferromagnetic metal or a normal 
metal under an external magnetic field H . As illustrated in 
Fig. 1 the magnetization in metal 2 (or the external mag-
netic field) is assumed to be antiparallel to the magnetiza-
tion in metal 1. We will carry out the calculations for this 
case, but in Sec. 5 we will comment on the changes that 
occur if these directions instead are parallel to each other. 
We furthermore consider the point contact to be in the dif-
fusive transport regime, so that the elastic mean free path 
l  is much shorter than the characteristic size d  of the con-
tact. 

In order to calculate the electrical current through the 
point contact (PC) one needs to find the distribution func-
tions (1,2) ( )fσp r  of electrons in metals 1 and 2 to the left 
and right of the constriction, respectively (see Fig. 1), 
where p  is the electron momentum and = 1σ ±  is the elec-
tron spin. In each of the metals these functions satisfy 
Boltzmann equations  

 

( ) ( ) ( ) ( )( )
( )

( )

( ) ( ) ( )
ph= { , }, = 1, 2 .

s s s ss ss
s

s s s

f f f f
e

t

w f f s

σ σ σ σ
σ

σ

Φ

σ ↓↑

∂ ∂ − 〈 〉∂
− + =

∂ ∂ ∂
p p p p

pp

v
r r p

 (1) 

Here ( ) ( )s
σv p  is the electron velocity in each metal, which 

is given by a momentum derivative of the electron energy 
as ( ) ( )= ( ) /s sEσ σ∂ ∂v p p , where  

Fig. 1. Diffusive point contact under irradiation in the presence of 
a static magnetic field H. A voltage bias V  injects a spin pola-
rized current from a ferromagnetic metal (1) with magnetic mo-
ment M  into a normal metal (2). A spin-up electron is shown to 
move along a diffusive trajectory from metal 1 to metal 2 (solid
line) where it resonantly interacts with the electromagnetic field, 
which results in a spin flip and the emission of a photon. Continu-
ing along its diffusive path with spin down (dash line) the spin-
dependent contact resistance implies that the radiation induced 
spin-flip contributes to a change of the magnetoresistance of the 
point contact. 
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 (1) 2
1 1( ) = / 2E m Jσ σ−p p ,  

 (2) 2
2( ) = / 2 B zmE m Hσ σμ+p p  (2) 

are the electron dispersion laws and 1 2,m m  are the effec-
tive masses inside metals 1 and 2; 1J  is the electron ex-
change energy in metal 1 while  

 
2

, for normal metal ,
=

/ , for ferromagnetic metal .zm
B

H
H

J μ
⎧
⎨
⎩

 (3) 

Here 2J  is the electron exchange energy in metal 2 and 
Bμ  is the Bohr magneton, ( ) ( ) ( )= / | |s s st lσ σv  is the elec-

tron free path time and ( )sl  is the electron elastic relaxa-
tion length in metal ( )s , ( )sΦ  is the electric potential; the 
notation s〈 〉…  implies an average of the bracketed quantity 
over the relevant Fermi surface,  

 ( ) ( )... = (...) .
| | | |

s s s

dS dS
〈 〉 ∫ ∫p p

v v
 (4) 

The electrical potential ( ) ( )sΦ r  can be found from the 
electrical neutrality condition,  

 ( )( ) ( )( ) ( ) = 0,s s
F

s
f n Eσ σ

σ
−∑ p r p  (5) 

supplemented with the boundary conditions  

 ( )( ) 1( 1) = ( 1) / 2,s s sz VΦ +→ − ∞ −  (6) 

where Fn  is the Fermi function and V  is the applied vol-
tage.  

In the case that the electromagnetic field has a large 
amplitude the interaction of electrons with photons may be 
treated semi-classically, which allows the electron–photon 
collision integral to be written as  

 ( )
( ) ( ) ( ) ( ) ( )2
ph

( ) ( )
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( ) ( ) .
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=  (7) 

Here W  is the matrix element of the coupling between the 
electron spin and an electromagnetic field of frequency ω  
and momentum q ,  

, for normal metal ,
=

( / )( / ) , for ferromagnetic metal ;
B ac

F B ac

h
W

c v J h
μ

ω μ
⎧
⎨
⎩ =

 (8) 

J  is the exchange interaction between conduction elec-
trons and those of magnetic atoms in the magnetically or-
dered crystal, Fv  is the Fermi velocity, ach  is the ampli-
tude of the magnetic component of the microwave field. 
Equation (3) reflects the fact that in nonmagnetic metals 
the electron spin and the electromagnetic field are coupled 
by the conventional relativistic Zeeman interaction, while 
in magnetic materials the exchange interaction of free elec-
trons offers an efficient mechanism for radiation induced 

spin flips (see Ref. 10). This mechanism is based on the 
dependence of the exchange energy J , which is responsi-
ble for the Zeeman splitting, on the electronic momentum 
p  [10]. The momentum dependence has to do with the 
overlap of the wave functions of the conduction electron 
and electrons of the magnetic subsystem (see, e.g., 
Ref. 15), which is determined by the value of | | /ap = , a 
is the atomic spacing. In the presence of an electromagnet-
ic field described by a vector potential A  the momentum 
operator p̂  in the electron Hamiltonian must be changed to 
ˆ ( / )e c−p A . The resulting effective conduction electron 

spin–electromagnetic field interaction is presented in 
Eq. (8) (see Ref. 10 for details); the interaction strength, 
being proportional to the large exchange energy, exceeds 
the Zeeman interaction by orders of magnitude. 

For the sake of simplicity we assume the scattering of 
electrons by the surface of the point contact PCΣ  to be 
specular:  

 ( ) ( )( )( ) = ,ss
PC PCR

f fσ σ∈ ∈p pr rΣ Σ  (9) 

while the boundary conditions which couple the electron 
distribution functions at the interface FF ′Σ  between met-
als 1 and 2 can be written in the form  

 (1) (2)(1) = (1 )
R

f D f D fσ σ σ σσ− +p pp ,  

 (1) (2)(2) = (1 )
R

f D f D fσ σ σ σσ + −p pp . (10) 

Here = ( , )D Dσ σ p p  is the spin-dependent transparency of 
the interface; = ( , )p p⊥p &  and = ( , )R p p⊥−p &  are the 
momenta of the incident and reflected electrons, respec-
tively, while p&  and p⊥  are the projections of the electron 
momentum parallel and perpendicular to the scattering 
surface at the point of the reflection ,PC FF ′∈r Σ Σ  (we 
consider the case when the radii of the interface and the 
point-contact surface are much larger than the electron de 
Broglie wave length); the momentum of the transmitted 
electron p  is determined by the energy conservation con-
dition, 1,2 2,1( ) = ( )E Eσ σp p . 

As the current spreads and its density decreases with an 
increased distance from the PC, the electron system tends 
to the equilibrium state (as | | dr � ). Hence the electron 
distribution functions (1,2)fσp  must satisfy the boundary 
conditions  

 ( ) ( )( ) ( )= ( ) .s s
Ff n Eσ σ→ ±∞p r p  (11) 

We consider the limit of a weak electron–photon scat-
tering, ph/ 1d l � , where phl  is the electron–photon re-
laxation length. In this limit it is possible to solve Eq. (1) 
by a perturbation expansion of the distribution functions 

( )sfσp  and the potential ( )sΦ  in powers of the small para-
meter ph/d l ,  
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where functions ( )
,0

sfσp  and ( )
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sfσp  satisfy the following set 
of equations:  
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Here ( ) ( ) ( ) ( )
ph,0 ph ,0,0= { , }s s s sw w f f↓↑ pp  is the electron–photon 

collision integral, Eq. (7), evaluated to zeroth order in the 
expansion parameter ph/ 1d l � . 

Equations which determine the electrical potentials 
( )
0 ( )sΦ r  and ( )

1 ( )sΦ r  are easily found from Eq. (5). As we 
do not need to solve these equations in order to find the 
current flowing throw the PC (see below), we do not 
present them here. 

According to Eq. (12) the total current flowing through 
the PC, el ph=I I I+ , is a sum of the elastic current elI  
and the photocurrent phI , which are given by the relations  

 ( )3 ( )
el(ph) ,0(1)3= ( ).

(2 )
sseI d d fσ σ

σπ
∑∫ ∫ p pS pv r

=
 (15) 

Here the first integration is over the cross-section area of 
the point contact. 

In order to solve kinetic equations (13) and (14) we use 
the procedure developed in Refs. 4, 16, 17 after a straight-
forward generalization to the spin-polarized case. To ze-
roth order in the expansion parameter the distribution func-
tions ( )

,0
sfσp  can be expressed as  

 ( )( ) ( )( ) ( )
,0 0( ) = ( ) ( ) ( ) / 2s ss s

Ff n E e eVσ σσ α Φ+ − +pp r r p r  

 ( ) ( )( )( ) ( )
01 ( ) ( ) ( ) / 2 .ss s

Fn E e eVσ σα Φ+ − + +p r p r  (16) 

Here (1) ( )σα p r  and (2) ( )σα p r  are the probabilities for an elec-
tron moving from −∞  along a diffusive trajectory (while 
its energy and spin projection are conserved) to arrive at 
point r  in, respectively, metal 1 or 2 with momentum p . 
The distribution functions (2)fσp  are sketched in Fig. 2. 

Inserting Eq. (16) into Eq. (13) one finds that the fac-
tors ( )s

σα p  satisfy the equation:  

 
( ) ( ) ( )

( )
( ) = 0,

s s s
s

st
σ σ σ

σ
σ

α α α∂ − 〈 〉
+

∂
p p pv

r
 (17) 

( ) ( )s s
sσ σα α〈 〉 ≡ 〈 〉p p . Here and below we assume FeV ε� , 

which allows the term proportional to the electric field in 
Eq. (13) to be neglected. 

The boundary conditions for ( ) ( )s
σα p r  are  

 (1) (2)( ) = 1, ( ) = 0;z zσ σα α→ −∞ → +∞p p  

 ( ) ( )( )( ) = ,ss
PC PCRσ σα α∈ ∈p pr rΣ Σ  (18) 

where the boundary condition at the interface between 
metals 1 and 2 follow from Eq. (10). 

To first order in the expansion parameter ( )/ 1sd l � , it 
follows from Eq. (17) that  

 
( )

( ) ( ) ( ) ( )= ,
s

s s s sl σ
σ σ σ

α
α α

∂〈 〉
〈 〉 −

∂
p

p p n
r

 (19) 

where ( )( ) ( )= | |ss s
Fl tσσv  is the mean free path of the elec-

trons and ( ) ( )( ) = / | |s ss
F Fσ σ σn v v  is a unit vector along the 

Fermi velocity ( )s
Fσv  of an electron with the spin σ . Here 

the isotropic part of ( )s
σα p  satisfies the diffusion equation  

 
2

( ) = 0,s
i k

i k
v v σα

∂
〈 〉

∂ ∂ pr r
 (20) 

with boundary conditions (1) ( ) = 1zσα〈 → −∞ 〉p  and 
(2) ( ) = 0zσα〈 → +∞ 〉p  far from the PC. In the vicinity of the 

Fig. 2. Zero-temperature energy distributions for (a) magnetic mo-
ment-up (spin-down), ↑pf , and (b) magnetic moment-down (spin-
up) electrons, ↓pf , at point r  on the normal-metal side of the 
point contact. The inset (c) shows the Zeeman energy splitting and 
the direction of the magnetic field H . All states are occupied up to 

= / 2f BeV Hε ε μ↑ − −  and = / 2f BeV Hε ε μ↓ − + , respec-
tively (blue rectangles), but in the intervals ( , )eVε ε↑ ↑ +  and 
( , )eVε ε↓ ↓ +  the states are only partly occupied (red rectangles) 
and to an extent that is determined by the probabilities ( )α↑p r  and 

( )α↓p r  for “hot” electrons in the ferromagnet to reach r . Clearly, 
the difference between the densities of spin-down and spin-up elec-
trons, (2) (2)( ) ( ) [( ) 2 ]Bn n eV Hα α μ↓↑ ↓↑− ∝ − −r r , depends on the 
bias voltage V. It follows that the spin population can be inverted, 
so that ( ) > ( )n n↓↑ r r , for large enough V  if (2) (2)>α α↓↑

. 

1

1
H eV

eV

ε↑

ε↓

εp
(2)

εp
(2)

2μ
B
H

fp↓

αp↑
(2)

fp↑
(2)

fp↓
(2)

αp↓
(2)

fp↑

( )a

( )b

( )c



Microwave-induced spin-flip scattering of electrons in point contacts 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, No. 11 1167 

F/N interface ( FN∈r Σ ) the effective boundary conditions 
are (see Ref. 4)  

 
(1)(1)

(2) (1)
(1)= ,l

Q
σ

σ σ
σ

α
α α ⊥

∂〈 〉
〈 〉 − 〈 〉
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p p e
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σ σ
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α α
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∂ ∂

p pe e
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where ⊥e  is a unit vector perpendicular to the interface at 
point FN∈r Σ , and  

( )
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( ) 1
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1 1
s s s s s ss

s s s s s s s s

D n D D n D
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− 〈 〉 − 〈 〉 − 〈 〉 〈 〉

 (22) 

Here = | |s
sn σ⊥e n , and s s≠′ . It is clear from Eq. (22) 

that for a low barrier transparency, 1Dσ � , one has  

 ( ) ;s
sQ Dσ σ≈ 〈 〉  (23) 

in the opposite limit of a high transparency barrier, 
= 1 1D Dσ σδ − � , one has  

 ( ) 1 .s

s s s s
Q

n D n Dσ
σ σδ δ′ ′

≈
〈 〉 + 〈 〉

 (24) 

For the sake of simplicity, we will below consider a 
point contact in the form of a channel, as shown in Fig. 3. 

The channel is assumed to be long, L d l� � , where 
L  is the length of the channel and d  is its width. In this 
case the factor ( ) ( )s

σα〈 〉p r  only depends on the coordinate 
z  along the channel and satisfies the equation  

 
2

( )
2 ( ) = 0,sd

z
dz

σα〈 〉p  (25) 

with boundary conditions  

 (1) (2)( = / 2) = 1, ( = / 2) = 0,z L z Lσ σα α〈 − 〉 〈 〉p p  (26) 

together with the matching conditions in Eq. (21), where 
now / = /d dz⊥∂ ∂e r . 

The elementary solutions of the diffusion Eq. (25) with 
the above-mentioned boundary conditions are  

 (1) (1) 2( ) = 1 1 ,zz
Lσ σα β ⎛ ⎞〈 〉 − +⎜ ⎟⎝ ⎠

  

 (2) (2) 2( ) = 1 ;zz
Lσ σα β ⎛ ⎞〈 〉 −⎜ ⎟⎝ ⎠

 (27) 

here we introduced the notations 
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κ
β κ
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3. Spin accumulation in the point contact 

If electrons are injected from metal 1 (i.e., if > 0eV ) 
the numbers of “hot” electrons with spin up and down are 

 ( )

3
3

3
(2)

(2) (2)
0,0

=
(2 )

( ) ( ) ( ) / 2 ,
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F

dn d

f n E e eV
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δ
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Φ
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r p r
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where (2)
PCΩ  is the volume of the normal-metal part of the 

contact (“active” zone). Using Eq. (29) and Eqs. (16), and 
(19), (27) one finds  

 ( )
(2)

(2)
0= ,

4 PC
F

eV
n nσ

σ
β

δ Ω
ε

 (30) 

where 0 F Fn ν ε≈  is the conduction electron density in the 
normal metal ( Fν  is the electron density of states at the 
Fermi level Fε ). Therefore the total number of “hot” elec-
trons in the normal-metal side of the contact is  

 ( )
(2) (2)

(2)
tr 0 tr= , = .

4PC
F

eV
n n

β β
δ γ Ω γ

ε
↓↑ +

 (31) 

As can be seen from Eq. (30) the induced magnetic mo-
ment corresponding to the net spin density accumulated in 
the same region is  

 ( )
(2) (2)

(2)
tr 0 tr= , = .

4B PC
F

eV
M n

β β
δ μ β Ω β

ε
↓↑ −

 (32) 

Notice, that the ratio tr tr/β γ  determines the effective spin 
of an injected electron,  

 
(2) (2)

(2) (2)= = ,
n n

S
n

β βδ δ
δ β β

↓ ↓↑ ↑

↓↑

−−

+
 (33) 

and, therefore, is a measure of the spin polarization of the 
“hot” electrons. 

Thus the spin accumulation inside PC by the applied 
voltage V  produces an additional moment inside the PC. 
If d  is of the size of several hundred nm and tr 0.3β ≈ , 

Fig. 3. Simplified point-contact geometry used for calculations
(see text in Sec. 2). 

z

–L/2 + /2L
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which corresponds to a nearly ballistic PC, l d∼ , and the 
spin polarization of 30% at the F/N interface, one has  

 6 910 ; 10 .B
F F

eV eVM nδ μ δ
ε ε

∼ ∼  (34) 

As one sees from Eq. (28), the dependence of (2)
σβ  on 

the spin polarization is much weakened if ( ) 1s
σκ � , which 

prevents spin accumulation. 
Using Eq. (16) and Eqs. (19), (27), (28) for the distribu-

tion function ( )
,0 ( )sfσp r  it is easy to obtain an expression for 

the conductance, 1=G R− , in the elastic limit. One finds 
that  

 
(2)

0 0
(1) (2)= ,

6 1
PC F

F

QG n v
G

L
σ

σ σ σ

π Ω
ε κ κ+ +

∑=
 (35) 

where 2
0 = 2 /G e h  is the conductance quantum and PCΩ  

is a point-contact volume. 

4. Photocurrent 

4.1. Photocurrent through a point contact with one 
interface 

As the interaction of an electron with a photon does not 
essentially change the electron momentum (in contrast to 
the inelastic scattering of electrons by phonons and mag-
nons) the main contribution to the photocurrent flowing 
through the point contact under electromagnetic irradiation 
arises due to the changes in the electron spin densities pro-
duced by vertical spin-flip transitions (in energy-
momentum space) stimulated by the photon field. The 
change of the electron distribution function ( )

,1( )sfσp r  
caused by these processes is obtained from the solution of 
Eq. (14) with the boundary conditions  

    
( ) ( )

,1 1( ( 1) ) = 0, ( ( 1) ) = 0.s ss sf z zσ Φ→ − ∞ → − ∞p  (36) 

The matching conditions at the F/N interface are given by 
Eq. (10) with the change ( )( )

,1
ssf fσ σ→p p . 

In the limit FeV ε�  one can neglect the terms propor-
tional to the electric field on both sides of Eq. (14); the 
solution of this equation with the above-mentioned boun-
dary conditions may be found using the Green's function,  

 ( , ) ( , )
,, ( , ) = ( , ).s s

'g gσ σ
− −′ ′ ′p pp p r r r r  (37) 

This function satisfies the equations [17] 

 
( , ) ( , ) ( , )

,, , ,( )
( )

( , ) ( , ) ( , )s s s
ss

s

g g g

t

σ σ σ

σ
σ

′′ ′ ′∂ − 〈 〉′ ′ ′
+ =

∂
pp p p p p p

p
r r r r r r

v
r

 
 

 = ( ) ( ),δ δ− −′ ′p p r r  (38) 

where , ′r r  are inside metal s  and ,... s ′〈 〉 p  means averag-
ing with respect to the direction of the momentum ′p  (see 

Eq. (4)). This equation is supplied with boundary condi-
tions,  

 ( )( , )
, , ( 1) = 0,s sg z zσ
′ → − ∞′p p

 
 

 ( ) ( )( , ) ( , )
, ,, = , ;s s

PC PCR
g gσ σ

′ ′∈ ∈′ ′p p p pr r r rΣ Σ  (39) 

at the F/N interface (1, )
,g σ
′p p  and (2, )

,g σ
′p p  are matched with 

Eq. (10). 
Using Eqs. (14), (38) and (15) one finds ( )

,1( )sfσp r  and 
the photocurrent phI ,  

 ( ) ( , ) ( )3
,1 ph,0,( ) = ( , ) ( , ) ,s s sf d d g wσ

σ σ ′′ ′ ′ ′ ′∫ ∫p p pr r p r r p r  (40) 

 ( )( )
ph ph,03

,
= ( , ) ( , ),

(2 )
ss

s

dI e d G z wσ
σ
σ

π
′∑ ∫ ∫ p

pr r p r
=

 (41) 

where ( ) ( ) ( ) ( )
ph,0 ph ,0,0( , ) { ( ), ( )}s s s sw w f f↓↑≡ ppp r r r  and the inte-

gration in Eqs. (40) and (41) with respect to the coordi-
nates is over the volume ( )s

PSΩ  of metal s ; in Eq. (41) we 
introduced a new function ( ) ( , )sG zσ ′p r , which has the form  

 ( , )( ) ( )
,( , ) = ( ) ( , ) ,ss s

zG z dS d v g σ
σ ′′ ′ ′ ′ ′∫ ∫p p pr p p r r  (42) 

and the first integration is taken over the area of the point-
contact cross section taken at an arbitrary point =z z ′  
inside metal s . 

As follows from Eqs. (38), (39) and the symmetry pro-
perty of Green's function, Eq. (37), the function ( )( , )sG zσ ′p r  
is a solution of the equation,  

 
( ) ( ) ( )

( ) ( )
( ) = ( ) ,

s s s
ss s

zs

G G G
v z z

t
σ σ σ

σ
σ

δ
∂ − 〈 〉

− + − ′
∂

p p p
pv

r
 (43) 

subject to the boundary conditions  

 ( ) ( ( 1) , ) = 0.s sG z zσ → − ∞ ′p  (44) 

Comparing Eq. (43) and Eq. (17) and their boundary con-
ditions one finds that  

 ( ) ( )
,( , ) = ( ).s sG z z zσ σα θ− + −′p pr  (45) 

The last term on the right-hand side of Eq. (45) does not 
contribute to Eq. (41), and therefore the photocurrent can 
be rewritten in terms of the probabilities , ( )σα p r  for an 
arbitrary form of the point contact as  

ph 3
( )

=
(2 )s s

PC

dI e d
Ω

π
×∑ ∫ ∫

pr
=

 
  ( )( ) ( ) ( ) ( ) ( )

ph, ,0, ,0( ) ( ) { , }.s s s s sw f fα α↓ − ↓↑ − ↑× − p pp pr r  (46) 

Using Eqs. (46), (27) and (28) one obtains the total current 
( )I V  in a diffusive point contact under irradiation as  
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 ph
| 2 |

( ) = ( ) ,F Bv zVI V j V
R c

ω μ
θ

ω
−⎛ ⎞+ −⎜ ⎟⎝ ⎠

=
=  

 

 ( )ph 2
tr

3( ) = , = .
8

Rj V V V eV
R
Δ ω

β∗ ∗− =  (47) 

Here R  is the “dark” contact resistance, Eq. (35), while 
the relative change of the point-contact resistance caused 
by the irradiation is  

 ( )
2 2 2

(2)tr
0

(4 ) 2= .
6 PC

F F

R c W en R
R v h

πβΔ
Ω

ε ω

⎛ ⎞
⎜ ⎟
⎝ ⎠=

 (48) 

As one sees from Eq. (47) the dependence of the photocur-
rent on the magnetic field has a sharp peak corresponding 
to the resonant interaction of electron spins and the elec-
tromagnetic field. 

4.2. Photocurrent through a point contact with two 
interfaces 

The possibility to detect electromagnetic radiation by 
measuring the current that flows through the point contact 
under consideration in this work is based on the depen-
dence of the resistance of the interface between the normal 
and ferromagnetic metals (or between two ferromagnetic 
metals) on the spin orientation of transmitted electrons. 
The physical mechanism will be outlined in more detail 
below. 

An electron injected from the ferromagnetic metal into 
the normal metal moves along a diffusive trajectory while 
being scattered by impurities. The result is an electronic 
back-flow, since some injected electron returns to the in-
jecting interface. Thus, a repeated crossing of the interface 
can be expected due to the presence of impurities. If no 
photon emission takes place the electron returns to the in-
jecting interface with the same spin orientation. On the 
other hand, if a spin-flip photon emission occurs, then the 
electron back-flows with the opposite spin orientation and 
therefore encounters a different interface resistance. This 
change in interface resistance for the back-flow current can 
be detected by measuring the changes in the current–vol-
tage characteristics upon irradiation. From this considera-
tion it is clear that the presence of impurities is important 
for detecting the effect using transport spectroscopy (this 
conclusion is confirmed by Eq. (46) for the photocurrent 
as the latter goes to zero along with (2)

σβ  as 2l → ∞  (see 
Eq. (28)). On the other hand, the photoemission effect is 
enhanced along with the increase of the pumping current 
through ballistic contacts, at the same time becoming more 
difficult for detection with the help of transport measure-
ments in the above geometry. 

In this subsection we introduce a modification of the 
set-up that allows the electron–photon relaxation to be de-
tected also in ballistic point contacts (see Fig. 4), where the 
effect should be more prominent. The detection method in 

this F/N/F (or F/F1/F) geometry relies on the forward-flow 
current rather than the back-flow current as is the case for 
the single-interface PC considered earlier.  

Figure 4 illustrates the two-interfaces magnetic point-
contact geometry. Here the electron that undergoes elec-
tron–photon scattering preserves its momentum and tra-
verses the second interface, the resistance of which is spin 
dependent and therefore sensitive to whether a spin-flip 
even has occurred. The point contact under consideration 
consists of three conductors with two ferromagnetic elec-
trodes aligned either parallel or antiparallel. 

The current through the point contact to be  

 ph
| 2 |

( ) = ( ) ,B zmF HvVI V j V
R c

ω μ
θ

ω
−⎛ ⎞+ −⎜ ⎟⎝ ⎠

=
=

  

 ( )ph 2 2 2
tr

( ) = , = .
/ 3

Rj V V V eV
R b

αΔ ω
α

−
∗ ∗

−
−

+
=  (49) 

Here the change of the point-contact resistance is 

   
( )2 2

(2)2 2 2
tr 0

2= ( / 3) ,PC
F F

R c W eb n R
R v h

Δ
π α Ω

ε ω−
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠=

 (50) 

where (2)
PCΩ  is the volume of the part of the point contact 

between the barriers; W  is given by Eq. (8), and  

 
,2 ,2 ( )

,2 ,2 ( )
= 1

1= ,
2 2

R L

R L
K

K
σ σ σ

σ σ σ σ

η η
α σ

η η

−

− +
±

− +

+ + +
∑   

 tr ,2 ,2 ( )
= 1

= ,
2R Lb

Kσ σ σ σ

σ
η η +

± + + +
∑  (51) 

Fig. 4. Diffusive point contact under irradiation in the presence of 
a static magnetic field H . A voltage bias V  injects a spin pola-
rized current from a ferromagnetic metal with magnetic moment 

1M  into a normal metal. A spin-up electron is shown to move 
along a diffusive trajectory from metal 1 to metal 2 (solid line) 
where it resonantly interacts with the electromagnetic field. This 
interaction results in a spin flip and the emission of a photon. 
Continuing along its diffusive path with spin down (dash line) the 
electron crosses the second interface and the spin-dependent con-
tact resistance implies that the radiation induced spin-flip contri-
butes to a change of the magnetoresistance of the point contact. 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.M1 M3H
zm

�ω
– /2eV eV/2



A.M. Kadigrobov, R.I. Shekhter, I. Aronov, S.I. Kulinich, A. Pulkin, and M. Jonson 

1170 Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, No. 11 

while  

 
,2 ,2

( )
,3 ,1= .

R L

R LK σ σ
σ

σ σ

η η

η η
± ±  (52) 

Here  

 ,2 ( ,2) ,2 ( ,2)
2 2 2 2= / , = / ,L L R Rl L Q l L Qσ σ σ ση η   

 ,1 ( ,1) ,3 ( ,3)
1 1 3 3= / , = / ,L L R Rl L Q l L Qσ σ σ ση η  (53) 

where ( = 1, 2, 3)il i  are the electron free path lengths and 
( = 1, 2, 3)iL i  are the lengths of the parts of the point con-

tact separated by the left and right interfaces which have 
transparencies ( )LDp  and ( )RDp  (see Fig. 5); ( , ; )L R sQ  are 
defined by Eq. (22) in which Dp  should be changed 
to ( , )L RDp  in such a way that ( ) ( , )s L sQ Qσ σ→  with 

= 1, 2s s≠ ′  and ( ) ( , )s R sQ Qσ σ→  with = 2, 3s s≠ ′ . 
If part 2 of the point contact between the barriers is 

“clean” while the external parts are “dirty”, that is 
2 2 1,3 1,3( / )l L L l� , and the transparencies of the barriers 

( , ) 1L RD ∼  one find tr 1b �  and  

 ( ,2) ( ,2) ( ,1) ( ,3)
= 1

.
1 ( / )( / )R L L RQ Q Q Qσ σ σ σ σ

σα−
±

≈
+

∑  (54) 

If the transparencies of the left and right interfaces are 
small, , 1L RDσ �  (here , ,

, =2  L R L R
sD Dσ σ≡ 〈 〉p ) and , 1L R

ση �  
one has 

 tr
= 1

1 ; 0.
2

L R

L R
D D

b
D D

σ σ

σ σ σ
α σ−

±

−
≈ ≈

+
∑  (55) 

Therefore, in the both cases the value of the photocurrent 
Eq. (49) does not depend on the electron mean free path 
inside the point contact and hence, in contrast to a point 
contact with one interface, it does not vanish in the ballistic 
limit in which the emission of photons and its effect on the 
point-contact electric transport properties are maximal. 

4.3. Net emitted power in the irradiated point contact 

A comparison between Eq. (46) and the rate equation 
for photons generated by electronic spin-flip transitions 
induced by the electromagnetic field (see Ref. 10),  

 
( ) 3ph ( ) ( ) ( )

ph 3= { , } ,
(2 )

s
s s sdn dw f f

dt π↓↑−∫ pp
p
=

 (56) 

where phn  is the photon density, shows that the photocur-
rent may be rewritten in the form  

 ( )
( )
ph( ) ( )

ph
( )

= ,
s

s s

s s

dn
I e d

dt
Ω

α α↓↑− 〈 〉 − 〈 〉∑ ∫ ppr  (57) 

which makes it clear that its magnitude depends on the net 
rate of photon absorption/emission in combination with the 
spin dependence of the effective transparency of the point 
contact. From Eq. (47) one notes that the microwave-
induced current changes sign at =V V∗ , i.e., when the rate 
of photon emission by “hot” electrons begins to exceed the 
rate of photon absorption. 

The close relation between the electron transport and 
photon radiation processes allows us to express the photo-
current in terms of the power of emission and absorption of 
photons by electrons in the point contact. Using Eqs. (7), 
(16), and (27) one finds that the net emitted power due 
to resonant ( = 2 B Hω μ= ) absorption and emission of 
photons in the irradiated point contact, defined as 

ph( ) = /P V d dn dtω∫ r= , can be expressed as  

 0
3( ) = 1 .
4

VP V P
V∗

⎛ ⎞
− +⎜ ⎟⎝ ⎠

 (58) 

Here  

 ( )(2) 2
0 0=

2 PC
F F

cP n W
v

πω
Ω

ε
 (59) 

is the absorbed power due to photon absorption at V = 0. 
As is follows from Eq. (58) th = (4 / 3)V V∗  is the threshold 
voltage at which the stimulated emission of photons from 
the point contact takes place. 

Comparing Eq. (47) and Eq. (59) one finds that  

 ph 02
3( ) = ,
4

V V
j V P

V
∗

∗

−
 (60) 

which makes it possible find the power 0P  absorbed from 
the electromagnetic field by measuring ph ( ) /dj V dV  (see 
Eq. (47)) after first having determined V∗  from the condi-
tion ph ( ) = 0j V∗ . Furthermore, the net emitted power 

( )P V  can be determined by measuring ph ( )j V  with the 
help of Eq. (60) and Eq. (58). 

5. Conclusions 

We have shown that an inverted spin population is ac-
cumulated in a voltage biased point contact between a fer-

Fig. 5. Simplified geometry of the point contact with two inter-
faces used for calculations in Sec. 4.2. 
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romagnetic (F) and a normal metal (N). For a contact of 
linear dimension 10d ∼  nm, biased by a voltage V , and 
with a spin polarization of 30% at the F/N interface 

tr( 0.3)β ∼  we find that the corresponding magnetic moment 
injected into the contact region is 610 /B FM eVδ μ ε∼ . 
We have furthermore shown that if the point contact is 
irradiated by an electromagnetic field, photon-induced 
electron spin-flip scattering gives rise to a narrow peak in 
the radiation-frequency dependence of the relative change 
of the point-contact resistance, /R RΔ . The peak appears 
when the frequency is resonant with the exchange splitting 
in the normal-metal spectrum of conduction electrons, 
which for an external magnetic field of 1 T occurs at 
30 GHz. 

The following features of the considered phenomenon 
should be mentioned. Being dependent on the total number 
of hot electrons with a given spin, the effect of electron–
photon scattering does not depend on their energy distribu-
tion and hence the effect predicted here is not sensitive to 
the temperature. Our analysis shows that there is a special 
correlation between the relative orientation of the vectors 
M  and H  and the direction of the current injection 
needed for the observation of this phenomenon. Hence, in 
the case of an antiparallel orientation of M  and H  an 
injection of electrons into the nonmagnetic metal is needed 
to achieve a level of photon emission that is larger than the 
level of photon absorption, while in the case that M  and 
H  are parallel one needs the injection of electrons to be in 
the opposite direction, which can simply be achieved by 
reversing the voltage polarity. 

The net power, ( )P V , generated by the stimulated emis-
sion of photons in the electron spin-flip relaxation process 
can be determined by measuring the photon current 

ph ( )j V  defined in Eq. (47). In a typical experiment [18] 
the 12–48 mW of 14–64 GHz radiation generated by an 
HF Klystron produces a magnetic amplitude ( ach ) of the 
electromagnetic field inside the point contact of order 
30 mT. For such a field we find that / 0.01–0.10%R RΔ ∼  
and that ( )P V  is given by Eq. (58) with 0 1–10P ∼  pW; 

0P  being the power absorbed from the electromagnetic 
field due to photon absorption in the contact region. These 
estimates show that an experimental implementation of 
electromagnetic radiation spectroscopy in point contacts is 
quite feasible. Comparison between the above theoretical 
analysis and the recent observation by the ILT group 
shows a good quantitative agreement [13]. 

It follows from Eq. (58) that the radiation field is en-
hanced by the stimulated emission of photons if the pro-
portionality coefficient is greater than zero, that is at 

> (4 / 3)V V∗ . From here it follows that the point contact 
may be considered as an active element with the increment 
of the electromagnetic field given by  

 2 20 4= 3 .
3B

F F

nc V
v V

γ π μ
ε ∗

⎛ ⎞
−⎜ ⎟⎝ ⎠

 (61) 

Inserting typical parameters for the metal electrodes, 
one finds 2·210 ( / 4 / 3)V Vγ −

∗ −∼ , and /V V∗  can reach 
as high as 3 410 –10≈  in realistic structures. This exceeds 
the increment that can be achieved in conventional semi-
conductor lasers by orders of magnitude and hence an ar-
ray of such magnetic point contacts can be used as the ac-
tive area of powerful lasers [19]. 
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