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Magnetopolaronic effects are considered in electron transport through a single-level vibrating quantum dot 
subjected to a transverse (to the current flow) magnetic field. It is shown that the effects are most pronounced in 
the regime of sequential electron tunneling, where a polaronic blockade of the current at low temperatures and an 
anomalous temperature dependence of the magnetoconductance are predicted. In contrast, for resonant tunneling 
of polarons the peak conductance is not affected by the magnetic field. 
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71.38.–k Polarons and electron–phonon interactions; 
85.85.+j Micro- and nano-electromechanical systems (MEMS/NEMS) and devices. 
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1. Introduction 

Single-molecule transistors have been intensively stu-
died in recent years (see, e.g., the review in Ref. 1). The 
specific feature of these nanostructures is the presence of 
vibrational effects [2] in electron transport. Recently, ef-
fects of a strong electron–vibron interaction were observed 
in electron tunneling through suspended single wall carbon 
nanotubes (SWNT) [3,4] and in carbon nanopeapods [5]. 
In suspended carbon nanotubes an electron–vibron coupl-
ing is induced by the electrostatic interaction of the charge 
on a vibrating molecule with the metal electrodes. Electri-
cally excited vibrations result in such effects as phonon-
assisted tunneling [6], Franck–Condon (polaronic) block-
ade [7] and electron shuttling [8,9] (see also the reviews in 
Refs. 2, 10, 11). 

Much less is known about the influence of a magnetic 
field on electron transport in molecular transistors. One can 
expect that a magnetic field, interacting with the electric 
current flowing through the system, will shift the position 
of the molecule inside the gap between the leads. For 
point-like electrodes this could result in a change of elec-
tron tunneling probabilities and as a consequence in a neg-
ative magnetoconductance. For suspended carbon nano-
tubes magnetic field-induced displacements (due to the 

Laplace force) of the center-of-mass coordinate of the wire 
does not influence the absolute values of tunneling matrix 
elements. The magnetic influence emerges from a more 
subtle effect — the dependence of the phase of the electron 
tunneling amplitude on magnetic field (Aharonov–Bohm 
phase). It was shown in Ref. 12 that despite the 1D nature 
of electron transport in SWNTs, a magnetic field applied 
perpendicular to the quantum wire results in negative mag-
netoconductance due to quantum vibrations of the tube. At 
low temperatures 0( / ,BT kω=�  where 0ω  is the fre-
quency of the vibrational bending mode of the tube) the 
conductance, ( ),G H  of the tube is exponentially sup-
pressed, 2exp( ),G ∝ −φ  where 0= 2 /φ πΦ Φ  0( = HLlΦ  
is the effective magnetic flux, L  is the length of the wire, 

0l  is the amplitude of zero-point fluctuations of the tube, 
0 = /hc eΦ  is the flux quantum) [12]. At high tempera-

tures 0( / )BT kω=�  the magnetic field-induced correc-
tion to the tunnel conductance scales as 1/ .T  The scaling 
properties of magnetoconductace predicted in Ref. 12 re-
semble the ones known for polaronic effects in electron 
transport through a vibrating quantum qot (see, e.g., the 
review in Ref. 11) if one identifies the dimensionless flux 

0φ  with the electron–vibron coupling constant. So it is 
interesting to consider electron transport through a vibrat-
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ing nanowire in the model (single-level quantum dot (QD)) 
when magnetopolaronic effects can be evaluated analyti-
cally. In Ref. 13 the resonant magnetoconductance of a 
vibrating single-level quantum dot was calculated in per-
turbation theory with respect to 1.φ�  It was shown in 
particular that unlike the case of electrically induced vibra-
tions, where the peak conductance is known [14] to be un-
affected by vibrations, the magnetic field influences reson-
ance conductance for an asymmetric junction. 

The purpose of the present paper is to consider how the 
electrical current through a vibrating molecule depends on 
magnetic field and temperature in the limit of strong elec-
tron–vibron coupling, that is to consider magnetopolaronic 
effects. As in Ref. 13 we model the vibrating molecule by 
a single-level quantum dot in a harmonic potential. For 
point-like contacts both the modulus and the phase of the 
electron tunneling amplitudes depend on the QD position 
in the gap between the leads. We will assume that the 
“longitudinal” center-of-mass coordinate ( )cx  of the QD is 
fixed and that the quantum dot only vibrates along the y 
direction, while the magnetic field H  is applied along z 
axis (see Fig. 1). 

At first we calculate the tunneling current in the case 
when the displacement cy  of the QD in a magnetic field 
(due to the Laplace force*) is greater than the amplitude of 
zero-point fluctuations, 0cy l�  0 0( = /l mω= , m  is the 
QD mass). Then the mechanical part of the problem can be 
treated classically and the dependence of electrical current 
on magnetic field appears due to the dependence of the 
electron tunneling probabilities on the equilibrium position 

of the current-carrying QD in the magnetic field. We show 
that in strong magnetic fields H  (the appropriate limit for 
the considered classical problem) the current scales as 

1/ .J H∝  
In the case when the bare tunneling probabilities do not 

depend on the QD displacement cy  ( c cy x� ) the mag-
netic field influences the current only through the phase 
factors (Aharonov–Bohm phase) in the tunneling Hamilto-
nian (this is always the case for a suspended SWNT). We 
considered magnetopolaronic effects in the regime of se-
quential electron tunneling and for resonant tunneling of 
polarons (polaron tunneling approximation [15]). In these 
cases analytical formulae for the current were derived. We 
predict: (i) a Franck–Condon (polaronic) blockade of mag-
netoconductance in the regime of sequential electron 
tunneling, (ii) an anomalous temperature dependence of 
magnetoconductance for strong electron–vibron coupling 
( 1),φ�  (iii) a magnetic field-induced narrowing of reso-
nant conductance peaks, and (iv) an excess current at high 
biases, 0 .eV ω=�  

2. Model Hamiltonian and equations of motion 

The Hamiltonian of a single-level vibrating quantum 
dot in a magnetic field takes the form  

 ( ) ( )

= ,

ˆ = ( ) ,l t
Dj j

j L R
H H H H+ +∑  (1) 

where 
 ( ) †

, ,,= ( )l
k j j k jj k j

k
H a aε −μ∑  (2) 

is the Hamiltonian of noninteracting electrons in the left 
( = )j L  and right ( = )j R  leads ( kjε  is the energy of elec-
trons with momentum ,k  jμ  is the chemical potential), 

†
,, ( )k jk ja a  are the creation (destruction) operators with the 

standard commutation relations †
,,{ , } = ( ).q j jjk ja a k q′ ′δ δ −  

Furthermore, 
 † †

0 0=DH c c b bε + ω=  (3) 

is the Hamiltonian of a single-level 0(ε  is the level ener-
gy) vibrating quantum dot 0(ω  is the frequency of vibra-
tions in the y direction), † ( )c c  and †( )b b  are creation (de-
struction) fermionic †({ , } = 1)c c  and bosonic †([ , ] = 1)b b  
operators**. Finally, 

 ( ) †
,ˆ ˆ= ( )exp( ) H.c.t

j H k jjH t y ij y a c− λ + , (4) 

 = ( , ) ( , ),j L R ≡ − +   

Fig. 1. Schematic diagram of the device geometry. A single-level
quantum dot of characteristic size L  is placed in the gap between
two point-like metal electrodes. The QD position ,L Rx  on the
x axis is fixed and it vibrates (depicted as a spring) only along the
y axis. An external magnetic field is directed along the z axis. 

L

y z

x

V

xR xL

Н

* Each of the moving charges that contribute to the current through a conductor experiences a Lorentz force in an electromagnetic 
field. The Laplace force refers to the total force on the conductor.  

** Here we consider spinless electrons. Notice that in strong magnetic fields studied below the Zeeman splitting is so large that at all 
reasonable temperatures and bias voltages one can neglect the contribution of minority spin-polarized states. The effects of Zee-
man splitting on electron transport in single electron transistors with spin-polirized leads were considered in [16]. 
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is the tunneling Hamiltonian. Here †
0ˆ = ( ) / 2y b b l+  is 

the coordinate operator and = /H eHd cλ =  is the magnet-
ic field-induced electron–vibron coupling [12] (d is a pa-
rameter of dimension length; its physical meaning in our 
model will be clarified later). In this section, the amplitude 

ˆ( )jt y  of the tunneling matrix element in Eq. (4) will be 
modelled by the expression 

 2 2
0ˆ ˆ( ) = exp / ,j j j tt y t x y l⎛ ⎞− +⎜ ⎟

⎝ ⎠
 (5) 

where tl  is the tunneling length and jx  is the position of 
the center of mass of QD along x axis, which is assumed to 
be fixed. We will show that our results are not sensitive to 
the choice of parametrization, Eq. (5). 

The Heisenberg equation of motion for the fermion and 
boson operators are 

 ˆ ˆ= ( )exp( ) ,kj kj kj j Hi a a t y ij y c∗ε + − λ�=  (6) 

 0
,

ˆ ˆ= ( )exp( ) ,j H kj
k j

i c c t y ij y aε + λ∑�=  (7) 

 2 1
0

ˆ ˆˆ ˆ = ( ),c Ly y m F F−+ ω +��  (8) 

where the operator expressions for the cohesive ( )cF  and 
Laplace ( )LF  forces take the form 

 ˆ †

,

ˆ( )ˆ = e H.c.,
ˆ

j ij yHc kj
k j

t y
F c a

y
λ∂

+
∂∑  (9) 

 ˆ †

,

ˆ ˆ= ( )e H.c.ij yHL H j kj
k j

F i jt y c aλ− λ + =∑   

 ˆ ˆ= ( ).L R
Hd I I
c

− −  (10) 

In the last equality in Eq. (10) we introduced the standard 
notation for the current operator  

 †
,,

ˆ = , = .j j j k jk j
k

I N N a a∑�  (11) 

At first we neglect the quantum fluctuations of the 
coordinate operator ŷ  and derive the equation of motion 
for the average (classical) coordinate ˆ< > = .cy y  When 
QD vibrations are treated as classical oscillations the eq-
uations of motion for the fermion operators, Eqs. (6) and 
(7), become a set of first order linear differential equa-
tions, which can easily be solved analytically. After 
straightforward calculations (see, e.g., Ref. 17, where an 
analogous equation was derived for the electron shuttle 
problem) we get the following classical equation of mo-
tion (notice that we made use of the wide band approxi-
mation when calculating the averages over electron oper-
ators and introduced a coordinate-dependent level width 

2( ) = 2 ( ) | ( ) | ,j c F j cy t yΓ πν ε  where ( )Fν ε  is the electron 
density of states in the leads): 

2
0

( )1 2= ( ) ( ) ,j c
c c j c c

cj

y dy y R y J y H
m y c

⎛ ⎞∂Γ
⎜ ⎟+ω +
⎜ ⎟∂⎝ ⎠
∑��  (12) 

where 

 0
2 2

00

( ) ( )1( ) =
2 ( ) [ ( ) / 2]

j
j c

t c

f
R y d

y

∞ ε − ε ε
ε

π ε − ε + Γ∫  (13) 

and 

 
0

( ) = ( ; )[ ( ) ( )].
2c BW c L R

eJ y d T y f f
∞

ε ε ε − ε
π ∫=  (14) 

Here ( ) = ( ) ( )t c L c R cy y yΓ Γ + Γ  is the total level width, 
and  

 
2 2

0

( ) ( )
( ; ) = ,

( ) [ ( ) / 2]
L c R c

BW c
t c

y y
T y

y
Γ Γ

ε
ε − ε + Γ

 (15) 

 
1

( ) = exp 1j
jf

T

−
⎡ ε −μ ⎤⎛ ⎞

ε +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (16) 

are the Breit–Wigner transmission cofficient and Fermi–
Dirac distribution function, respectively. Equation (14) is 
the standard Landauer–Büttiker formula for the resonant 
current through a single-level quantum dot. The first term 
on the r.h.s of Eq. (12) can be interpreted as the cohesive 
force, the second term coincides with the force on a cur-
rent-carrying conductor in a magnetic field (Laplace force) 
if we identify 2d  with the longitudinal size of the QD, 
2 = .d L  This is the definition of the parameter d  which 
appears in the operator form of the Aharonov–Bohm phase 
in the tunneling Hamiltonian, Eq. (4). 

In the absence of a magnetic field, = 0,H  the equi-
librium position of the transverse coordinate = 0.cy  
One can expect that the maximal influence of the magnetic 
field on the electrical current through a single-level QD 
occurs at high voltages, ,

, 0( = 0) ,L R
L R ceV y≥ Γ ≡ Γ  that is 

in the regime of sequential electron tunneling. In this case 
Eqs. (13), (14) are strongly simplified and one finds that 

 
( ) ( ) ( )

( ) = , ( ) =
( ) ( )

c L c R c
c c

L c R c

e y y y
J y y

y y
Γ Γ Γ

Γ
Γ + Γ=

 (17) 

and ( Fε  is the Fermi energy)  

 ,
0

1= = ln , > .
2 2

L R
L R

F

eVR R eV
⎛ ⎞

Γ⎜ ⎟π ε⎝ ⎠
 (18) 

For simplification we consider symmetric junctions 
( = = )L Rx x l  for which 

2 2
0

2( ) = ( ) = exp ,L c R c c
t

y y l y l
l

⎧ ⎫⎛ ⎞Γ Γ Γ − + −⎜ ⎟⎨ ⎬⎝ ⎠⎩ ⎭
 (19) 
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where 2
0 0= 2 ( ) | | exp( 2 / )F tt l lΓ πν ε −  is the level width 

of the symmetric junction in the absence of a magnetic 
field. According to Eq. (13) the equilibrium position of the 
QD in a constant magnetic field does not depend on time; 
in weak magnetic fields it scales linerly with ,H  

 0
0

( ) , ,
2c
L H ly H l H H

H L
� � �  (20) 

where the characteristic magnetic field 0H  is defined by 
the equation  

 20 0 0
0= , = ,R

I H e
m I

c
Γ

ω
=

 (21) 

 2 2 0
0

22= ln .F
R

tmll eV
Γ ε⎛ ⎞ω ω + ⎜ ⎟π ⎝ ⎠

  

We see from Eqs. (20) and (21) that in weak magnetic 
fields the only effect of the cohesive force is to renormal-
ize the frequency 0.ω  In tunnel junctions 0( 0)Γ →  the 
renormalization is small and can be neglected. In strong 
magnetic fields, 0( / ) ,H l L H�  we can neglect the con-
tribution of the cohesive force to Eq. (12) as well. The 
magnetic field-induced shift of the QD in this limit scales 
logarithmically with ,H  

 
0

2( ) ln exp .
2 2
t

c
t

l L H ly H l
l H l

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

� �  (22) 

In weak magnetic fields the small shift ( )cy l�  of the 
QD position does not influence the tunnel current in the 
considered classical approach. We will see in the next sec-
tion that in this case one has to take into account quantum 
effects (phase fluctuations in the tunneling Hamiltonian), 
which strongly modify tunnel transport. In strong magnetic 
fields (classical limit) the current ( ) = ( / ) ( )J H e HΓ=  
scales as 1/ H  according to Eq. (22). 

At the end of this section we briefly comment on the in-
fluence of the magnetic field on the resonant current in the 
considered classical approach. In the regime of resonant 
electron tunneling 0( , )T eV ≤ Γ  the current depends li-
nearly on the bias voltage ,V  

 0 2
( ) ( )

( ) = 4
[ ( ) ( )]

L R
r

L R

H H
J H G V

H H
Γ Γ

Γ + Γ
 (23) 

2
0( = /G e h  is the conductance quantum). It is evident 

from Eq. (23) that the resonant current through a symme-
tric junction ( = )L RΓ Γ  is not affected by the magnetic 
field since 0( ) = (0) = .r rJ H J G V  For an asymmetric junc-
tion the resonant current does not depend on magnetic field 
in the strong-H limit when the field-induced factor in 
the expression for the renormalized partial widths (see 
Eq. (19)) is cancelled in the expression for the electrical 
current, Eq. (23). 

3. Magnetopolaronic effects 

In this section we consider the influence of quantum 
and thermodynamical fluctuations of the coordinate opera-
tor of QD, ˆ,y  on electron transport in a magnetic field. 
Quantum effects are significant (at low temperatures) when 
one can neglect the dependence of the modulus of the 
tunneling matrix element on the QD displacement in a 
magnetic field. This is always the case for tunneling 
through a suspended SWNT [12]. 

When considering the quantum effects of magnetic 
field-induced vibrations it is convenient to introduce the 
electron–vibron coupling constant in the form of a di-
mensionless magnetic flux, 0= 2 /φ πΦ Φ  0( = / 2,HLlΦ  

0 = /hc eΦ  is the flux quantum). The dimensionless elec-
tron–vibron interaction constant φ  determines the quan-
tum phase of the tunneling matrix element 

 †
/ 0ˆ( ) = exp [ ( ) / 2],L R jt y t i b bφ +∓  (24) 

where 0 0= /l mω=  is the amplitude of zero-point fluctua-
tions. Resonant electron tunneling in the model Eqs. (1)–(4), 
(24) was studied in Ref. 13 using perturbation theory with 
respect to 1.φ�  Here we are interested in nonperturbative 
effects, 1.φ�  

At first we consider the regime of sequential electron 
tunneling where the effects of magnetic field-induced vi-
brations are most pronounced. In this regime the current 
can be calculated perturbatively with respect to the level 
width .Γ  The sign of the Aharonov–Bohm phase, Eq. (24), 
which is opposite for left- and right-tunneling electrons, 
does not play any role in the considered regime of tunne-
ling (which can be treated classically by using a master 
equation approach). So our model is equivalent to the pola-
ronic model of electron tunneling through a vibrating QD 
(see, e.g., the reviews in Refs. 2, 11). Notice that in a gen-
eral case the “magnetic” problem can not be mapped to the 
polaronic problem because of the above mentioned “sign” 
difference [13]. We show below that this difference is not 
essential for magnetopolaronic effects. 

The average electric current J  in the regime of sequen-
tial electron tunneling ( , )Bk T eV Γ�  can be calculated by 
using a master equation approach. It can be represented as 
a sum of partial currents over “vibron channels” [18], 

> 0 ( < 0),n n  corresponding to vibron emission (absorp-
tion). Hence, 

0 0 0 0 0
=

( ; ) = ( ){ ( ) ( )},n L R
n

J V J A f n f n
∞

−∞
φ φ ε − ω − ε − ω∑ = =  

  (25) 
where 0 = /J eΓ =  is the maximal current through a single-
level QD ( = / ( ))L R L RΓ Γ Γ Γ + Γ  and the spectral weights 

nA  are defined by the equation 

 ˆ ˆ( ) (0)0

=
e = e e ,in t i y t i y

n
n

A
∞

ω ± φ φ

−∞
∑ ∓  (26) 
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where the average < ... >  is taken with respect to the 
Hamiltonian of noninteracting vibrons, †

0= .bH b bω=  
The spectral weights defined by Eq. (26) coincide with 
the analogous quantities in the polaronic model, where 
they are defined through the correlation function of op-
erators ˆexp ( )i pλ  ˆ( p  is the momentum operator). For 
the equilibrated vibrons with the distribution function 

1
0( ) = [exp ( / ) 1]Bn T T −ω −=  the coefficients nA  take the 

following well-known form (see, e.g., Ref. 19) 

 20 ; = exp [ (1 2 )]n BA n
T
ω⎛ ⎞φ −φ + ×⎜ ⎟

⎝ ⎠

=
  

 2 0[2 (1 )]exp .n B BI n n n
T
ω⎛ ⎞× φ + −⎜ ⎟

⎝ ⎠

=
 (27) 

Here ( )nI z  denotes a modified Bessel function (see, e.g., 
Ref. 20). As is evident from their definition in Eq. (26), the 
spectral weights nA  satisfy the sum rule  

 
=

= 1,n
n

A
∞

−∞
∑  (28) 

which can be rewritten as a nontrivial mathematical identi-
ty for the sum of modified Bessel functions: 

 coth

=
e = e , 0.

sinh
nx a x

n
n

aI a
x

∞
− −

−∞

⎛ ⎞ ≥⎜ ⎟
⎝ ⎠

∑  (29) 

The unitary condition Eq. (28) plays a crucial role in the 
derivation of analytical formulae for the current and con-
ductance at 0, .Bk T eV ω=�  Since all the analytical for-
mulas of interest for us have already been derived in the 
literature on the polaronic model, we here merely formu-
late the results. 

The magnetoconductance ( )G H  in the regime of se-
quential electron tunneling takes the following asymptotics 
at low and high temperatures [21]: 

 

2
0

2 20
0

exp ( ), ,( )
(0) 1 , .

2

TG H
G T

T

⎧ −φ Γ ω
⎪
⎨ ω
−φ φ ω⎪

⎩

=
=

=

� �
�

�
 (30) 

Here 0(0) = ( / 2)( / )G G Tπ Γ  is the standard formula for 
conductance of a single-level QD. At intermediate temper-
atures, 0 ,Bk T ω=∼  and for strong electron–vibron inte-
ractions, 1,φ�  the temperature dependence of conduc-
tance is nonmonotonic (anomalous) [21]. This signature of 
polaronic effects was observed in experiments [5] on elec-
tron tunneling through a carbon nanopeapod-based single-
electron transistor. The asymptotics Eq. (30) coincide (up 
to numerical factors) with the ones found in Ref. 12 for a 
different model (electron tunneling through a suspended 
nanotube). The high-temperature asymptotics in Eq. (30) 
exactly coincides with the corresponding quantity calcu-
lated in Ref. 13 for resonant electron tunneling. It is inter-
esting to notice that the calculations based on a full quan-

tum mechanical treatment [13] of interacting electrons and 
the master equation approach yield exactly the same results 
in high-T limit. 

Now we consider the behavior of current, Eq. (25), at 
low temperatures as a function of bias voltage ( ).eV Γ�  
At = 0T  Eq. (25) takes the form 

 
2

2
0

=0
( ; ) = exp( ) ,

!

n nm

n
J V J

n
φ

φ −φ ∑  (31) 

where 0= [ / ]mn eV ω=  ([ ]x  denotes the integer part of ).x  
At low voltages 0( < )eV ω=  = 0mn  and the current does 
not depend on V  and is determined by a standard formula 
for a saturated current through a single-level QD. Howev-
er, in our case the level width ( )Γ φ  is renormalized by the 
electron–vibron interaction:  

 2
0

( )( < / ; ) = exp ( ).e eJ V e Γ φ Γ
ω φ −φ=

= =
�  (32) 

This is the demonstration of polaronic blockade [7]. With 
an increase of bias voltage the current jumps by an amount 
determined by the Franck–Condon factors 

 
22

1 0= = e
!

n

n n nJ J J J
n

−φ
+

φ
Δ −  (33) 

each time the bias voltage opens a new inelastic channel 
0( ) = [ / ]n V eV ω=  (see Fig. 2). 

At high voltages ( 0eV ω=� ) the polaronic blockade is 
lifted and the current saturates at its maximum value 0J ,  

 
22

0 0( / ; ) 1 e .
( 1)

nm

m
J V e J

n
−φ

⎧ ⎫φ⎪ ⎪ω φ −⎨ ⎬
Γ +⎪ ⎪⎩ ⎭

=� �  (34) 

Here ( )xΓ  is the gamma-function and 
2

0= [ / ] 1mn eV ω φ= � � . The difference between the 
maximum and minimum currents 

 2
0= {1 exp ( )}J Jδ − −φ  (35) 

Fig. 2. Low-temperature current ( )J V  in units of 0 = /J eΓ =  as a 
function of bias voltage at 0β / 4,T= ω == for three different val-
ues of the electron–vibron coupling constant :φ  the solid line cor-
responding to the weak ( = 0.5),φ  the dash-dotted line to an inter-
mediate ( = 1),φ  and the dashed line to the strong ( =1.5)φ
coupling regimes. 

J
V

J
(

)/
0

1
0

0.4

0.2

2 3
eV/ �0�
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is nothing but the excess current considered in Refs. 22, 23 
for the model of electron tunneling through a suspended 
carbon nanotube. The presence of a high-temperature 
( )Bk T eV →∞�  excess current in electron tunneling is 
another demonstration of polaronic blockade effects. 

Although the magnetic field-induced polaronic effects 
are most pronounced in the regime of sequential electron 
tunneling (when the current through a single-level QD is 
maximal) we briefly comment here on polaronic effects in 
resonant electron tunneling. It is physically evident that an 
electron–vibron polaron state can be formed on a quantum 
dot coupled to reservoirs if the life-time of the electronic 
state, / tτ Γ=∼ , is much longer than the characteristic 
time of polaron formation, 2

0/ 1/ , 1.p pτ ε ω φ φ ≥=∼ ∼  
The corresponding inequality 2

0tΓ φ ω=�  allows one to 
consider resonant tunneling of strongly interacting elec-
trons in a simple model (polaron tunneling approximation 
[15]). In this approximation the bare electron Green’s func-
tion (GF) in the Dyson equation for the retarded (ad-
vanced) GFs is replaced by the polaron GF ( ( )pG ε ) 

 
1( ) 1

, ,= ( ) ,PTA
r a p r aG G

−−⎡ ⎤ε − Σ⎣ ⎦  (36) 

where  

 
0 0=

( ) = n
p

n

A
G

n

∞

−∞
ε

ε − ε + ω∑ =
 (37) 

and nA  are defined in Eq. (26). In the limit of wide electron 
bands in the leads the imaginary part of the self-energy func-
tion ( )Σ ε  is not renormalized by electron–vibron interaction 
in the considered approach ,Im = / 2r a tΣ Γ∓  and the real 
part of ( )Σ ε  can be neglected. Then by evaluating the spec-
tral function ( ) ( ) ( )= [ ]PTA PTA PTA

r aA i G G−  one can find the 
current with the help of the Meir–Wingreen formula [24]. It 
takes the form [15] 

 { }
2

2

( )
= ( ) ( ) .

1 [ ( ) / 2]
L R p

L R
t p

GeJ d f f
G

Γ Γ ε
ε ε − ε

+ Γ ε∫=  (38) 

From Eqs. (37), (38) it is easy to show that at low tempe-
ratures ( 0T ω=� ) the conductance 0( , )G T ε  in resonant 
tunneling can be represented in the Breit–Wigner 
form with the renormalized level widths , ( ) =L RΓ φ  

2 2
, , 0= exp ( ) ( ):L R L R−φ Γ Γ φ ω=�  

 0 2 2
0

( ) ( )
(0) = .

( ) [ ( ) ( )] / 4
L R

F L R
G G

Γ φ Γ φ

ε − ε + Γ φ + Γ φ
 (39) 

According to Eq. (39) the peak conductance, 
0(0, = ),r FG ε ε  is not renormalized by the magnetic 

field even for an asymmetric junction, =rG  
2

0= 4 / [ ] ,L R L RG Γ Γ Γ + Γ  as is the case in the polaronic 
model [14]. Notice that the opposite statement, that in an 
asymmetric junction the peak conductance is influenced by 
a magnetic field [13], was obtained in perturbation theory 
with respect to the electron–vibron coupling constant 

1φ�  and that it holds in another region of model parame-
ters, 2

, 0.L RΓ φ ω=�  
At high temperatures 2

0( )Bk T φ ω=�  the polaronic 
blockade is lifted and the formula for the conductance de-
rived from Eq. (39) coincides with the corresponding for-
mula (see Eq. (31)) obtained in the regime of sequential 
electron tunneling. 

4. Conclusion 

In conclusion we have shown that the quantum-vibration-
induced Aharonov–Bohm effect, predicted in Ref. 12 for 
electron tunneling through a suspended carbon nanotube in 
magnetic field, can be interpreted as a magnetopolaronic 
effect, where the dimensionless flux 0= 2 /φ πΦ Φ  plays the 
role of a magnetic field-induced electron–vibron interaction 
constant. We considered a simple model in the form of a 
single-level vibrating quantum “dot” in a transverse (with 
respect to the current flow) magnetic field and evaluated the 
electrical current and the magnetoconductance in two cases: 
1) the amplitude of electron tunneling depends on the mag-
netic field-induced QD displacement (point-like contacts), 
and 2) the magnetic field influences only the Aharonov–
Bohm phase of the tunneling matrix element. It was shown 
that magnetic field-induced polaronic effects are most pro-
nounced: (i) in the regime of sequential electron tunneling, 
(ii) in high magnetic fields when the momentum 

/p eHL cδ ∼  of the current-carrying QD induced by the 
Laplace force exceeds the momentum of zero-point fluctua-
tions 0 0/p l=∼ , and (iii) at low temperatures, 

2 /Bk T p mδ�  (m  is the mass of the QD). 
Recently polaronic effects were measured in nanotube-

based single–electron transistors [3–5]. In particular, a 
Franck–Condon blockade was observed in a suspended car-
bon nanotube [4]. Electrically induced electron–vibron inte-
ractions happen to be much stronger than the electron–
phonon interaction in isolated carbon nanotubes. So the 
magnetic effects could also be enhanced in the presence of 
ferromagnetic leads. Although simple estimations for a mi-
cron-sized nanotube-based device show that even in a very 
strong transverse magnetic field ( 20T)H ∼  the magneto-
current is only of the order of 0.1 pA, the effect is measura-
ble and its fundamental nature justifies efforts to detect it. 
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