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ing devices are studied: (i) a single-Cooper-pair transistor, (ii) a transparent SNS junction, and (iii) a single-level 
quantum dot coupled to superconducting electrodes. The electromechanical coupling is due to electrostatic or 
magnetomotive forces acting on a movable part of the device. It is demonstrated that depending on the frequency 
of mechanical vibrations the electromechanical coupling could either suppress or enhance the Josephson current. 
Nonequilibrium effects associated with cooling of the vibrational subsystem or pumping energy into it at low 
bias voltages are discussed. 
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1. Introduction 

The Josephson effect [1] is one of the most spectacular 
phenomena in quantum physics. Two fundamental quan-
tum phenomena — macroscopic quantum coherence and 
electron tunneling — determines the Josephson coupling of 
separated superconductors. The theoretical prediction and 
experimental observation [2] of the Josephson effect gave 
birth to a new science — the superconductivity of weak 
links. 

In the last decade one has seen a rapid progress in the 
formation and development of nanoelectromechanical sys-
tems (NEMS) which can be used as single-molecule mass 

sensors, as the basic elements of nanoelectronics (single 
electron transistor, relay, etc.) and as effective transducers 
and signal processors. Recently, suspended carbon nano-
tube-based NEMS, which have been shown to have ex-
traordinary electrical and mechanical properties (see, e.g., 
[3]), have attracted special interest. 

Theory predicts a number of new effects in NEMS that 
are due to the interplay of their electronic and vibrational 
subsystems. Among the theoretically predicted phenomena 
electron shuttling [4,5], phonon assisted single-electron 
tunneling [6,7] and the Franck–Condon (“polaronic”) blo-
ckade [8] have already been observed in experiments 
[9,10]. 
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Single-wall carbon nanotubes have already been used as 
weak links in superconducting devices [11] and there is no 
doubt that transport properties of superconducting NEMS 
will soon be measured. Therefore it is interesting and sig-
nificant to sum up our knowledge of this subject. This is 
the aim of the present review. 

We have considered three different types of supercon-
ducting NEMS: (i) a vibrating single-Cooper-pair box 
coupled to superconducting electrodes, (ii) a transparent 
(ballistic) SNS junction with a vibrating normal part (nano-
tube) of the device, and (iii) a vibrating single-level quan-
tum dot coupled by tunneling to superconducting banks. 
Without the adjective “vibrating”, all these devices are 
familiar systems in the field of superconductivity. The 
electromechanical coupling gives them new and unusual 
features. In particular, a single-Cooper-pair box could play 
the role of a mediator of the Josephson coupling between 
remote superconductors. The voltage-driven Andreev 
states in a transparent short SNS junction serve as the re-
frigerant responsible for pumping energy from the nano-
tube vibrations to the thermostat of quasiparticle states in 
the leads. A single-level vibrating quantum dot coupled to 
superconducting leads, depending on the vibration fre-
quency, could either suppress the supercurrent (“hard” 
vibrons: 0ω Δ= � , Δ  is the superconducting gap) or even 
to enhance the Josephson current if the vibrational subsys-
tem is “soft” 0( 0ω → ) and it is ready to transform to a 
new ground state. 

As far as we know the present paper is the first review 
of the nanoelectromechanics of weak links. We considered 
the influence of vibrations on the dc Josephson current at 
zero or small bias voltages (adiabatic regime). The review 
consist of an introduction, three sections and a conclusion. 
In Sec. 2 we discuss the papers on mechanically mediated 
Josephson currents. In Sec. 3 the supercurrent and cooling 
effects in a vibrating nanotube in a magnetic field are con-
sidered. In Sec. 4 we study the influence of vibrations on 
the resonant Josephson current in a superconductor–quan-
tum dot–superconductor tunnel junction. 

2. Single-cooper-pair box and mechanically mediated 
Josephson currents 

The single-Cooper-pair box (SCPB) is a mesoscopic 
device in which a small superconducting grain is coupled 
bytunneling to a massive superconducting electrode via 
Josephson junction and is capacitively connected to a gate 
electrode. The Hamiltonian of the Cooper-pair box reads 
[12] 
 2= ( ) cos ,C G JH E n n E− − ϕ  (1) 

where 2= (2 ) / 2CE e C  is the charging energy ( C  is the 
grain capacity), 2= ( / 2 )J cE e I=  ( cI  is the critical cur-
rent) is the Josephson energy and = / 2G Gn V C e  ( GV  is 
the gate potential). The first term in Eq. (1) represents ki-
netic (electrostatic) energy, the second term is the potential 

(Josephson) energy. In a quantum mechanical treatment 
the canonically conjugate variables ( )tϕ  and ( )n t  obey 
the commutation relation ˆ ˆ[ , ] = 1nϕ . 

The single-Cooper-pair box is realized in the Coulomb 
blockade regime [13] (see also [14]), 

 ;C JE EΔ� �  CT E�  (2) 

( 2Δ  is the superconducting gap) (and it is assumed that 
junction resistance 2

0 /R R h e>> = ), where the single 
electron states are energetically unfavorable due to the 
parity effect (see, e.g., [15,16]) and the superconducting 
properties of the grain are described by a two-level quan-
tum system (qubit) with (2 2)×  matrix Hamiltonian (see, 
e.g., the review [17]) 

 ( )1= .
2SCPB z J xH E− εσ + σ  (3) 

Here = (1 )C GE nε − , 0 1Gn≤ ≤  and σ  are Pauli matric-
es. The eigenenergies of the Hamiltonian (3) 

 2 21= (1 2 )
2 C G JE E n E± ± − +  (4) 

are controlled by the gate voltage GV  and at special values 
of GV , when Coulomb blockade is lifted ( = 1/ 2Gn  on 
modulus 1), the level splitting = JE EΔ Δ�  is small and 
the levels are well separated from the single electron (hole) 
excitations. 

The state vector of a SCPB is a coherent superposition 
of the states with = 0n  and = 1n  Cooper pairs on the 
grain, | = | 0 |1SCPBψ 〉 α 〉 +β 〉  ( 2 2| | | | = 1α + β ). Notice 
that for a closed system any superposition of states with 
different electric charges is forbidden by the charge con-
servation law (superselection rules). It means that actually 
the SCPB state is entangled with the states of the lead 
i i �

lead lead| = | 0 | |1 |SCPB ′ψ 〉 α 〉 ψ 〉 +β 〉 ψ 〉 . When the lead is 
nonsuperconducting this entanglement results in decohe-
rence of the qubit. For a superconducting lead one has to 
distinguish between states with a fixed number of Cooper 
pairs | N〉  (strong fluctuations of the superconducting 
phase) and states with a fixed superconducting phase | ϕ〉  
(strong fluctuations of the number of Cooper pairs). In the 
first case lead| = | Nψ 〉 〉 , lead| = | 1N′ψ 〉 − 〉  and the qubit is 
characterized by a diagonal density matrix (mixed state) 

 � i i
0 1lead= Tr | | = | 0 0 | |1 1 | .SCPB SCPB SCPB p pρ ψ 〉〈ψ 〉〈 + 〉〈  

  (5) 

The only possibility to create a coherent Josephson hy-
brid | SCPBψ 〉  on the grain is to “entangle” the neutral | 0〉  
and the charged |1〉  states with a coherent state of the bulk 
superconductor characterized by a fixed superconducting 
phase | ϕ〉 . In this case the number of Cooper pairs in the 
lead fluctuates strongly ( lead lead| = | = |′ψ 〉 ψ 〉 ϕ〉 ) and the 
Josephson coupling of the superconducting grain with the 
bulk superconductor creates, in the Coulomb blockade 
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regime defined by Eq. (2), the factorized state 
| |SCPBψ 〉 ϕ〉⊗ . 

The SCPB Hamiltonian is readily generalized to the 
case when the superconducting grain is coupled by tunne-
ling to two superconducting electrodes with fixed phases 

/ 2±ϕ . Such a system is called a superconducting single-
electron transistor (SSET) and is described by the Hamil-
tonian 

� � �2= ( ) cos ( /2 ) cos ( / 2 ).L R
SSET C G J JH E n n E E− − ϕ −φ − ϕ + φ

  (6) 

For a symmetric junction = =L R
J J JE E E  the potential 

energy in Eq. (6) is reduced to �2 cos ( / 2)cos ( )JE− ϕ φ  and 
the SSET can be described by the qubit Hamiltonian (3) 
provided the Josephson energy JE  is replaced by 
2 cos ( / 2)JE ϕ  (ϕ  is the superconducting phase differ-
ence). 

When the Coulomb blockade is lifted ( = 1/ 2Gn ) the 
SSET eigenenergies are = cos( / 2)JE E± ϕ∓  and the cor-
responding eigenstates | = (| 0 |1 ) / 2±〉 〉+ 〉  can (when oc-
cupied) carry the partial supercurrents = (2 / ) / =J e E± ±∂ ∂ϕ=
= ( / ) sin ( /2)JeE± ϕ= . The average Josephson current 
through a SSET takes the form 

 
/

=

2= , = ln 1 e ,
E Tj

j

eJ T
−

±

∂Ω ⎛ ⎞Ω − +⎜ ⎟∂ϕ ⎝ ⎠∑=
 (7) 

where Ω  is the grand canonical potential. In equilibrium 
at given temperature T  and phase difference ϕ  one finds 

 
cos ( / 2)

= sin ( / 2) tanh .
2

J JeE E
J

T
ϕ⎡ ⎤ϕ ⎢ ⎥⎣ ⎦=

 (8) 

This formula coincides with the expression for the resonant 
Josephson current ([18,19], see also Sec. 4) through a sin-
gle-level quantum dot after the replacement JE →Γ  
(Γ Δ� , Γ  is the level width). Therefore Eq. (8) could be 
interpreted as resonant (“macroscopic”) tunneling of Coo-
per pairs through the charge hybrid states | ±〉  on the grain. 
Correspondingly the critical current is determined by the 
first power of the Josephson energy JE  (and not 

2R L
J J JE E E∝ ) and the dependence on the phase ϕ  is dif-

ferent from the standard Josephson relation for nonreso-
nant electron tunneling sinL R

J JJ E E ϕ∼ . 
A single-Cooper-pair box and qubit based on SCPB 

were first experimentally realized [20,21]. Later, in the 
experiment by Nakamura et al. [22], two additional nor-
mal-metal probe electrodes (a voltage-biased electrode and 
a pulse-gate electrode) were attached to the superconduct-
ing island. This allows one to control the quantum states of 
the superconductor-based two-level system. In particular 
by applying a gate voltage pulse, coherent oscillations be-
tween two charge states (Rabi oscillations) were ob-
served [22]. 

A movable single-Cooper-pair box can be used for the 
transportation of Cooper pairs. In the closed superconduct-

ing circuit shuttling of Cooper pairs results in a mechanical-
ly mediated Josephson current [23]. Even for disconnected 
superconducting leads, when initially the superconductors 
were in the states with fixed number of Cooper pairs, 
Cooper pair shuttling creates long distance phase cohe-
rence [24] and induces a Josephson current through the 
system. 

What are the requirements one has to fulfill to observe 
mechanically assisted Josephson current? It is evident that 
phase coherence has to be preserved during the transporta-
tion of the Cooper-pair box between the leads and while 
the SCPB interacts with the superconducting bulk elec-
trodes. Phase coherence can be maintained if the few de-
grees of freedom associated with the superconducting qubit 
are well separated from the continuum spectrum and there-
fore the characteristic qubit phase coherence time is longer 
than the transportation time. Notice that even for a nonmo-
bile SCPB and at low temperatures the “phase breaking 
time” is short due to the interaction of the superconducting 
qubit with the environment. 

As in the case of a stationary SCPB the charging energy 
CE  should be larger then the Josephson energy JE  and 

the thermal energy, see Eq. (2). This condition prevents 
significant charge fluctuations on the dot. Besides, the 
energy quantum 0ω=  of the mechanical vibrations has to 
be much smaller then all other energy scales of the prob-
lem, 0 , ,C JE Eω Δ= � . This assumption excludes the 
creation of quasiparticles and allows one to consider the 
mechanical transport of the SCPB as an adiabatic process. 

The adiabatic shuttling of Cooper pairs between super-
conducting electrodes can be separated into two stages: 
(i) the free motion of the Cooper-pair box, and (ii) the 
loading and unloading of charge in the vicinity of leads. 
The latter processes are induced by the Josephson coupling 
and tunneling of Cooper pairs occur if the Coulomb block-
ade is lifted ( = 0) = ( = 1)E n E n  by the appropriate gate 
voltage applied near the contacts. The coherent exchange 
of a Cooper pair between the grain and the lead creates a 
“Josephson hybrid” on the grain: 

00 01 11 10| 0 | 0 e |1 ; |1 |1 e | 0 ,
i ij js s s s

− ϕ ϕ
〉 ⇒ 〉 + 〉 〉 ⇒ 〉 + 〉  (9) 

where jϕ  is the superconducting phase of the left ( = )j L  
or right ( =j R ) electrode (we assume that the leads are in 
states with a given phase of the superconducting order pa-
rameter). The transition amplitudes ijs  are determined by 
the Josephson energy JE  and the time ct  spent by the 
grain in contact with the lead 

00 11 01 10| | = | | = cos , | | = | | = sin , / .J J J J cs s s s E tθ θ θ =�

  (10) 

During the free motion of the SCPB between the leads 
the dynamics of the qubit is reduced to the evolution of 
the relative phase χ  of the = 0n  and = 1n  states 

= ( = 1) ( = 0) = CE n E n Eχ −�= . The accumulated phases 
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are in general different for left-to-right ( )t+  and right-to-
left ( )t−  motion 

 / .CE t± ±χ =�  (11) 

For a periodic adiabatic motion of the SCPB with fre-
quency 0= / 2f ω π  the dc Josephson current was calcu-
lated in Ref. 23. It takes the form 

 
3

22 2
cos sin (cos cos )sin= 2 ,

1 ( cos cos )cos sin
J J

J J
J ef

θ θ Φ Φ + χ

− θ χ − θ Φ
 (12) 

where = R L + −Φ ϕ −ϕ +χ −χ  and = + −χ χ + χ  is the total 
dynamical phase. The current Eq. (12) is an oscillating 
function of the superconducting phase difference 

= R Lϕ ϕ −ϕ , which is a direct manifestation of a Joseph-
son coupling between the two remote superconductors. 

It is useful to consider Eq. (12) in the limit of weak Jo-
sephson coupling 1Jθ �  and vanishingly small ( 0t± → ) 
dynamical phase 0χ → . In this case Eq. (12) is reduced to 
the standard Josephson relation = sincJ J Φ , where 

/c JJ eE =� . For weak coupling 1Jθ �  but a finite dy-
namical phase Jχ θ�  the mechanically assisted Joseph-
son current is strongly suppressed, 3 2/sinJ JJ ∝ θ χ θ� . 
However, the direction of the supercurrent will be opposite 
to the direction of the “ordinary” Josephson current 
( sinJ Φ∼ ) if cos cos < 0.χ + Φ  So, for symmetric shuttl-
ing the main qualitative effect of the dynamical phase is 
a change of the direction of the supercurrent. In other 
words, for a given strength of the Josephson coupling the 
direction of the supercurrent is determined by the interplay 
of the superconducting (ϕ ) and dynamical (χ ) phases. 

It is worth to stress three features, which distinguish a 
mechanically assisted supercurrent from the ordinary Jo-
sephson current through weak links. (1) For asymmetrical 
phase accumulation ( + −χ ≠ χ ) an anomalous current 

( = 0) 0J ϕ ≠  flows through the system. (2) The direction 
of the supercurrent at a given superconducting phase dif-
ference depends on the electrostatic phase χ . (3) The su-
percurrent is a nonmonotonic function of the Josephson 
coupling strength Jθ . The last feature is connected with 
the Rabi oscillations of the population of qubit quantum 
states induced by a switching of the Josephson interaction 
at the turning points of the shuttle trajectory. 

Now we ask the following question: Could mechanical 
transportation of Cooper pairs serve as a source for the 
creation of phase coherence if the two superconducting 
leads were initially in states with a definite number of 
Cooper pairs? A positive answer to this question was given 
in Ref. 24. The entanglement of the movable Cooper-pair 
box with the lead states | jN 〉  ( = ,j L R ) with N  extra 
Cooper pairs results in the suppression of the relative phase 
fluctuations. The manifestation of this phase ordering is the 
appearance of an average supercurrent through the junc-
tion. Starting from an initially pure (product) state, the su-
percurrent 

 � l l � �= Tr { }, = sin ( )c R LJ J J Jρ φ − φ  (13) 

( �ρ  is the density matrix obtained by tracing the density 
matrix over the bath variables, � jφ  is the phase operator) 
was shown [24] to stabilize at a fixed value after a large 
number of grain rotations. The concrete number of rota-
tions needed for current stabilization depends on the 
strength of the Josephson coupling. The calculated average 
current [24] oscillates as a function of dynamical phase ±χ  
similar to the previously discussed case of a mechanically 
assisted Josephson current. Figure 1 illustrates the behavior 
of the phase difference distribution as a function of the 
number of grain rotations. The graph shows how the sys-
tem evolves (as the number of rotations increases) from a 
state of maximum phase fluctuations (i.e., from an initial 
pure charge neutral state | = | = 0 | = 0 | = 0 )L Rn N Nψ〉 〉 〉 〉  
to an entangled state 

 , ,0
0,1 ,

| | |N n n N N L RL L R
n N NL R

C n N N+ +
=

δ 〉 〉 〉∑ ∑  (14) 

with minimum quantum fluctuations. The corresponding 
emergent phase difference depends on the parameters of 
the system and the dynamical process. It was also shown 
that the current is suppressed with increasing temperatures 
due to an increased width of the phase distribution. At low 
temperatures the current decays exponentially with a cros-
sover to algebraic decay for high temperatures. 

The classical mechanical motion of a simple Cooper-
pair box can be modelled by letting the Josephson energy 
and the charging energies be time dependent. Therefore the 
properties of a voltage biased Josephson junction subject to 
an ac gate potential ( ( )CE t ) could be useful for a better 
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Fig. 1. Probability density for the difference ΔΦ  between the 
phases of the superconducting condensates of two bulk supercon-
ductors in contact via a movable superconducting grain. The 
grain periodically moves from one bulk superconductor to the 
other and the graph shows how the system evolves from a state 
with maximum to a state with minimum fluctuations as the num-
ber of rotation periods increases. 
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understanding of superconducting nanoelectromechanics. 
In Ref. 25 the microwave dynamics and transport proper-
ties of a voltage-biased single Cooper pair transistor were 
considered. 

A bias voltage V  makes the phase difference change 
with time, 0( ) = Jt tϕ ω +ϕ  ( = 2 /J eVω =  and we set 

0 =ϕ −π  for definiteness in what follows). This time de-
pendence generates a periodic variation of the relative po-
sition of the qubit levels E± , Eq. (4), as well as a periodic 
change in the partial currents J± . The total Josephson cur-
rent depends on the relative “population” pδ  of the levels 
which for a finite bias ( 0Jω ≠ ) cross each other at times 

= 2n Jt nω π . Consequently pδ  is controlled now only by 
relaxation processes. Weak relaxation Jν ω�  results in 
equalization of the level population and hence the Joseph-
son current J p∝ δ ∝ ν . In the limit 0ν →  not only the dc 
but also the ac current through the considered weak link 
vanishes. A time dependent gate voltage ( )Gn t ∝

cos ( )t∝ ω +χ  may significantly affect the current by in-
ducing resonant interlevel transitions and thereby changing 
their populations.  

This situation was considered in [25] where the interlevel 
transitions at resonance condition 2 sin ( /2)J J rE tω= ω=  
were used for current stimulation. Landau–Zener interlevel 
transitions occur, and the level populations are changed, 
during the short time interval rtδ  near the times ( )n

rt . Be-
tween these “scattering events” the system is in “free mo-
tion” and the level populations are “frozen”. The two dif-
ferent frequencies = /2JΩ ω  and ω , which determine the 
ac properties of the superconducting qubit, make the dy-
namics of this two-level system highly nontrivial. If the 
ratio /ω Ω  is an irrational number the dynamics is quasi-
periodic and the dc Josephson current is still zero even 
under microwave irradiation. When / = /N p qω Ω +  
(where N  and <p q  are integers) a finite dc supercurrent 
flows through the system even in the limit of weak dissipa-
tion 0ν → . 

To obtain an analytical result one has to evaluate the dc 
Josephson current, which in our case is given by the ex-
pression 

 � l
0

1= Tr { ( ) ( )},
Tq

q
J dt t J t

T
ρ∫  l( ) = cos ,J

z
eE

J t tσ Ω
=

 (15) 

where 0= = 2 /qT qT q π Ω , �( )tρ  is a density matrix obey-
ing the Bloch equation 

 
� � � �

0= [ ( ), ] ( )i H t i
t

∂ρ
ρ − ν ρ−ρ

∂
= =  (16) 

and ( )H t  is the Hamiltonian of the two-level system, 

 0( ) = sin ( ) cos ( ).z J xH t E t tσ Ω +σ ε ω + χ  (17) 

Here /ε ω=�  is the rate of the microwave-induced inter-
level transitions and �0 ( )tρ  is the quasistatic density matrix 

of the unperturbed ( = 0ε ) Hamiltonian (17), and ν  is the 
relaxation rate. 

The problem can be analytically solved in the weak dis-
sipation limit. The microwave-induced dc current takes the 
form [25] 

 
2

0
2 2 2

0

tan sin (2 )
= arccos ,

2 1 ( )cos

q

q
J

qeJ
E q

⎛ ⎞ τ θ χω ω
⎜ ⎟

π − τ χ⎝ ⎠

=  (18) 

where ( ) = 2 ( ) 1 ( ) cosw wτ ε ε − ε θ  is the probability of in-
terlevel transition ( ( )w ε  is the probability amplitude of 
the standard Landau–Zener scattering matrix [26]) and 

 
/20 0

0 0

0

= sin ( /4 ) ,
T t

J

t

E
dt t T t

−

θ Ω −ω −∫=
 

(19)
 

 1
0 = arcsin .

2 J
t

E
− ω

Ω
=   

This current plotted as a function of / = / eVω Ω ω=  de-
monstrates many sharp features at rational values of 

/ eVω= . The smooth dependence = ( / )J f ω Ω  obtained 
by an interpolation procedure is shown in Fig. 2. The sharp 
peaks in the –I V  characteristics of the microwave irra-
diated single Cooper pair transistor at “fractional” values 
of the bias voltage, = / ( / )eV N p qω += , are a signature 
of quantum interference effects caused by the resonant 
interaction of the SSET with the microwave field. These 
peaks are finite when N →∞  and do not vanish in the 
limit of weak microwave irradiation 1τ� . The calculated 

–I V  characteristics differ qualitatively from the Shapiro 
effect (manifested as voltage steps in the –I V  characteris-
tics of a voltage-biased Josephson junction in an ac field, 
see, e.g., [25]) in classical Josephson junctions. 

Fig. 2. Microwave-induced current J  in units of 2
0 = /I eω π , 

plotted as a function the microwave frequency ω  normalized to 
= / 2JΩ ω . The result was obtained with 0 = / 11χ π , 
/ 2 = 0.001JEω= , = 0.5w  and max = 7q . 
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3. Short vibrating SNS junctions: supercurrent and 
cooling of the mechanical subsystem 

In this section we consider the nanoelectromechanical 
properties of a suspended single-wall metallic carbon na-
notube coupled to superconducting electrodes. Depending 
on the coupling strength this system can be modelled as a 
vibrating quantum dot (weak coupling) or SNS junction 
(strong coupling). The interaction of electronic and me-
chanical degrees of freedom in this device can be mediated 
either by electrical charges or currents. The electrical for-
ces are most pronounced in the weak coupling (tunneling) 
regime when the number of particles on the dot is a well-
defined quantity. This case will be analyzed in detail in the 
next section. Here we consider electromechanical effects 
induced by the interaction of a supercurrent with nanotube 
vibrations in a magnetic field. 

We will model the S/SWNT/S junction as a short SNS 
junction (the length L  of the suspended nanotube is as-
sumed to be much shorter than the superconducting cohe-
rence length, 0 /FL vξ Δ=� � ). It is well known (see, 
e.g., [19,27,28]) that in a one-dimensional (single channel) 
short SNS junction the spectrum of Andreev bound states 
is reduced to two states with energies ( ) = ( ),AE E± ϕ ± ϕ

2 1/2( ) = [1 sin ( /2)]AE Dϕ Δ − ϕ , where 0 1D≤ ≤  is the 
junction transparency. When occupied these levels carry 
supercurrents in opposite directions. The equilibrium Jo-
sephson current at temperature T  reads 

 
2 2

sin= tanh .
2 21 ( / 2)sin

AEe DJ
TD

Δ ϕ ⎛ ⎞
⎜ ⎟
⎝ ⎠− ϕ=

 (20) 

The supercurrent produced by the continuum spectrum 
(scattering states) is zero in the considered limit 

0/ 0L ξ → . Since the continuum spectrum does not con-
tribute to the current the Hamiltonian of a short SNS junc-
tion can in many cases be represented by the Hamiltonian 
of a two-level system (Andreev qubit [29,30]) 

 = cos( / 2) sin( / 2),A z xH Rσ Δ ϕ + σ Δ ϕ  (21) 

where = 1R D−  is the reflection coefficient. The super-
current operator is defined as l = (2 / )( / )A zJ e E∂ ∂ϕ σ=  and 
in equilibrium it results in the average Josephson current 
Eq. (20). The qubit Hamiltonian Eq. (21) is readily diago-
nalized by the unitary transformation 

 i †= = ( ) ,A A A zH U H U E ϕ σ  = exp ( ),yU i− θσ  
(22)

 

 tan 2 = tan( / 2).Rθ ϕ   

In the basis of Andreev levels the current operator takes 
the form 

 il 2= ( cos 2 sin 2 ).A
z x

EeJ
∂

σ θ−σ θ
∂ϕ=

 (23) 

Although the Hamiltonian (21) is formally valid for all 
values of the reflection coefficient in the interval 0 1R≤ ≤  

it is “in practice” used as a qubit Hamiltonian only for 
transparent junctions with 1R� . In this limit the energy 
gap (at ϕ ≈ π ) between Andreev states is small, 

= 2gE Rδ Δ Δ� , and the energy levels are well sepa-
rated from the continuum states, which introduce dissipa-
tion in the dynamics of the Andreev qubit. 

The electromechanical coupling in our system is phe-
nomenologically introduced by applying a magnetic field 
H  perpendicular to the direction of the current. It is as-
sumed that the magnetic field acts only on the normal part 
of the SNS junction. Then the nanotube is deflected due to 
the Laplace force l= (1/ )F c LJH . The corresponding in-
teraction term l

int =H F y  represents the coupling of elec-
trical and mechanical degrees of freedom. Vibrations of the 
nanotube are modelled by a harmonic potential and the 
total Hamiltonian reads 

 † †
0= 2 ( ) ,A

A z
dE

H H b b b b
d

+ α + σ + ω
ϕ

=H  (24) 

where † ( )b b  is the creation (destruction) operator of a 
vibrational mode with frequency 0ω , 0 = /hc eΦ  is the 
flux quantum, 0= 2 /α πΦ ΦH H  is the dimensionless 
strength of electron–vibron interaction ( 0= LlΦH H , 

0 0= / 2l mω=  is the amplitude of zero-point vibrations). 
Notice that the electron–vibron coupling results in an 

effective electron–electron interaction and hence the con-
cept of Andreev qubit Eq. (21) (derived for noninteracting 
electrons) is not valid in the general case. Besides, the inte-
raction term is L-independent while the level energies in 
Eq. (21) were obtained in the limit 0L → . Therefore one 
can justify Eq. (24) only in perturbation theory with re-
spect to the small parameter αH  and we neglect the influ-
ence of the magnetic field on the level energies. Then the 
current lJ  can be expressed in terms of the unperturbed 
energies of the Andreev levels. When additionally the SNS 
junction is transparent ( 1R� ) the derivative of the level 
energies with respect to ϕ  can be taken to be a constant, 
2 ( = 0) / = sin( / 2)AE Rδ δϕ −Δ ϕ Δ�  at ϕ ≈ π . This mod-
el is the starting point of the considerations in Refs. 31, 32, 
where a new mechanism for cooling the vibrational sub-
system was proposed. 

The physical idea underlying the superconductivity-in-
duced electromechanical cooling mechanism is rather sim-
ple. When a bias voltage is applied over the SNS junction 
the voltage-driven Andreev states play the role of a media-
tor responsible for pumping energy from the nanomechani-
cal vibrations to the quasiparticle states in the leads. The ac 
Josephson dynamics of a short SNS junction induced by a 
weak dc driving voltage 2= ( ) / = 4ceV eV E R≤ δ Δ Δ  is de-
scribed by an adiabatic evolution of the Andreev states. At 
the start of each cooling cycle the energy separation of the 
Andreev levels, ( ) = 2 ( )AE Eδ ϕ ϕ , initially shrinks in such 
a way as to bring them into thermal contact (at )ϕ π�  
with the vibrational subsystem ( =gEδ ω= ) and resonant 
energy exchange between electronic and vibronic degrees 
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of freedom occurs. Being thermally populated at the mo-
ment of their separation from the continuum spectrum, the 
Andreev states are over-cooled at ϕ π�  if the thermal 
relaxation is not sufficiently fast to follow the level dis-
placement. This work is done by the bias voltage. In the 
vicinity of the resonance point = / 2rt eVπ=  interlevel 
transitions with absorbtion and emission of vibronic excita-
tions take place. It is physically evident (and justified by 
calculations) that scattering from the lower electronic 
branch (–) into the upper (+) branch with the absorption of 
a vibron after passing through the resonance is more prob-
able than scattering that involves vibron emission. Analo-
gously, inelastic transitions from the upper to the lower 
branch occur mostly with the emission of a vibron. This 
means that transitions between the over-cooled states in-
duced by the electromechanical coupling will result in the 
absorption of energy from the vibronic subsystem. At the 
second stage (ϕ π ) of the adiabatic evolution the ab-
sorbed energy is transferred into electronic quasiparticles 
when the Andreev states merge with the continuum spec-
trum ( 2ϕ π� ). The process of cooling is continued through 
the formation of new thermally populated Andreev states 
and their time evolution in the next cooling cycle and so on. 

A calculation of the transition rates induced by the time 
independent weak ( 1α �H ) coupling term of the Hamil-
tonian (24) in the Andreev level basis eff =H

3 1= [ ( )]AE tϕ τ +α ΔτH  ( iτ  are the Pauli matrices) yields a 
simple expression for the probability of inelastic scattering 
| , | , 1n n− 〉 → + − 〉  with the absorption of a vibron ( n  is the 
number of vibrons) [32], 

2 2/3
0( ) , = ( / )( / ) 1.cp n n V V+ π Γ Γ α Δ ω=� �H  (25) 

As the opposite process | , | , 1n n+ 〉 → − + 〉  is forbidden if 
initially only the lower branch is populated (T Δ� ), the 
mechanical subsystem would thus approach the vibrational 
ground state. Figure 3 illustrates how the probability np  for 
the mechanical subsystem to have n  excited quanta depends 
on n  after 1N �  cooling cycles. Initially np  is thermally 
distributed 0 0= exp ( / ) [1 exp ( / )]np n T T− ω − − ω= =  and 
after many periods ( 310N ∼ ) the vibrational subsystem if 
effectively cooled down to a small final average vibron 
population 0.1n〈 〉 ∼ . 

In the end of this section we briefly discuss magnetic 
field-induced superconducting pumping of nanomechani-
cal vibrations in a nanotube-based Josephson junction [33]. 
The interplay of elastic and superconducting properties of 
S/suspended nanotube/S junction is provided by a magnet-
ic field H  applied perpendicular to the nanotube. Then the 
nanotube vibrations ( , )u x t  are influenced by the Laplace 
force = (1/ ) ( )LF c J LϕH  acting on a current-carrying 
tube of length L  ( ( ) = sincJ Iϕ ϕ  is the Josephson cur-
rent). The dynamics of the superconducting phase differ-
ence ϕ , controlled by the Josephson relation = (2 / )e Vϕ� =  
(V  is the bias voltage), is affected by the magnetic field 
due to an electromotive force ( ( / ) ( , ))V V c dxu x t→ − ∫H  

experienced by the wire moving in the static magnetic 
field. The set of nonlinear dynamical equations for the am-
plitude ( )a t  of vibrations ( ( , ) = ( ) ( )u x t u x a t , where ( )u x  
is the profile of the nanotube bending mode) and the phase 

( )tϕ  in dimensionless variables reads [33] 

 i= sin , = .Y Y Y є V Y+ γ + ϕ ϕ −�� � ��  (26) 

Here ( ) = (4 / ) ( )Y t eL a t� �=H , i 0= 2 /V eV ω=  ( 0ω  is the 
frequency of the bending mode), 2 2 2

0= 8 /cє eL I mω=H  
and γ  is the dimensionless damping coefficient which is 
assumed to be small. The dimensionless time t�  in Eq. (26) 
is measured in units of 1

0
−ω . The dc Josephson current 

through the system is 2= ( / ) ( )dcj V a tγ 〈 〉�� , where ...〈 〉  de-
notes time-averaged quantity. Numerical simulations of 
Eq. (26) performed in [33] when both dimensionless para-
meters are small ( , 1є γ� ) revealed distinct resonance 
peaks in the vibration amplitude at integer values of bias 
voltage. For small vibration amplitudes there is a resem-
blance between the considered resonances in the Josephson 
junction coupled to elastic vibrations and the Fiske effect 
(see, e.g., [34]) in Josephson junctions coupled to an elec-
tromagnetic resonator. In particular i = 1V  corresponds to a 
direct resonance and i = 2V  represents a parametric reson-
ance. However, in the nonlinear regime, which holds when 
the driving force is large >є γ , the resonances in the con-
sidered system are significantly different from those of the 
Fiske effect. It was shown [33] that for realistic experimen-
tal parameters the system can be driven into a multistable 
regime by varying the strength of magnetic field. The ac 
Josephson current on resonance initially grows with in-
creasing magnetic field, but then falls off as 21/H  as the 
vibration amplitude is saturated. The predicted in [33] mul-

Fig. 3. (Color online). Evolution of the distribution of the me-
chanical modes, np , as a function of the quantum state n  for 
different number of periods N  ( = / 20 nsVT eVπ= ∼ ). Initially, 

np  is thermally distributed, 0exp ( / )np n T∝ − ω= , with 

0= 5T ω= . Here 6
0 = 10−ω=  eV, 0= 10Δ ω= , 0 = 20l  pm, 

= 100L  nm, = 1H  T. The inset shows the probability amplitude 
for the system to scatter out of the initial Andreev state as a func-
tion of n for the same parameters. 
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tistability of nanotube vibrations could result in hysteresis-
like behavior of dc Josephson current as a function of bias 
voltage. 

4. Polaronic effects in resonant Josephson current 
through a vibrating quantum dot 

In this section we consider the influence of a strong 
electron–vibron interaction on the Josephson current. Re-
cently experiments with suspended carbon nanotubes re-
vealed a remarkably large electron–vibron coupling in 
normal electron transport through nanotube-based quantum 
dots [10,35–37]. In the cited transport experiments the vi-
brational effects were observed in the regime of Coulomb 
blockade and the electromechanical coupling was induced 
by the interaction of an extra charge on the vibrating tube 
with the gate potential. Carbon nanotube-based junctions 
have already been used in tunneling superconducting de-
vices [11]. Therefore one could expect strong electrome-
chanical effects in superconducting transport in SNS junc-
tions with suspended nanotubes as well. 

Here we consider the simplest model of a vibrating 
quantum dot (QD) coupled to superconducting electrodes 
via tunneling junctions. The dot is modelled by a single 
spin-degenerate ( = ,σ ↑ ↓ ) level interacting with a single 
vibronic mode ( 0ω= ) 

† † †
0 0

= ,
ˆ= ( ) ,QD iH d d Un n n b b b bσ σ ↑ ↓

σ ↑ ↓
ε + + ε + + ω∑ =  (27) 

where †( )d dσ σ  is the destruction (creation) operator for an 
electron on the dot with spin projection = ,σ ↑ ↓  and ener-
gy 0ε  measured from the Fermi level, †ˆ =n d dσ σ σ , 
ˆ ˆ ˆ=n n n↑ ↓+ , †( )b b  is the vibronic destruction (creation) 

operator, U  is the energy of electron–electron interaction 
and iε  is the energy of electron–vibron interaction. Using 
this model is a standard approach to studying vibrational 
effects in single-molecule transistors (see, e.g., the reviews 
[38,39]). In Ref. 40 this Hamiltonian was used for studying 
the effects of electron–vibron interactions on the Joseph-
son current through superconductor–QD–superconductor 
(S/QD/S) junction (see, e.g., [41]). The left ( = )j L  and 
right ( = )j R  superconducting electrodes are described by 
the standard BCS Hamiltonian 

 † † †
,

, = ,
= h.c.j k j k j jk j kj kj

k k
H c c c cσσ ↑ − ↓

σ ↑ ↓

⎛ ⎞
ε − Δ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  (28) 

( = | | e
i j

j
ϕ

Δ Δ  is the superconducting order parameter), 
and the QD–S coupling is described by the tunneling Ha-
miltonian 

 †

, = ,
= h.c.tj kj k j

k
H t c dσσ

σ ↑ ↓
+∑  (29) 

The standard trick used in treating the Hamiltonian (27) 
(see, e.g., [42]) is to eliminate the electron–vibron interac-
tion by the unitary transformation ˆ ˆ= exp ( )U i pnλ  

†ˆ( = ( )/ 2p i b b−  is the dimensionless momentum opera-
tor, 0= 2 /iλ − ε ω=  is the dimensionless electron–vibron 
interaction strength). The transformation results in a (pola-
ronic) shift of the dot level, 2

0 0=pε ε − λ ω= , and the 
Coulomb interaction energy, 2

0= 2pU U − λ ω= , in the 
QD Hamiltonian. The electron–vibron interaction reap-
pears in the transformed tunneling Hamiltonian via the 
replacement lei p

kj kjt t λ⇒  in Eq. (29). The average current 
= =L RJ J J−  is represented as the thermal average of the 

tunneling Hamiltonian 

 l †= ( / ) [ , ] = 2( / ) Im ,jj kj k j
k

J i e H N e t d c∗
σ σ

σ
∑= =  (30) 

where H  is the total Hamiltonian, l jN  is the number op-
erator for electrons on the left or right electrode and the 
average ...〈 〉  is taken with the total Hamiltonian. In pertur-
bation theory with respect to the tunneling Hamiltonian the 
averages of fermionic (electrons) and bosonic (vibrons) 
operators factorize and can be evaluated analytically in 
limiting cases (see below). The critical Josephson current 

( ) = sincJ Iϕ ϕ  (ϕ  is the superconducting phase differ-
ence = R Lϕ ϕ −ϕ ) reads [40] 

 
2

1 2 3 1 22
0 0 0

= ( )L R
c

e
I d d d

β β βΓ Γ Δ
− τ τ τ τ − τ ×

π ∫ ∫ ∫=
H   

 3 1 2 3 1 2 3( ) ( , , ) ( , , ),× τ τ τ τ τ τ τH F B  (31) 

where =1/Tβ , 0 0( ) = (| |) (( | |) | |)K Kτ τΔ − β− τ ΔH  0( ( )K x  is 
a modified Bessel function), 2= 2 | | ( )j k kj kjtΓ π δ ε − εΣ  
is the partial level width, which is energy independent in 
the wide band approximation. The fermion and vibron cor-
relation functions are 

 † †
1 2 3 1 2 3( , , ) = { ( ) ( ) ( ) (0)} ,T d d d dτ ↓ ↑↓ ↑
τ τ τ 〈 τ τ τ 〉F  

(32)
 

 
l l l l( )( ) ( ) 31 21 2 3( , , ) = {e e e e } ,i pi p i p i pT λ τ− λ τ − λ τ λ

ττ τ τ 〈 〉B   

where now the averages are taken with the transformed QD 
Hamiltonian (which is a quadratic in the vibron operators). 
In the absence of electron–vibron ( = 0λ ) and Coulomb 
( = 0U ) interactions an evaluation of the integrals in 
Eq. (31) for 0| | Tε Δ�  and 0ε Δ�  results in the sim-
ple expression (see, e.g., [43]) 

 
2

0

0
= tanh .

2 2c
eI

T
εΓ ⎛ ⎞

⎜ ⎟ε ⎝ ⎠=
 (33) 

The perturbative result (33) does not describe the resonant 
transport 0 0ε → , 0T → . For noninteracting electrons a 
nonperturbative (in Γ ) analysis of Eq. (31) predicts a satu-
ration of the critical resonant ( 0 = 0ε ) current /cI eΓ =�  
at 0T → . The resonant supercurrent through a single-level 
noninteracting QD can be calculated by using the spectrum 
of Andreev levels in a short SINIS (“I” stands for insulat-
ing barrier) with strong barriers at the NS boundaries (see, 
e.g., [18,19,41]). In our notation the spectrum of bound 
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states is 2 2 2
0( ) = ( / 2)cosAE ϕ ± ε + Γ ϕ  and the corres-

ponding Josephson current reads 

2 2 22
0

2 2 2
0

/ 2sin cos( ) = tanh .
2 2/ 2cos

eJ
T

⎛ ⎞ε +Γ ϕΓ ϕ ⎜ ⎟ϕ
⎜ ⎟ε +Γ ϕ ⎝ ⎠

=
 (34) 

In the perturbative region ( 0Γ → ) Eq. (34) reproduces the 
critical current Eq. (33). For resonant transport 0( = 0)ε  
the Josephson current = ( / 2 )(sin / | cos( / 2) |)rJ eΓ ϕ ϕ=  is 
strongly enhanced. 

A finite Coulomb interaction, 0U ≠ , tends to suppress 
the Josephson current by splitting the dot level. If U Γ�  
the conditions for resonant tunneling can not be satisfied 
and the critical current 2

cI Γ∼ . In the limit of strong Cou-
lomb interaction U →∞  (physically U Δ� ) the critical 
current can be evaluated analytically. Here we consider the 
most interesting case, where 0,Γ ε Δ� . Then for tempera-
tures T Δ�  and for 0| | >ε Γ  the critical current takes the 
form (up to a numerical factor of order one) 

 
2

0 .cI
T
εΓ

Δ
�  (35) 

We see that the supercurrent direction depends on the 
sign of 0ε  and for 0 < 0ε  the considered superconducting 
weak link acts as a “ π ”-junction [44]. The appearance in 
Eq. (35) of an additional small factor 0| | / 1ε Δ�  in com-
parison with the analogous noninteracting expression, 
Eq. (33), is explained by virtual depairing of Cooper pairs 
in transition through a single spin-polarized electronic 
level. At 0T → , 0 0ε →  the critical current reads 

2
0( / )( / ) sgn ( )cI e Γ Δ ε=∼ . The current is strongly sup-

pressed (by “depairing” factor / 1Γ Δ� ) in comparison 
with the resonant critical current /eΓ =∼ . 

The electron–vibron interaction introduces an extra 
energy scale, the vibron energy quantum 0ω= , to the prob-
lem. It is clear that one could expect maximum effect of 
zero-point fluctuations of dc Josephson current in the limit 
when superconducting transport affects only the ground 
state of the vibrational subsystem. In the case of strong 
electron–electron interaction | |pU Δ  the considered re-
gime is realized when 0ω Δ= � . For a weak effective 
interaction | | 0pU →  the corresponding inequality reads 

0 0max { , }ω ε Γ= � . The bosonic correlation function 
1 2 3( , , )τ τ τB  can be expressed as exponential of the sum of 

two-point correlation functions 2ˆ ˆ ˆ ˆ ˆ( ) = ( )p p p p p〈〈 τ 〉〉 〈 τ 〉 − 〈 〉  
which are readily evaluated for equilibrated vibrons. At 
low temperatures 0T →  this correlation function in the 
considered high-frequency limit does not depend on τ  and 

2exp ( 2 )− λ�B . This current suppression is known as the 
Franck–Condon (polaronic) blockade of low-temperature 
and low-voltage electron transport [8,38]. The additional 
factor 2 in the exponent, compared to the normal transport 
result, accounts for the correlated tunneling of two elec-
trons. In other words the Josephson current through a vi-

brating QD is strongly suppressed at low temperatures due 
to a polaronic narrowing of the level width, 

2= exp ( )λΓ ⇒ Γ Γ −λ . Contrary to the normal-transport 
case, where the considered current suppression is absent 
for resonant tunneling (when the conductance ceases to 
depend on λΓ ) the Josephson current is suppressed by 
zero-point fluctuations of the vibrating QD even for reson-
ance conditions. 

This result is confirmed by a direct calculation [45] of 
the resonant Josephson current through a single-level vi-
brating quantum dot. In particular the approach used in the 
cited paper allows one to evaluate the resonant current for 
an asymmetric S–QD–S junction ( L RΓ ≠ Γ ), which will 
be important for us when considering the adiabatic regime 
of vibrations (see below). 

Since in the superconducting leads the quasiparticles 
have a gap Δ  in their excitation spectrum, the bulk fer-
mions can be integrated out, which leads to an effective 
Hamiltonian for the dot degrees of freedom. For 

0 0, , ,T bΓ ε ω Δ= �  and = 0U  the effective Hamiltonian 
reads [45] 

 �† †
eff 0 0

= ,

1= [ ( )]
2iH b b n b bσ

σ ↑ ↓

⎛ ⎞ε − ε + − + ω +⎜ ⎟
⎝ ⎠

∑ =   

 † ( cos / 2 sin / 2) ,t x yd d+ Γ σ ϕ + γσ ϕ  (36) 

where †† = ( , )d d d↓↑
, =t L RΓ Γ +Γ  is the total level width 

and = ( ) / ( )L R L Rγ Γ −Γ Γ +Γ  is the asymmetry parame-
ter. It is clear that for superconducting transport in the con-
sidered regime Δ →∞  only two fermion states on the dot 
are relevant: unoccupied | 0〉  and double occupied |↑↓〉  
fermion level (in Eq. (36) the total energy was shifted so 
that 0 0=E −ε , 0=E↑↓ ε ). In this basis (represented by jτ  
Pauli matrices) Hamiltonian Eq. (36) after rotation 
i /2 /23 3eff eff= e ei iH H− τ χ τ χ , = arctan [ tan ( / 2)]χ γ ϕ  takes 

the form of the Hamiltonian for a two-level system (qubit) 
interacting with harmonic oscillator 

 i † †
eff 0 3 0= [ ( )]iH b b b b− ε − ε + τ + ω +=   

 22 2
1 / 2 / 2.cos sint+ Γ τ ϕ + γ ϕ  (37) 

We analyze this model in the limit of a strongly asym-
metric junction 1γ → ± . The opposite case of a symmetric 
junction ( 0, = =L Rγ → Γ Γ Γ ) results, as expected, in 
a resonant supercurrent with a renormalized level width 

2
= ( / ) e sin ( / 2) sgn [cos ( / 2)]rJ e −λΓ ϕ ϕ= . For an asym-

metric junction the Josephson current at resonance reads 

 
22

22 2

(1 ) e sin
= .

2 ( / 2) ( / 2)cos sin

teJ
−λ− γ Γ ϕ

ϕ + γ ϕ=
 (38) 

We see that the maximum Josephson current flows in 
symmetric junctions and that the supercurrent in a strongly 
asymmetric ( ( ) ( )R L L RΓ Γ� , i.e. 1γ ≈ ± ) junction is de-
termined (as it should be) by the smallest transparency of 
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the barriers, 2
asym = (2 / )( / ) exp ( )sinL R tJ e Γ Γ Γ −λ ϕ= . 

In the considered limit of “hard” vibrons ( 0 0,ω Γ ε= � ) 
the vibration-induced suppression of current 2( exp ( ))−λ∼  
does not depend on the asymmetry parameter γ . 

It is worth to mention here that a novel type of Andreev 
bound state spectroscopy based on a dispersive measure-
ment of polariton states on a quantum dot strongly coupled 
to a bosonic subsystem (QED cavity) was suggested in 
Ref. 46. 

In the end of this section we briefly consider the oppo-
site (adiabatic) limit of “soft” vibrons 0 0ω →= . In this 
case the elastic energy associated with the vibrons is small 
and the vibronic subsystem can be easily excited and trans-
formed to a new ground state ( 0x〈 〉 ≠ ) of an interacting 
fermion–boson system. In the adiabatic limit the fast fer-
mionic degrees of freedom can be integrated out, resulting 
in an effective nonquadratic potential effU  for the vibrons. 
When calculating the Josephson current one can distin-
guish two cases: (i) the level widths jΓ  do not depend on 
coordinate, and (ii) a shift of the oscillator-center-of-mass 
strongly affects the tunneling rates /jΓ = . 

The last case can be realized for instance in a supercon-
ducting variant of the C60-based molecular transistor [9]. 
Notice that for normal transport the assumption (ii) could 
result in electron shuttling [47]. For a dc Josephson effect 
energy pumping in the vibrational subsystem is impossible 
and, instead of shuttling, one could expect a static shift of 
the center-of-mass of the vibrating QD if the dot displace-
ment will increase the supercurrent. As it was shown above 
the maximum resonant supercurrent flows in a symmetric 
( =L RΓ Γ ) junction. Therefore, if initially the QD posi-
tion in the gap between the superconducting electrodes 
corresponds to an asymmetric junction (0) (0)

( ) ( )L R R LΓ Γ�  the 
S–QD–S junction will nevetheless act as perfectly symme-
tric junction ( = ) = ( = )L m R mx x x xΓ Γ  due to a shift of 
the oscillator mx x→  for some values of phase difference 
and the energy of resonant level. 

A more subtle quantum effect is the appearance of a 
new (shifted) quantum state of the vibrational subsystem 
due to quantum fluctuations of the fermion vacuum. In 
general, fermion loops (polarization “bubble” diagrams) 
contribute negatively to the ground-state energy. It means 
that for a sufficiently strong electron–vibron interaction the 
classical ground state of vibrons, = 0,x  becomes unstable 
and a new minimum of the effective vibronic potential 
appears. 

In Ref. 48 it was shown by numerical calculations that 
in the limit 0ω Δ Γ= � �  the effective potential eff ( )U x  
for vibrons takes the form of an asymmetric double-well 
potential in a certain region of phase-difference space ϕ  
(the effective electron–vibron coupling depends on ϕ  and 
becomes strong, see Ref. 48). The frequency of vibrons 

0′ω  in the new (shifted) ground state is smaller then 0ω  
and hence the effective dimensionless electron–vibron 
coupling 3/2

0
−λ ω∼  is increased >′λ λ . Correspondingly, 

the Josephson current is decreased. Naively, one would 
expect the appearance of sharp features in the phase de-
pendence of the current at critical values of ϕ  when the 
vibronic system is shifted to a new ground state. Numerical 
calculations performed in [48] for the case Γ Δ� , when 
continuum states strongly affect the current, revealed only 
cusps in the = ( )J J ϕ  dependence, which, however, could 
be significant for the noise properties of S–QD–S junc-
tions. 

Notice that in the regime of almost transparent junc-
tions (Γ Δ� , 1λ� ) the electron–vibron interaction can 
be taken into account by a vibron-induced renormalization 
of the junction transparency in n SNINS junction [49]. 
Scattering of tunneling electrons on the zero-point fluctua-
tions results in an effective transmission probability 

2 2
eff 0= 1 / 8( / )T −λ ω Γ=  of the SNINS junction [19,49]. 

5. Conclusion 

It is useful to compare vibrational effects in normal 
metal and superconducting transport through a quantum 
dot. If the bare tunneling matrix elements are coordinate-
independent quantities, the electron–vibron interaction 
tends to suppress the electrical current (both normal and 
superconducting) by “dressing” the tunneling electrons 
with vibron excitations on the dot. 

For normal electron transport the vibron-induced sup-
pression is most pronounced in the regime of sequential 
electron tunneling (T Γ� ) where the peak conductance 
(at 0 ( ) = 0gVε ) scales as / TλΓ  at low temperatures 

0T ω=�  with a renormalized (suppressed) tunneling 
width 

2
= e / ( )L R L R

−λ
λΓ Γ Γ Γ +Γ . In superconducting 

transport we found an identical vibron-induced suppression 
of the resonant Josephson current in the limit of “hard” 
vibrons 0ω Δ= � . The Franck–Condon blockade (FCB) 
of normal transport is manifested as an enhancement of the 
satellite peaks and in the anomalous (nonmonotonic) tem-
perature dependence of the conductance at 0T ω=  [50]. 
For the Josephson current a partial lifting of the FCB could 
be expected for “soft” vibrons 0Γ ω Δ=� �  in the tem-
perature region 0 Tω Δ= � . So far this interesting 
problem has not been considered in the literature. 

Another experimentally observed nanoelectromechani-
cal effect in normal electron transport through quantum 
dots is electron shuttling. This phenomenon occurs at finite 
bias voltage (in ideal situation at 0>eV ω= ) when both the 
electron–vibron interaction and a dependence of the tunne-
ling matrix elements on coordinate are taken into account 
(see, e.g., the reviews [51,52]). Electron shuttling is a 
strongly nonequilibrium process when energy from the 
electrons (provided by the battery) is pumping into the 
vibrational subsystem. For equilibrium superconducting 
transport ( = 0V ), instead of electron shuttling one could 
expect the transition of “soft” vibrons 0 0ω →=  to a new 
ground state. The problem of Cooper pair shuttling through 
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a vibrating single-level quantum dot at finite bias voltages 
is still an open question. 

Superconductivity introduces two special features to 
nanoelectromechanics, namely, coherence and the addi-
tional low-energy scale Δ . In our review we considered 
coherent effects mostly associated with the electron trans-
port near the Fermi level. The peculiarities of vibrational 
effects when continuum spectrum is involved in supercon-
ducting transport (although they are partly studied in the 
literature, see, e.g., Refs. 48, 49), were not in the center of 
our considerations. Notice also, that among a number of 
papers on superconducting nanoelectromechanics where 
the vibrational subsystem is modelled by external time-
dependent field (see, e.g., [53–56]) we reviewed only the 
first publications. 

Despite the fact that our review is brief and we could 
not comment on all published papers in the field, we hope 
that the first retrospective view on the already solved prob-
lems in nanoelectromechanics of weak links will induce 
further interest both in theoreticians and experimentalists 
to this new area of physics. 
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