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In the large variety of models such as 3D and 2D Fermi-gas model with hard-core repulsion, 3D and 2D 
Hubbard model, and Shubin–Vonsovsky model we demonstrate the possibility of triplet p-wave pairing at low 
electron density. We show that the critical temperature of the p-wave pairing can be strongly increased in a spin-
polarized case or in a two-band situation already at low density and reach experimentally observable values of 
(1–5) K. We also discuss briefly d-wave pairing and high-Tc superconductivity with Tc ~ 100 K which arises 
in the extended Hubbard model and in the generalized t-J model close to half-filling. 

PACS: 71.27.+а Strongly correlated electron systems; heavy fermions; 
71.10.–w Theories and models of many-electron systems. 
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Introduction 

One of the most important questions in connection with 
the theory of HTSC is whether it is possible to convert the 
sign of Coulomb interaction between electrons [1]. The 
first attempt to answer this question in a positive way was 
made by Kohn and Luttinger in 1965 [2]. Unfortunately 
their cT  was unrealistically small. Our answer is much 
more optimistic. We proved this statement at low density 
limit, where we are far from AFM and structural instabili-

ties. Moreover in this limit we can develop regular pertur-
bation theory. The small parameter in the problem is a gas 
parameter Fap  ( a  is the scattering length, Fp  is Fermi 
momentum). 

The cT  — values which we obtain are not very low. 
Moreover our theory often works even for rather high den-
sities due to the intrinsic nature of superconductive insta-
bilities. In the last case the superconductive temperatures 
are reasonable. 
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The Fermi-gas model in three dimensions 

The basic model for our theory is a Fermi-gas model. 
In the case of repulsive interaction between two par-

ticles in vacuum the scattering length 0a > . However, ef-
fective interaction in substance, formed via polarization of 
a fermionic background, contains attractive p-wave harmo-
nic and hence the system is unstable towards triplet p-wave 
superconductive pairing below the temperature [3–5]: 

 1 2
1~ exp

( )
c F

F
T

ap

⎧ ⎫⎪ ⎪ε −⎨ ⎬
⎪ ⎪⎩ ⎭

. (1) 

Effective interaction in substance in first two orders of 
perturbation theory is given by: 

 2
3 eff(0) ( , ) ( ) ( )D F FN V p k ap ap p k= + Π + , (2) 

where ( )p kΠ +  is an exchange diagram which coincides 
in the case of a short range interaction with polarization 
operator, 2

3 (0) / 2D FN mp= π  is the density of states in 
3D. 

Besides, a regular part of it contains a Kohn’s anomaly 
of the form (in the 3D case): 

 sin ~ ( 2 ) ln | 2 |g F Fq p q pΠ − − , (3) 

where | |q = +p k  is a transferred momentum in a crossed 
channel. As a result we start from pure hard-core repulsion 
in vacuum and obtain the competition between repulsion 
and attraction in substance. The singular part of effV
“plays” in favor of attraction and the regular part in favor 
of repulsion. S-wave superconductivity is suppressed by 
hard core. However, for 0l ≠  hard core is ineffective. 
Moreover, already at 1l =  the attractive contribution is 
dominant. The exact solution yields [3–5]: 

2

l 2 2
5 13exp exp

4(2ln 2 1)( )
c F F

F
T

ap

⎧ ⎫π ⎧ ⎫⎪ ⎪− ε − = ε −⎨ ⎬ ⎨ ⎬
− λ⎩ ⎭⎪ ⎪⎩ ⎭

, (4) 

where 2 /Fapλ = π  is an effective 3D gas-parameter of 
Galitskii [6]. 

Two-dimensional Fermi-gas 

In 2D effective interaction in first two orders of the gas-
parameter has a form [7,8]: 

 2
2 eff 0 0 0

0

1(0) ( ) ~ ( );   
2 ln ( )D

F
N V q f f q f

p r
+ Π =    (5) 

is 2D gas-parameter of Bloom [9], where 0r  is the range of 
the potential, 2 (0) / 2DN m= π  is the 2D density of states. 

However, 2
sin 0( ) ~ Re 2 0g FV q f q p− =  for 2 Fq p≤  

— the Kohn’s anomaly has one-sided character and is inef-
fective for the superconductivity. SC appears only in the-
third order in 0f  [7,8] where we have 3

0 Re 2 Ff p q−  

for the singular contribution to eff ( )V q . Exact evaluation 
of all third order diagrams yield [7,8]: 

 Cl 3
0

1~ exp
6.1

FT
f

⎧ ⎫⎪ ⎪ε −⎨ ⎬
⎪ ⎪⎩ ⎭

. (6) 

3D and 2D Hubbard model. Shubin–Vonsovsky model 

The same results for p-wave critical temperature (4), (6) 
are valid for 3D and 2D Hubbard models [10] with repul-
sion. For the Hubbard model 3D gas-parameter of Galitskii 
[6] reads 2 /Fdpλ = π (where d is intersite distance) and 

2D gas-parameter of Bloom [9] 0
1

2 ln [1/ (2 )]F
f

p d
= . In 

2D Hubbard model at low electron density and weak-coupl-
ing case also xyd -pairing is realized [11]. We proved an 
existence of superconductivity in more than ten 2D and 3D 
models. In most of the models we obtained p-wave pairing 
including the most repulsive and the most unbeneficial for 
SC Shubin–Vonsovsky model [12]. The Hamiltonian of 
the Shubin–Vonsovsky model reads: 

 
2i j i ji i

ij i ij

VH t c c U n n n n+
σ σ ↑ ↓

< >σ < >
= − + +∑ ∑ ∑ , (7) 

where U is onsite Hubbard repulsion and V is additional 
Coulomb repulsion on neighboring sites, t is hopping in-
tegral. An effective vacuum interaction for Shubin–Von-
sovsky model has a form (see Fig. 1). 

Even in the most repulsive strong-coupling limit of the 
model U V W>> >>  (W is the bandwidth; 1– 2W t=  for 
3D simple cubic lattice; 8W t=  for square lattice in 2D) 
we get the same critical temperatures of the p-wave pairing 
(4), (6) as in the absence of additional Coulomb repulsion 
(for 0)V =  both in 3D and 2D cases. 

The additional Coulomb repulsion V changes only pre-
exponential factors in (6) and (8) (see [13,14]). It is an im-
portant result in connection with the discussion about 
a possible role of long-range screened Coulomb interaction 
for non-phonon mechanisms of SC started in [15–17]. 

Fig. 1. Effective vacuum interaction in the Shubin–Vonsovsky 
model with Hubbard onsite repulsion U and additional Coulomb 
repulsion V on neighboring sites. 

Ueff

U

V

0 ~ /2 d d x
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For higher densities of electrons there are Verwey loca-
lization [18,19] with checkerboard charge-ordered state in 
the strong-coupling limit of the model for dimensionless 
electron density el 1/ 2n =  and Mott–Hubbard localization 
with an appearance of AFM-state [10,20–22] for el 1n = . 
We also have here extended regions of phase separation 
close to el 1/ 2n =  and el 1n =  (see Fig. 2 and [23–27]). 
Thus, our considerations for homogeneous SC in strong-
coupling case U V W>> >>  are valid till the densities 

el 1/ 2 cn = − δ , where for :V t>>  

 
1/2

~c
t
V
⎛ ⎞δ ⎜ ⎟
⎝ ⎠

 in 2D and 
3/5

~c
t
V
⎛ ⎞δ ⎜ ⎟
⎝ ⎠

 in 3D. (8) 

For el1/2 1/2c n− δ < <  we have nano-scale phase-separ-
ation on small metallic clusters in the insulating checker-
board CO matrix (see Fig. 3). 

At critical concentrations el 1/ 2 cn = − δ  the metallic 
clusters start to touch each other. As a result an infinite 
metallic cluster appears (all the sample volume becomes 
metallic) for el 1 / 2 cn < − δ . 

d-wave pairing in extended Hubbard model close 
to half-filling 

In the opposite Born case W U V> >  the phase-separ-
ation is absent in the model and we can construct SC 
phase-diagram for p-wave, -xyd  and 2 2x yd − -wave pairing 
for all the densities el0 1n< < . The first results in this case 
were obtained in [16,17] for 2D case. 

The main result of Kivelson et al. [16] which arises 
here is the following: if we just consider an extended Hub-
bard model with Hubbard repulsion U, nearest-neighbor 
hopping t  and the next to nearest neighbor hopping ,t′  
then there are two maxima in the dependence of the effec-
tive interaction effV  in the 2 2x yd − -channel from the elec-
tron density el.n  A large central maximum in the 2 2x yd − -
channel corresponds to large densities el ~ (0.9 –1)n  close 
to half-filling, while a second smaller maximum corres-
ponds to lower densities. This maximum depends upon the 
details of the quasiparticle spectrum. For / ~ 0.3t t′ −  and 
U W≤  it is positioned at el ~ 0.6n  according to Kivelson 
et al. [16]. In between the two maxima there is a local min-
imum at the position of the van Howe singularity. For 

/ ~ 0.3t t′ −  this position is at . .v Hn  ~ 0.7 (see [16]). Here 
eff
dV  is rather small in the d-wave channel. The evaluation 

of Kohn–Luttinger diagrams in the second order of pertur-
bation theory (in the order of 2 /U W ) yields here the rea-
sonable values of the main exponent for the d-wave critical 
temperature  

 
eff 2

1~ exp
(0)

c F d
D

T
V N

⎧ ⎫
⎪ ⎪ε −⎨ ⎬
⎪ ⎪⎩ ⎭

.  

Namely in the 2 2x yd − -channel for ~ 0.3 eVt  ( 8 )W t=  
and ~ 6U t  the maximal values of ~ (80–100) KcT  are 
obtained in this estimate for el ~ (0.8–0.9).n  

At present Kagan, Val’kov, Korovushkin, and Mitskan 
[28] make an effort to check the stability of Kivelson re-
sults on the account of nonzero Coulomb repulsion on 
neighboring sites 0V ≠  (see Eq. (7) for the Hamiltonian 
of the Shubin–Vonsovsky model) and more distant hop-
ping 0t ′′ ≠  for the uncorrelated quasiparticle spectrum 

 ( ) 2 (cos cos ) 4 cos cosx y x yp t p d p d t p d p d′ε −μ = − + + +   

 2 (cos 2 cos 2 )x yt p d p d′′+ + −μ .  

The authors of [28] intend also to investigate a depen-
dence of the kernel of the integral Bethe–Salpeter equation 
for cT  on the intermediate Matsubara frequency (retarda-
tion effects) while we proceed from a standard weak-
coupling approach to the more sophisticated scheme of 
Eliashberg type. They also try to evaluate the corrections 
to the main exponent and preexponential factor connected 
with the diagrams of third and fourth order in U. 

The possibility to increase Tc already at low density 

There are two possibilities to increase cT  already at low 
density [29,30]: 

— to apply an external magnetic field (or to create 
strong spin-polarization) [29]; 

— to consider a two-band situation [30]. 
In both cases the most important idea is an idea of sepa-

ration of the channels. In magnetic field the Cooper pair is 

Fig. 2. Qualitative phase-diagram of the Shubin–Vonsovsky
model in the strong coupling case. At el 1n =  AFM state appears
in the model, while at el 1 / 2n =  we have the checkerboard CO
state. We have also extended regions of phase-separation close to

el 1 / 2n =  and el 1.n =  

Phase-separation

Phase-separation

AFM-state

CO-state

nel

1.0

0.5

0 W V/

Fig. 3. Phase-separated state at the densities el1/2 1/2c n− δ < <
with nano-scale metallic clusters inside CO checkerboard insulat-
ing matrix for .V t>>  
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formed by two spins “up” while effective interaction is 
prepared by two spins “down”. As a result the Kohn’s 
anomaly increases. For 0H ≠  it becomes: 

 sin ( ) ~ ( 2 ) ln | 2 | ( ) ln ( )g c cF Fq q p q p↑ ↓ ↑ ↓Π − − = θ−θ θ−θ
   (9) 

and cθ differs from π  proportionally to ( / ) 1F Fp p↑ ↓ − . 
Thus already first derivative of sin gΠ and the effective 
interaction with respect to ( )cθ−θ  are divergent. Note that 
for 0H =  the Kohn’s anomaly reads: 2( ) ln ( )π− θ π − θ
and only second derivative of effV with respect to ( )π−θ  
is divergent. 

Unfortunately there is a competing process: namely the 
decrease of the density of states of the “down” spins: 

2(0) / 4 .FN mp↓ ↓= π  As a result of this competition cT↑↑  
has reentrant behavior with large maximum (see Fig. 4). 
This theory is confirmed by experiments of Frossati group 
in Leiden [31]: for 3He ( 6%) 3.2 mKcT↑↑ α = = while 

( 0) 2.7 mKcT α = = . As a result we obtain 20% increase of 
critical temperature. In maximum 6.4c cT T↑↑ =  for 3He 
and 510c cT T↑↑ =  for mixtures [32]. 

In 2D films of 3He in a magnetic field we have 
( ) ~ Re 2 Fq q p↑ ↓Π −  and large 2D Kohn’s anomaly 

becomes effective for superconductivity. The maximum is 
broad and very large (see Fig. 5) it stretches from 0.1α =  
till 0.9.α =  In maximum (for 0.6α = ): 

 2
 max

0

1exp 2lnc F
F

T
p r

↑↑ ⎧ ⎫⎛ ⎞⎪ ⎪= ε −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

. (10) 

cT  in maximum is 16 times bigger in exponent then cT  in 
3D 2

 maxc FT e↑↑ −→ ε  for 0ln (1/ ) 1Fp r → . 
The same result could be obtained for 2D electron gas 

in a parallel magnetic field [33]. Magnetic field does not 
change the motion of electrons in plane here. The Meissner 
effect is suppressed. Hence, we have qualitatively the same 
situation as in uncharged (neutral) 3He films (see Fig. 6) 
and reentrant superconductive behavior for cT  in field. For 

~ 15 TH  and ~ 30 KFε  1 ~ 0.5 KcT . 

The two-band Hubbard model with one narrow band 

In two bands the role of spins “up” play electrons of the 
first band while the role of spins “down” – electrons of the 
second band. The connection between the bands is due to 
interband Coulomb interaction 12 1 2U n n . The following 
excitonic mechanism of superconductivity is possible: the 
Cooper pairs are formed in one band due to polarizations 
of the second one [30,34,35]. 

The role of spin polarization α  plays the relative filling 
of the bands 1 2/n n  (see Fig. 7). If we consider the two-
band Hubbard model with one narrow band, then an effec-
tive interaction is mostly governed by heavy-light repul-
sion (see Fig. 8) and 

  max 2
0

14 exp
2

h
c c F

L

n
T T

n f

⎧ ⎫⎛ ⎞ ⎪ ⎪= ≈ = ε −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎪ ⎪⎩ ⎭

 (11) 

where 1 hn n=  for heavy band; 2 Ln n=  for light band; 
12 hLU U=  — “heavy-light” interband Hubbard repulsion. 

T c1

0.48 10
α

Fig. 4. Polarization dependence of cT in 3D case. 

Fig. 5. Polarization dependence of cT  in 2D case. 

0 0.6 1.0
α

c
T↑

↑

Fig. 6. H–T diagram for 2D electron gas in parallel magnetic 
field. 

≈1 0.5KcT

T

15 T

H
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In Born weak-coupling case 

2 2
0 24

h L
hL

m m
f U=

π
  

depends upon interband Hubbard interaction hLU  [30]. In 
strong-coupling case  

2
0 2 2 2

1
ln [1/ ( )]

h

L F

m
f

m p d
=   

[34,35]. Finally in the so-called unitarian limit of screened 
Coulomb interaction 0 1/ 2f →  and *

 max ~ exp ( 2)c FhT ε −  
[25–26], where renormalized Fermi-energy *

Fhε =
2 */ (2 ) ~ (30 50) KFh hp m= −  and enhanced heavy mass 

* ~ 100h em m due to many-body Electron-polaron effect 
[36,37]. As a result we can get 1 ~ 5 KcT  for Fermi-
energies * ~ (30 50) KFhε −  — typical for uranium-based 
HF compounds. Note that electron-polaron effect which 

produces strong heavy mass enhancement in this model is 
connected with non-adiabatic part of the wave-function 
which describes heavy electron dressed in the cloud of 
virtual electron-hole pairs of the light band (see Fig. 9). 

If we collect the polaron exponent we get [36,37]: 

 
* 1

b
bh h

h L

m m
m m

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, (12) 

where 2
02b f=  in 2D and 22b = λ  in 3D. Hence, for 

0 1/2f = (unitarian limit of screened Coulomb interaction) 
1/2;b =  / (1 ) 1b b− =  and * / /h h h Lm m m m= . Correspon-

dingly * 2/ ( / )h L h Lm m m m=
 
and if we start with / ~ 10h Lm m  

in local density approximation (LDA scheme) [38], we can 
finish with * ~ 100h em m  due to many-body electron–
polaron effect and 1 ~ 5 KcT . 

Thus, we get an effective mass of heavy particles and 
superconductive temperatures realistic for uranium-based 
heavy fermion compounds. 

This mechanism can be important in Bi and Tl-based 
HTSC-materials. It can also provide superconductivity in 
superlattices (PbTe–SnTe) and dichalcogenides (CuS2, 
CuSe2) with geometrically separated layers. Note that two 
bands also can belong to one layer. We suggested also that 
this mechanism could be dominant in Sr2RuO4 [13,34,35] 
and in fermionic 6Li in magnetic traps [39]. 

Note that in the case of one heavy and one light band 
with h Lm m>>  and h Ln n>  the critical temperature cT  is 
mostly governed by pairing of heavy electrons via polari-
zation of light electrons (see Fig. 8). However, an inclusion 
of already infinitely small Geilikmann–Moskalenko–Suhl 
term pp p p p pK a a b b+ +

′ ′ ′− −∑  [40–44] which rescatters the 
Cooper pair between the two bands provides the opening 
of SC gaps in both heavy and light band at the same tem-
perature. 

Conclusion and discussion 

On a large variety of models we proved an existence of 
p-wave pairing in purely repulsive fermion systems. We 
demonstrated the possibility to increase cT  till experimen-
tally feasible values ~ 5 K already at low electrons density 
in strongly spin-polarized case or in the two-band situation. 
The systems where triplet p-wave pairing is realized or can 
be expected include superfluid 3He, ultracold Fermi-gasses 

2D
Broad and large

maximum

4
n n1 2/

T c1

Fig. 7. cT  as a function of relative filling in the two band model.

Fig. 8. The leading contribution to the effective interaction effV
for the p-wave pairing of heavy particles via polarization of light
particles. The open circles stand for the vacuum T-matrix ,hLT
which in Born case coincides with interband Hubbard interac-
tion hLU . 

L L

–2

hh

hh

ThL

ThL

p p'

–p –p'

Fig. 9. The lowest order skeleton diagram for EPE in the self-
consistent T-matrix approximation. sub

hLT  stands for the T-matrix 
in substance. 

L

L LL

L

h h h h h h

sub
hLT
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in the regime of p-wave Feshbach resonance [45], heavy-
fermion superconductors such as U1–xThxBe13 and ruthe-
nates Sr2RuO4, organic superconductor α-(BEDT-TTF)2I3 
and layered dichalcogenides CuS2–CuSe2, semimetals and 
semimetallic superlattices InAs–GaSb, PbTe–SnTe. Re-
garding possible high-Tc superconductivity we demon-
strated a simple estimate to get Tc in the range of 100 K of 
the d-wave pairing ( 2 2x yd − ) in the framework of Born 
(weak coupling) approximation to the 2D extended Hub-
bard model close to half-filling. Note that in the strong 
coupling approaches specified by generalized t–J model as 
it was shown by Kagan, Rice [46] (see also Emery, Kivel-
son [47] and Plakida et al. [48,49]) we can also get a rea-
sonable Tc in the range of 100 K for optimally doped high-
Tc materials ( el ~ 0.85n , / ~ (1/ 2 1/ 3)J t − ). In under-
doped high-Tc materials we can expect a phenomenon of 
spin-charge confinement, predicted by Laughlin et al. 
[50,51] and connected with the creation of AFM string 
(spin polaron or composite hole [52,53]) in 3D and 2D 
case. Here there is a strong bosonic motive and we can 
think about superconductive pairing in terms of BCS–BEC 
crossover [54,55] for pairing of two composite holes (two 
AFM strings or spin polarons) in the 2 2x yd − -channel 
[48,49,54,56,57]. 

We analyzed also the normal state of the basic models 
with repulsion at low electron density and find the non-
trivial corrections to Galitskii–Bloom Fermi-gas expansion 
due to the presence of the antibound state [58] in the lattice 
models or the singularity in Landau quasiparticle f-function 
at low density in 2D [59]. These corrections however, do not 
destroy Landau Fermi-liquid picture both in 3D and 2D. 
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