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We show that nanomechanical shuttling of single electrons may enable qualitatively new functionality if spin-

polarized electrons are injected into a nanoelectromechanical single-electron tunneling (NEM-SET) device. This 

is due to the combined effects of spin-dependent electron tunneling and Coulomb blockade of tunneling, which 

are phenomena that occur in certain magnetic NEM-SET devices. Two effects are predicted to occur in such 

structures. The first is a reentrant shuttle instability, by which we mean the sequential appearance, disappearance 

and again the appearance of a shuttle instability as the driving voltage is increased (or the mechanical dissipation 

is diminished). The second effect is an enhanced spin polarization of the nanomechanically assisted current flow. 

PACS: 81.07.Oj Nanoelectromechanical systems (NEMS); 

72.25.–b Spin-polarized transport; 

73.23.Hk Coulomb blockade; single-electron tunneling. 

Keywords: nanoelectromechanical systems, Coulomb blockade, spin-polarized transport, shuttle systems. 

 

Introduction 

Large Coulomb forces, which accompany the tunneling 

of single electrons between nanometer-sized conductors, 

naturally result in significant mechanical deformations of 

single-electron-tunneling (SET) nanodevices leading to an 

efficient coupling between electronic and mechanical de-

grees of freedom. The nanoelectromechanics (NEM) origi-

nating from such a coupling is presently one of the most 

quickly developing directions of nanophysics. Apart from 

a number of fundamentally new phenomena (such as 

spintro-mechanics [1], mechanically assisted macroscopic 

quantum interference [2–5], mechanical probing of Kondo 

ordering [6,7], etc.) this direction also offers a large variety 

of potential applications (such as the realization of highly 

sensitive sensors, mechanically assisted cooling and ther-

moelectric nanodevices [1–14]). One of the prototype 

nanoelectromechanical systems (NEMS) of this type, sug-

gested in [15,16], is the electron “shuttle”. In this NEM-SET 

device electric charge is accumulated on a movable dot as 

the result of the flow of an electrical current. The shuttle 

phenomenon does not involve the electronic spin degree of 

freedom as an active “player” in the NEM. Additional func-

tionality evidently should occur if such a decoupling be-

tween NEM and spin degrees of freedom is removed. 

This situation is indeed realized if a spin-polarized cur-

rent is injected into the shuttle device, which is the case if 

one of the leads (or both) is made of magnetic material. 

The phenomenon of spin-dependent tunneling, originating 

from the spin dependence of the electron density of states 

in ferromagnets, means that accumulation of both electron-

ic charge and electronic spin on the movable “shuttle” will 

be affected, hence potentially modifying qualitatively the 

mechanics of such a current carrying device. 

In this paper we will show that a simple modification of 

the standard shuttle device, achieved by replacing one of 

the non-magnetic metallic leads by a ferromagnetic metal 

qualitatively affects the shuttle operation of the device. 

Two new phenomena will be shown to occur as result of 

the interplay between spin-dependent tunneling and the 

Coulomb blockade of single-electron tunneling. Those are: 

1) a reentrance of the shuttle instability, i.e., the suppres-

sion of the shuttle instability in a certain domain of driving 

voltages and levels of mechanical dissipation, and 2) shut-

tle-induced enhancement of the spin polarization of me-

chanically transported electron currents. 
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Fig 1. (Color online) Schematic figure of the studied nanoelectro-

mechanical single-electron tunneling (NEM-SET) device with 

corresponding energy diagrams for the left (normal metal) source 

electrode, the central movable island (the “quantum dot”) and the 

right (ferromagnetic) drain electrode. The Zeeman splitting of the 

single-electron energy level on the quantum dot, = ,  is 

caused by an external magnetic field B pointing down as shown. 

Dashed lines indicate the equilibrium position of the dot and its 

split energy level in the absence of any bias voltage V. Due to the 

electric field associated with an applied bias voltage the split levels 

move up in energy as the dot is displaced towards the left electrode. 
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Formulation of the problem 

The system we are going to consider is presented in 

Fig. 1. A single-electron tunneling device is formed by two 

metal leads, one of which (the right one) is a ferromagnetic 

metal with electronic states split with respect to spin by an 

internal exchange interaction. The central island (a “quan-

tum dot”), which is responsible for the Coulomb blockade 

of electron tunneling to and from the dot, in our case has 

the ability to oscillate between the two electrodes. On the 

one hand, these oscillations are driven by an electrical 

force, which is due to the electric charge accumulated on 

the dot as a result of the tunneling injection of electrons 

from the leads, and, on the other hand, the oscillations ex-

ponentially affect the probability for the same tunneling 

injection. In Ref. 15 this interplay was shown to result in 

the onset of mechanical vibrations of the dot if the driving 

voltage exceeds a certain critical value set by the mechani-

cal dissipation. For the following discussion it is important 

that there is a finite Zeeman splitting of the electronic level 

on the dot. This can be achieved by applying an external 

magnetic field as indicated in Fig. 1. The spin of the elec-

trons controls the nanomechanics of the device by affect-

ing the charge accumulation on the dot in two ways: firstly 

through the Zeeman splitting if the (single) electron energy 

level on the dot and secondly through the spin dependence 

of the probability for tunneling to the right electrode. To be 

concrete we will suppose that without any driving voltage 

(V = 0) the two split levels on the dot are situated above the 

common chemical potential in the leads, such that at low 

temperatures even the bottom spin-down level is not popu-

lated. Switching on a finite driving voltage induces addi-

tional potentials on the leads ( ):L RV = = /2.L RV V V  As 

a result, only the left electrode can serve as a source of 

electrons that can tunnel onto the dot, while the right elec-

trode serves only as a voltage-independent drain of tunnel-

ing electrons. 

Switching on tunneling opens the possibility to occupy 

both the spin-up and the spin-down electronic levels on the 

dot. The probability P  of occupying the state with spin 

 obeys a constraint 0(P  is the probability to have an un-

occupied dot) since  

 0 =1.P P P  (1) 

Equation (1) tells us that the dot can not be doubly occu-

pied in the deep Coulomb blockade regime. In the limit of 

weak tunneling the kinetics of the charge/spin accumula-

tion on the dot obeys a kinetic equation that can be ex-

pressed in terms of the tunneling rates ,s  where  

 
/= (0)e , = , .x

s s s L R  (2) 

Here the upper sign (+) in the exponent corresponds to the 

subscript =s R  in s  and the lower sign (–) corresponds 

to = .s L  Note that the tunneling rates are exponentially 

sensitive to any displacement x  of the dot from its (zero-

voltage) equilibrium position in the middle of the contact 

(see Fig. 1). Furthermore, 

 0(0) = (2 / ) ,s sD g  (3) 

where 0D  is transparency of the barriers between the dot 

and either lead and sg  is the density of electronic states in 

the left and right leads. In the ferromagnetic right lead Rg  

is spin-dependent as a result of the exchange interaction 

induced Zeeman level splitting, whereas in the left normal-

metal lead =L Lg g  and therefore = = ,LL L
 in-

dependent of spin. 

The kinetic equation for P  can be derived as in Ref. 17. 

Taking into account the constraint (1) only the two quanti-

ties P  and P  are independent variables. Their time de-

velopment is governed by the equation  

 = / ,      = , ,L R

dP
I I e

dt
 (4) 

where the (time-dependent) spin currents from the left lead 

to the dot, ,LI  and from the dot to the right lead, ,RI  

can be calculated as  

 
= { },

= .

L L L L

R R

I e f P f P

I e P
 (5) 

In Eq. (5)  and  denote antiparallel spins and Lf  is 

the Fermi–Dirac function 

 
(

1
= ,

)
1 e

L
L

f
eV

 (6) 
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which gives the equilibrium occupation probability for the 

electronic state that can tunnel elastically into the dot’s 

energy level  (which have kinetic energy ).LeV  

The average charge Q  accumulated on the dot, which 

can be expressed in terms of the probabilities P  as  

 

= ,

= ,Q e P  (7) 

couples to the electric field, which we approximate by the 

ratio /V L  of the driving voltage V  and the distance L  

between the electrodes where the potential drops. The re-

sult is an electric force acting on the vibrating dot in ac-

cordance with the classical Newton’s equation [17] 

 
2 = / .mx m x m x Q V L  (8) 

Here x  is the displacement of the dot and m  is its mass 

while  is the angular oscillation frequency and  the 

damping rate of the uncharged dot. 

The charge and spin carried by the dot can be naturally 

expressed in terms of the quantities ,P  where  

 = .P P P  (9) 

Using Eqs. (4) and (5) it is straightforward to derive two 

equations for P . These can be economically written as  

 = {(1 )L L

dP
f P

dt
  

 ( ) },L Lf P f  (10) 

where =L L Lf f f  and the spin and charge asym-

metry parameters  are defined as  

 
1

= , = / .
2

R L  (11) 

Since the effects we are going to discuss have to do 

with the spin-splitting of the electronic level  on the dot, 

the magnitude  of this splitting, where  

 = ,  (12) 

gives a proper scale for the voltage V  applied to the system. 

By normalizing the electric force to 
2 ,m  which gives the 

scale for the elastic force, we can define a dimensionless 

electric force F  acting on the shuttle and express it as  

 
2

2 2

/
= ,

2

Q V L eV
F P

m
 (13) 

where 

 
2

= .
m L

 (14) 

Finally, the time-dependent electrical charge current 

( , )LI V t  from the left lead to the dot and the charge cur-

rent ( , )RI V t  from the dot to the right lead can be calculat-

ed by solving Eq. (4) for P  [or equivalently Eq. (10) for 

P ] together with Eq. (5) and then sum the “local” spin 

currents = ( , )L LI I V t  and = ( , )R RI I V t  defined by 

Eq. (5) over both spin directions = ,  to get  

 ( , ) = { (1 ) (1 ) ( )},L L L LI V t e f P f P P P   

 ( , ) = { }.R R RI V t e P P  (15) 

The local spin currents ( , )LI V t  and ( , )RI V t  and the 

local charge currents ( , )LI V t  and ( , )RI V t  are not the 

same at every instant of time. However, it is possible to 

show that they oscillate in time with a relative phase shift 

corresponding to half a shuttle oscillation period 

= 2 / .  The time averaged values of these local cur-

rents, defined as  

 ( )
1

( ) = ( , )

t

L R
t

I V I V t dt  (16) 

and  

 ( )
1

( ) = ( , ) ,

t

L R

t

I V I V t dt  (17) 

respectively, are such that on average there is no accumu-

lation of charge or spin on the dot. 

NEM assisted current in the absence of shuttle 

vibrations 

If the displacement of the dot is small compared to the 

tunneling length  one can find the electrical force F  

defined in Eq. (13) by perturbation theory in terms of the 

small parameter / .x  It is important that this force contrib-

utes to the equation of mechanical motion (8) with a term 

proportional to the velocity x . This means that the elec-

tromechanical coupling renormalizes the damping of the 

mechanical vibration in such a way that it is diminished. 

Since the electric force is directly proportional to the driv-

ing voltage there is a certain critical voltage th=V V  for 

which the initial mechanical damping is totally compen-

sated. For larger voltages, th> ,V V  energy is pumped into 

the mechanical subsystem as a result of the to coupling to 

electrons, the source of the energy being the electric power 

( )I V V  supplied by the battery. As a result of the pumping 

the amplitude of any small random displacement of the dot 

is amplified, which corresponds to an instability against the 

formation of pronounced shuttle vibrations [17]. The con-

dition for such an instability to occur is that the net work 

done by the electric force over one vibration period ex-

ceeds the energy lost to the environment through damping 

(mechanical friction). In this section we will consider the 

limit of small voltages, th< ,V V  when mechanical vibra-

tions do not develop and hence the position of the dot is 
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independent of time. However, there is a nanomechanical 

effect on the current even in this limit. This is because the 

equilibrium position of the dot changes with voltage since 

the elastic restoring force of the oscillator is able to bal-

ance the electrostatic force F  due to the accumulated elec-

tric charge on the dot. 

Using the time-independent solution of the equation of 

motion one obtains the shift of the equilibrium dot position 

0x  (provided that 0x  is smaller than the tunneling length 

)  as  

 
2

(0) (0)0

2
= ( ).

2

x eV
P P  (18) 

Here 
(0)P is the time-independent solution of Eq. (4), i.e., 

 (0) 0

0 0

(1 )
= ,

(1 )(1 )

L L

L L

f f
P

f f
 (19) 

where 0 , the asymmetry parameter at the equilibrium 

position, is defined as  

 0 0 0= / .R L  (20) 

One readily finds that the current 0( )I V  through a non-

oscillating NEM-SET device is given by the expression  

 0 0
0 0

(0) ( )
( ) = ( ) 1 .

(0)

L

L

x J V
I V eJ V  (21) 

The current–voltage characteristics in this nonvibrating 

regime is mainly given by the function 0( ),J V  which is 

found to have the form  

0

1
< ,,

1 1/ (0)
( ) = (0)

1
, > .

1 1/ (0) 1/ (0)

L

L

f eV

J V

eV

 (22) 

The result (22) for 0( )J V  allows an interesting obser-

vation to be made, viz. that if tunneling to the ferromagnet 

from the upper level  is significantly suppressed com-

pared with tunneling from the lower level  then the dif-

ferential conductance ( )/dI V dV  becomes negative when 

the voltage V  is increased above / .e  

There is a clear physical explanation in terms of the 

Coulomb blockade phenomenon and spin-dependent tun-

neling for this reduction of the current as the Fermi level of 

the left lead crosses the position of the upper energy level 

on the dot [18,19]. We note that even though the Coulomb 

blockade only allows one electron at a time to reside on the 

dot there might be more than one channel for tunneling 

from the source electrode (left lead) to the dot. Indeed, 

only if the Fermi level of the source is below the upper 

(spin-up) level  on the dot is there a single channel for 

tunneling. This is the channel where spin-down electron 

tunnels to the spin-down (lower) dot energy level . How-

ever, if the Fermi level of the source electrode is higher than 

 then there is an additional channel corresponding to the 

tunneling of spin-up electrons from source to dot. 

Next we would like to exploit the fact that the rate of 

further tunneling of an electron from the dot to the drain 

electrode (right lead) depends on the spin of the tunneling 

electron. Let us assume that tunneling from the upper 

(spin-up) level is suppressed compared with tunneling 

from the lower (spin-down) level because of a difference in 

the spin densities of final states in the ferromagnetic drain 

electrode. It this case we have a situation where the “upper 

channel”, through which spin-up electrons tunnel, is “more 

resistive” than the “lower channel” for spin-down elec-

trons. It follows that if the driving voltage is small enough 

for the Fermi level in the source electrode to be lower than 

the upper dot level, then all electrons flow from source to 

drain through the less resistive “lower channel”. However, 

if the voltage is increased so that the source Fermi level 

becomes higher than the upper dot level, then some elec-

trons will tunnel through the more resistive “upper chan-

nel” (and will have to wait longer on the dot — while 

blocking a second electron to tunnel from the source — 

before it tunnels onwards to the drain). As a result an in-

crease of voltage that makes the Fermi energy in the source 

electrode cross the upper dot level results in a reduction of 

the electrical current through the device. We stress again 

that this happens only when tunneling through the upper 

(spin-up) dot level is discriminated with respect to tunnel-

ing through the lower (spin-down) level. 

Reentrant shuttling of spin-polarized electrons 

In the previous section we found that the current 

through a stationary dot is reduced at voltages when single-

electron tunneling through two spin channels rather than 

only one is allowed, i.e., when tunneling may occur via 

both the spin-split levels  and  on the dot. If the rate 

of mechanical dissipation could be reduced to make those 

voltages large enough to produce a shuttle instability the 

consequences of a drop in the current should be even more 

dramatic. In fact, a reduced current at a given voltage 

translates into less power supplied to the electrons by the 

battery and hence it is possible that the electrons may not 

be able to transfer enough power to the mechanical subsys-

tem to overcome the damping. This would mean that by 

increasing the driving voltage within the shuttling regime 

the shuttle motion could become damped at a certain volt-

age and the nonvibrating regime restored. However, by 

further increasing the voltage the power supplied to the 

mechanical subsystem via the electrons may again be large 

enough to for a shuttle instability to occur. 

Such a reentrance of the shuttling regime as a function of 

increasing voltage can be demonstrated by solving Eqs. (10), 

(15), and (16) for arbitrary voltages and dissipation rates. 

As mentioned above the shuttle instability occurs at a cer-
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tain threshold value of the driving voltage, which depends 

on the rate of mechanical dissipation .  A numerical anal-

ysis of Eqs. (4) [or (10)] and (8) allows us to identify the 

domains (in the voltage-dissipation plane) of nanoelectro-

mechanical stability of the shuttle device where shuttle 

vibrations do not occur and the regions of shuttle instabil-

ity where they do. The corresponding shuttle-instability 

“phase diagram” is shown in Fig. 2, which clearly demon-

strates the reentrant nature of the spin-controlled nano-

electromechanical shuttle instability (see also Ref. 20 

where the phenomenon of reentrant shuttling was predicted 

for unpolarized electrons in the regime of strong electron–

vibron interaction). 

Figure 2 illustrates, as mentioned above, the effect of 

Coulomb blockade of spin-dependent tunneling, which may 

result in a sudden drop of the electrical power supplied to 

the system and a transition from a shuttling regime to a sta-

tionary regime as the driving voltage is increased. To further 

illustrate this effect we have performed a numerical analysis, 

which shows that the shuttle instability develops into pro-

nounced shuttle vibrations with a voltage-dependent ampli-

tude leading to a time dependent current. A set of plots of 

the (charge) current, averaged according to Eq. (16), is 

shown as a function of the driving voltage in Fig. 3. 

Shuttling of spin-polarized electrons 

In Sec. 3 we showed that the value of the driving volt-

age V  controls whether electrons in the source electrode 

can be injected only into the lower spin-split energy level 

on the quantum dot or if injection into the upper level is 

also energetically possible. The driving voltage therefore 

affects the spin polarization of the electrical current that 

flows through the device, which we expect to be reduced 

when the voltage reaches a threshold value that makes the 

Fermi level in the left (source) electrode cross the upper 

spin-split level on the dot. One can easily convince oneself 

that the closer the dot is situated to the left electrode the 

higher voltage is needed to switch on the second (spin-up) 

channel for electron tunneling. This fact makes the whole 

picture sensitive to the amplitude of the shuttle vibrations. 

In general, the onset of shuttle vibrations and their increas-

ing amplitude with increased voltage V  tends to prevent a 

Fig. 2. (Color online) Diagram indicating regions of mechanical 

stability (white) and instability (red/gray) of the NEM-SET device 

shown in Fig. 1. The inverse mechanical dissipation rate 1/  is 

plotted in units of 2/  along the vertical axis and the driving 

voltage in units of 2 /e  along the horizontal axis. The parameters 

used were = ,  = 2 , (0) = 0.07,  (0) = 0.13,  

= 0.05 ,Bk T  and = 0.1 .  The solid and dashed black curves 

are the analytical results for the border lines between stable and 

instable regions given by Eqs. (A.13) and (A.14) of the Appendix. 

As can be seen they closely match the results of the full numeri-

cal calculation described in the text. The lower part of the figure 

shows the current along the horizontal dashed line in the upper 

part and illustrates the variation of the current that is the result of 

the entrance, leaving and reentrance into the unstable domain of 

shuttle vibrations. 
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Fig. 3. (Color online) Current–voltage characteristics for the 

NEM-SET device shown in Fig. 1 calculated for different values 

of the normalized inverse dissipation rate 
2 /( )  using the 

same parameters as in Fig. 2. When the threshold voltage for the 

shuttle instability is reached (solid green curve), approximately 

one (spin-down) electron is on average mechanically transported 

between the source and drain electrodes for each period of the 

shuttle vibrations, so that I ef  where = /2 .f  As the volt-

age is further increased the channel for tunneling of spin-up elec-

trons is eventually opened, which leads to a reduced current as 

the vibrations are damped out (see text). At still higher voltages 

(dotted green curve) the shuttling domain is reentered and the 

current increases again. 
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significant spin polarization of the current. This is because 

the increasing oscillation amplitude that accompanies an 

increasing voltage moves the left turning point of the vi-

brating dot closer to the source electrode and hence de-

creases the probability for spin-up electrons to tunnel into 

the upper level on the dot, as indicated in Fig. 1. 

To illustrate this effect we have in Fig. 4 plotted the 

normalized spin-polarized current ,PI  defined as 

 = ,P

I I
I

I I
 (23) 

where the spin currents I  and I  are averaged according 

to Eq. (17), as a function of driving voltage for different 

values of the mechanical dissipation rate. Indeed, the figure 

shows that for such a low dissipation rate that shuttling oc-

curs, a high degree of spin polarization survives for higher 

voltages. We therefore conclude that mechanical transpor-

tation enhances the spin polarization of the electrical cur-

rent through a magnetic shuttle device. 

In the absence of shuttle vibrations the nanomechanical 

effect on the spin-polarized current can be calculated ana-

lytically with the result  

 

2

0 2

0 2

0 2

1 (1 2 )

.

1 (1 2 )

P

eV

I
eV

 (24) 

Here  is a factor that controls the population of the upper 

level on the dot: 

 =1 2exp ( ) .eV  (25) 

Conclusion 

In this paper we have shown that injection of spin-

polarized electrons into a single-electron shuttle device 

drastically changes the shuttle phenomenon as such. Reen-

trance of the shuttle instability domain in parameter space 

and a mechanically enhanced spin polarization of the cur-

rent are two qualitatively new effects resulting from the 

interplay between the Coulomb blockade of tunneling and 

the spin dependence of tunneling on the one hand and the 

effect of mechanical charge transportation on the other 

hand. Coulomb blockade of single electron tunneling is es-

sential for the reentrance phenomenon and this makes spin-

controlled shuttling sensitive to the possible influence of a 

gate potential. The periodic lifting of the Coulomb blockade 

as the gate voltage is varied should trigger the shuttle me-

chanics and give rise to pronounced shuttle vibrations. This 

effect complements a number of spintronic Coulomb block-

ade phenomena discussed in recent years for nonmechanical 

single-electron tunneling devices [19,21,22]. Further new 

functionalities can be achieved if electronic spin-flips caused 

either by external microwave or magnetic fields will be tak-

en into account. A discussion of such effects is, however, 

outside the scope of the present paper. 
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Appendix 

By a linearization of Eqs. (4) and (8) in the neighbor-

hood of a stationary state the stability of the system can be 

determined by using the well known Routh–Hurwitz stabil-

ity criterion. Substituting the trial solution, 0e ,x  into the 

linearized equations yields the algebraic equation  

 
1 2 3

2 1 3

2

Det = 0,

1

a a a

a a a

v v

 (A.1) 

where 1 0 0= (1 ),La  2 0= ,L La f  3 0= 2 ,a I  

and 2= .v V  Here ,  0 ,L   and  are dimension-

less variables (in units of ), and /2 .V eV  

Computation of the determinant leads to a polynomial 

expression in  of the form  

 
4 3 2

3 2 1 0 = 0,e e e e  (A.2) 

Fig. 4. (Color online) Spin polarization of the current through the 

NEM-SET device shown in Fig. 1 as a function of driving voltage 

and measured by the parameter = ( ) / ( )PI I I I I  calcu-

lated using the same parameters as in Fig. 2. Plots are shown for 

(from left to right) decreasing mechanical dissipation rates 
2 /( ) = 5.0  (black solid line), 10.0 (blue dashed line), and  

30.0 (dot-dashed red line). A vertical green line indicates where 

the mechanical enhancement of the spin polarization starts to 

become important due to the onset of shuttle vibrations. 
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where 

 3 1 1=e a a , (A.3) 

 2
2 01 1= ( ) 1L De a a , (A.4) 

 2
1 0 01 1= ( ) 2L De a a vI , (A.5) 

 
(0) (0)2

0 0 3 3= L D D De va P va P , (A.6) 

and  

 
0 0= (1 )(1 ) .D L Lf f  (A.7) 

The probabilities 
(0)P  and the current at the equilibrium 

position of the quantum dot can be obtained from Eqs. (4) 

and (8). 

Evaluating the roots of a polynomial is tricky unless it is 

of order three or less. To reduce the order of the polynomial 

we assume that all the roots are purely imaginary, in which 

case the variables have stationary oscillating solutions. In 

this case Eq. (A.2) splits into two, one for the real part and 

one for the imaginary part. By combining these one finds a 

criterion for being on the border of stability that reads  

 
2 2
1 3 2 1 3 0 = 0.e e e e e e  (A.8) 

For voltages such that <eV  we use the static ap-

proximation for the probability that the dot is occupied by 

a spin-up electron, 0,P  and 0.Lf  We then get the 

two simplified coupled equations  

,= {(1 ) },L LP P f     2= .x x x VP  (A.9) 

Linearization gives us the following condition for the onset 

of shuttling, which can be numerically calculated: 

22
1 0 21 0 2

2 2
0 0 2 1

( 1) 8
1 1 .

4 ( 1)

L

L

a a a
V

a V a
 (A.10) 

If >eV  we assume that probability for occupation 

of the dot by either spin is approximately the same, 

0P  and that 1.L Lf f  A criterion for reentering 

the shuttling regime can now be derived from the two cou-

pled equations  

,= {(2 ) },L LP P f     
2= ,x x x VP (A.11) 

with the result  

 
2 2

2
0 0 0

( 1)

4 ( )L

b b

V
  

 

2
0 20 0

2 2

16 ( )
1 1 ,

( 1)

L
V

b
 (A.12) 

where 0 0= (2 )Lb  and which has to be evaluated 

numerically because of the implicit dependence on voltage. 

In the limit 1  critical conditions simplifies and can 

be evaluated analytically Eqs. (A.10) and (A.12) simplify 

to, respectively, 

2 2 22 (1 (0)){ (0) (1 (0)) } 2

2 (0) (0) ( )

L

L f V eV
 (A.13) 

and  

 
2 4 ( (0) (0))

16 (0)( (0) (0))L

  

     2 2 2 2
{4 (0) [4 ( (0) (0))] } ,L

eV
 (A.14) 

which have been plotted in Fig. 2. 

 

1. R.I. Shekhter, A. Pulkin, and M. Jonson, Phys. Rev. B 86, 

100404(R) (2012).  

2. R.I. Shekhter, L.Y. Gorelik, L.I. Glazman, and M. Jonson, 

Phys. Rev. Lett. 97, 156801 (2006).  

3. L.Y. Gorelik, A. Isacsson, Y.M. Galperin, R.I. Shekhter, and 

M. Jonson, Nature 411, 454 (2001).  

4. A. Isacsson, L.Y. Gorelik, R.I. Shekhter, Y.M. Galperin, and 

M. Jonson, Phys. Rev. Lett. 89, 277002 (2002).  

5. L.Y. Gorelik, R.I. Shekhter, V.M. Vinokur, D.E. Feldman, 

V.I. Kozub, and M. Jonson, Phys. Rev. Lett. 91, 088301 

(2003).  

6. M.N. Kiselev, K.A. Kikoin, L.Y. Gorelik, and R.I. Shekhter, 

Phys. Rev. Lett. 110, 066804 (2013).  

7. M.N. Kiselev, K.A. Kikoin, R.I. Shekhter, and V.M. 

Vinokur, Phys. Rev. B 74, 233403 (2006).  

8. Rui-Qiang Wang and Liang-Bin Hu, Phys. Lett. A 374, 4156 

(2010).  

9. F. Pistolesi and Rosario Fazio, Phys. Rev. Lett. 94, 036806 

(2005).  

10. Kang-Hun Ahn, Hee Chul Park, Jan Wiersig, and Jongbae 

Hong, Phys. Rev. Lett. 97, 216804 (2006).  

11. Chulki Kim, Jonghoo Park, and Robert H. Blick, Phys. Rev. 

Lett. 105, 067204 (2010).  

12. D. Fedorets, L.Y. Gorelik, R.I. Shekhter, and M. Jonson, 

Phys. Rev. Lett. 95, 057203 (2005).  

13. Gustav Sonne, Milton E. Peña-Aza, Leonid Y. Gorelik, 

Robert I. Shekhter, and Mats Jonson, Phys. Rev. Lett. 104, 

226802 (2010).  

14. Rui-Qiang Wang, Baigeng Wang, and D.Y. Xing, Phys. Rev. 

Lett. 100, 117206 (2010).  

15. L.Y. Gorelik, A. Isacsson, M.V. Voinova, B. Kasemo, R.I. 

Shekhter, and M. Jonson, Phys. Rev. Lett. 80, 4526 (1998).  

16. L.M. Jonsson, L.Y. Gorelik, R.I. Shekhter, and M. Jonson, 

Nano Lett. 5, 1165 (2005).  

17. R.I. Shekhter, L.Y. Gorelik, I.V. Krive, M.N. Kiselev, A.V. 

Parafilo, and M. Jonson, Nanoelectromechanical Systems 1, 

1 (2013).  



Hee Chul Park, Anatoli M. Kadigrobov, Robert I. Shekhter, and M. Jonson 

1380 Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 12 

18. D. Radi, A.M. Kadigrobov, L.Y. Gorelik, R.I. Shekhter, and 

M. Jonson, Phys. Rev. B 82, 125311 (2010).  

19. D. Radi, A. Nordenfelt, A.M. Kadigrobov, R.I. Shekhter, M. 

Jonson, and L.Y. Gorelik, Phys. Rev. Lett. 107, 236802 (2011). 

20. G.A. Skorobagat’ko, I.V. Krive, and R.I. Shekhter, Fiz. Nizk. 

Temp. 35, 1221 (2009) [Low Temp. Phys. 35, 949 (2009)]; I.V. 

Krive, A. Paleuski, R.I. Shekhter, and M. Jonson, Fiz. Nizk. 

Temp. 36, 155 (2010) [Low Temp. Phys. 36, 119 (2010)]. 

21. L.Y. Gorelik, S.I. Kulinich, R.I. Shekhter, M. Jonson, and 

V.M. Vinokur, Phys. Rev. Lett. 95, 116806 (2005).  

22. L.Y. Gorelik, S.I. Kulinich, R.I. Shekhter, M. Jonson, and 

V.M. Vinokur, Appl. Phys. Lett. 90, 192105 (2007). 

 


