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We have investigated Andreev reflection at interfaces between superconducting indium (Tc = 3.4 K) and sev-
eral normal conducting nonmagnetic metals (palladium, platinum, and silver) down to T = 0.1 K as well as zinc 
(Tc = 0.87 K) in its normal state at T = 2.5 K. We analyzed the point-contact spectra with the modified one-
dimensional BTK theory valid for ballistic transport. It includes Dynes’ quasiparticle lifetime as fitting parameter Γ 
in addition to superconducting energy gap 2Δ and strength Z of the interface barrier. For contact areas from less than 
1 nm2 to 10000 nm2 the BTK Z-parameter was close to 0.5, corresponding to transmission coefficients of about 
80%, independent of the normal metal. The very small variation of Z indicates that the interfaces have a negligible 
dielectric tunneling barrier. Also Fermi surface mismatch does not account for the observed Z. The extracted value 
Z ≈ 0.5 can be explained by assuming that practically all of our point contacts are in the diffusive regime. 

PACS: 85.30.Hi Surface barrier, boundary, and point contact devices; 
73.40.–c Electronic transport in interface structures; 
74.45.+c Proximity effects; Andreev reflection; SN and SNS junctions. 

Keywords: point contacts, metal interfaces, normal reflection, Andreev reflection. 
 

1. Introduction 

An interface between two conductors reduces charge 
(electron or hole) transport, transmitting a fraction τ  of the 
incident current and reflecting the remainder 1 .− τ  Normal 
reflection plays a central role in Andreev-reflection spec-
troscopy because also the Andreev-reflected holes can be 
normal reflected. The Blonder–Tinkham–Klapwijk (BTK) 
theory for ballistic transport [1] assumes that normal reflec-
tion affects them both in the same way. This enables to 
measure the transmission coefficient of normal-
superconductor interfaces. Ballistic transport requires that 
the electron mean free path is much larger than the contact 
diameter d. Therefore one can reach the ballistic regime by 
making the contacts small enough. When the contacts are 
made larger, they become diffusive. In that case the elastic 
electron mean free path 0l  is much smaller than the contact 
diameter while the inelastic one inl  is so large that the diffu-
sive length in 0= /3l lΛ  still exceeds the contact diameter. 

Blonder and Tinkham [2] explained the Andreev reflec-
tion double-minimum structure of ballistic contacts — an 
enhanced resistance around zero bias inside the energy gap 
— with a combination of tunnelling through a dielectric 
layer and the mismatch of Fermi velocities. By approxi-
mating the real dielectric barrier of width w  and height Φ  
with a δ -function of strength 1 2= /b F FZ w v vΦ  and 
assuming free electrons with 1 2= /F Fr v v  being the ratio 
of Fermi velocities 1Fv  and 2Fv  of the two electrodes, the 

transmission coefficient 2= 1/ (1 )Zτ +  can be obtained 
from [2]  

 2 2 2= (1 ) /(4 ).bZ Z r r+ −  (1) 

Thus one could directly measure Fermi-velocity ratios 
once the contribution bZ  of the dielectric barrier is known. 

In a typical Andreev-reflection experiment a dielectric 
oxide [3] or water/ice layer [4] has to be expected when the 
two electrodes and their contact are not prepared at ultra-
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high vacuum. And a junction between metals with different 
Fermi surfaces causes normal reflection since the electron 
wave functions have to be adjusted across the interface. 
Even a junction between two identical metals disrupts the 
crystal lattice and should lead to some amount of normal 
reflection. However, those effects are difficult to quantify. 

Further complications arose when Steglich et al. [5] 
discovered heavy-fermion superconductors where the 
“heavy” conduction electrons with an extremely small 
Fermi velocity form the Cooper pairs. The first point-
contact study of such compounds by U. Poppe [6] and 
Steglich et al. [7] focussed on Giaever-type tunneling to 
measure the density of states of the new superconductors 
and the Josephson effect to probe the symmetry of the 
heavy-fermion order parameter, without considering An-
dreev reflection. E.W. Fenton [8] predicted a huge normal 
reflection coefficient, corresponding to 1Z , for inter-
faces between a conventional and a heavy-fermion metal 
because of Fermi velocity mismatch. This idea got partial 
support by a large background residual resistance of 
heavy-fermion contacts where the cross-sectional area 
could be determined independently [9–11]. However, the 
expected tunneling-like Andreev reflection anomalies have 
not been found. 

Deutscher and Nozières [12] explained the weak nor-
mal reflection observed in Andreev-reflection experi-
ments with heavy-fermion compounds by noting that the 
bare electrons and holes cross the interface, and not the 
heavy particles. This suggests that it is not the mismatch 
of Fermi velocities but that of the Fermi wave numbers 
that matters. Equation (1) remains valid with r  replaced 
by the ratio of Fermi wave numbers 1Fk  and 2Fk  of the 
electrodes. For interfaces between heavy-fermion com-
pounds and conventional metals this ratio is of order uni-
ty, and therefore the Z-parameter should be rather small. 
A number of point-contact Andreev reflection experi-
ments on heavy-fermion compounds, for example [13–
16], support this interpretation. Because heavy-fermion 
metals often have an intrinsically short electron mean free 
path, it is possible that contacts with them are not ballis-
tic but in the diffusive limit [11,17,18]. 

Also the proximity effect at superconducting — normal 
metal thin film layered structures depends strongly on the 
transparency of the interfaces [19,20]. These experiments 
reveal that 0.5τ  (corresponding to 1)Z  for contacts 
between simple metals, considerably less than the expected 

1τ ≈  ( 0)Z ≈  in free-electron approximation. The thin 
films are deposited in ultra-high vacuum, which excludes a 
dielectric interface barrier and leaves Fermi surface mis-
match or a lattice discontinuity to explain the strong nor-
mal reflection. 

One can also measure directly the current perpendicular 
to plane (CPP) resistance of an interface with a well-
defined geometry and large cross-sectional areas of order 
1 μm2 [21,22] and compare it with electronic-structure 

calculations [23,24]. The CPP resistance should contain 
information about normal reflection, but it is difficult to 
extract because of the lacking knowledge of the resistance 
without normal reflection. 

Measuring electron spin polarization using Andreev-
reflection spectroscopy [25] is another research topic that 
relies heavily on normal reflection and the ballistic nature 
of the contacts. According to the generally accepted view 
[26,27], the true spin polarization is obtained at highly 
transparent interfaces when 0Z →  while the measured 
polarization drops with increasing normal reflection. This 
strong Z-dependence of the polarisation does not match the 
results of the Tedrow–Meservey tunneling experiments 
[28] performed in the opposite 1Z  limit, possibly indi-
cating that the interface transparency affects the measured 
polarization in a complicated way [29,30]. 

So far we have discussed normal and Andreev reflec-
tion in a one-dimensional model. Both become more 
complicated in three dimensions as shown schematically 
in Fig. 1. Since the momentum component parallel to the 
contact plane is assumed to be conserved but not the per-
pendicular one, only particles with angle of incidence 

2 1= arcsin( / )c F Fk kΘ ≤ Θ  can be transmitted, all others 
are reflected [31,32]. 

In the one-dimensional BTK model, where total reflec-
tion does not occur, Z  is often treated as a simple fit pa-
rameter without further consideration. We believe that us-

Fig. 1. (Color online) Schematics of a point contact between two 
different metals in momentum space with 1 2> ,F Fk k  see 
[31,32]. The vertical line symbolizes the interface. At low tem-
peratures and no applied bias voltage only electrons near the 
Fermi surfaces, indicated by the two circles, take part in transport 
processes. Flow from left to right requires > 0zk  for electrons of 
the left-hand sphere. When the size of the Fermi surfaces differs 
like in the figure, only electrons in the highlighted region can 
travel through the contact and find states in the highlighted region 
of the smaller right-hand sphere. The others are normal reflected. 
In opposite direction, normal reflection does not occur since all 
electrons from states of the left-hand sphere with negative zk
find states on the left-hand side within an angle cΘ  around the 
negative zk  axis. The critical angle is 2 1= arcsin( / )c F Fk kΘ  to 
satisfy conservation of parallel momentum pk . 
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ing Andreev-reflection spectroscopy to determine material 
properties like the spin polarization or the symmetry of the 
superconducting order parameter requires understanding 
normal reflection because it is essential for electrical trans-
port across an interface. We show here for contacts be-
tween superconducting indium (In) and several non-
magnetic normal-conducting metals that in most cases the 
Z-parameter is probably neither related to a dielectric bar-
rier nor to Fermi surface mismatch. Assuming that the con-
tacts down to atomic size are in the diffusive regime would 
naturally explain our results. 

2. Experiments and results 

Point-contact experiments with superconducting indium 
(In) have a long history — junctions between In and normal 
metals have been investigated by Chien and Farrel [33] even 
before the BTK theory became established. Our contacts 
were fabricated using the shear (crossed wire) method by 
gently touching one sample wire with the other one as de-
scribed by J.I. Pankove [34] and more recently by Chubov 
et al. [35]. The In wires had 1.5 mm diameter to provide 
extra mechanical rigidity as much thinner wires would bend 
too easily when the contacts are made. The silver (Ag), pal-
ladium (Pd), platinum (Pt), and zinc (Zn) wires had 0.25 mm 
diameter. The contacts were measured below the critical 
temperature = 3.4cT K of In down to 0.1 K in the vacuum 
region of a dilution refrigerator. A dc current I  with a small 
superposed ac component dI  is injected into the contact and 
the voltage drop V dV+  across the contact measured to 
obtain the ( )I V  characteristics as well as the differential 
resistance spectrum / ( ).dV dI V  

Point contacts with In were more difficult to fabricate 
than those with aluminium (Al) [36]. Very often, when 
we tried to set the resistance, the contact either opened 
with a vacuum gap between the electrodes or closed with 
an extremely small resistance of order 1 mΩ which is 
unsuitable for spectroscopy. We attribute this behavior to 
the softness of In. 

We classify the spectra as follows: 81% of the contacts 
had the typical Andreev reflection double-minimum ano-
maly and were further analyzed. 5% of the contacts had 
additional anomalies, like a dip at zero bias, that we tend to 
attribute to proximity-induced superconductivity in the 
normal metal. The remaining 14% of the contacts showed 
spectra as in Fig. 2 with excessive side peaks or with ano-
malies that we do not really understand and which we do 
not consider further. Table 1 lists the details for the inves-
tigated normal conductors. 

At low temperatures the contacts with Zn had typical 
Josephson-type characteristics with multiple Andreev ref-
lection as presented in Fig. 3. The temperature has to be 
raised to 2.5 K, well above the critical temperature Tc = 
= 0.87 K of Zn to suppress the Josephson-type and proxim-
ity-like anomalies in most junctions. Although this proce-

dure strongly reduces the magnitude of the Andreev-
reflection signal, the Z-parameter can still be extracted. 

The chosen spectra were analyzed using a modified 
BTK theory that includes Dynes’ lifetime parameter Γ 
[37], so that in total the model contains three adjustable 
parameters. The normal resistance was defined as the diffe-
rential resistance at large bias voltages. Side peaks at finite 
bias voltage, for example due to the self-magnetic field, 
were usually easy to recognize and did therefore not affect 
the analysis with respect to the Z-parameter. 

Figures 4, 5, 6, and 7 show selected spectra of super-
conducting In in contact with Ag, Pd, Pt, and Zn over the 
accessed resistance range together with a fit using the mod-

Fig. 2. (Color online) Differential resistance spectra /dV dI  versus
bias voltage V  of contacts with In. Normal metal counter electrode
and temperature are indicated: an Andreev-reflection double-
minimum structure. The two pairs of sharp side peaks make the
analysis difficult (a); one pair of side peaks and is slightly struc-
tured around zero bias (b); no side peaks but a minimum at zero
bias which appears to consist of two separate minima (c). The zero-
bias minima in (b) and (c) could result from the proximity effect,
while the side peaks in (a) and (b) stem from the self-magnetic field
exceeding a critical value in the contact region. 
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Table 1. Distribution of contact type: “Andreev” denotes con-
tacts that could be analyzed, “proximity-like” contacts look like 
those where superconductivity has been induced in the normal 
metal, and “undefined” are all others which can not be clearly 
identified 

Normal 
metal 

Total 
contacts 

Andreev Proximity-
like 

Unde-
fined 

Ag 83 71 2 10 
Pd 84 59 8 17 
Pt 26 26 0 0 

Zn (at 2.5 K) 44 37 2 5 
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ified BTK model. Note that this is a one-dimensional mod-
el valid for ballistic transport. Table 2 summarizes the ex-
tracted fit parameters. 

Figures 8, 9, and 10 show the derived parameters 
02 = 2 ( 0)TΔ Δ → , Γ, and Z as function of normal resis-

tance R  for contacts between superconducting In and 
normal conducting Ag, Pd, Pt, and Zn, respectively. 
The energy gap 2Δ0 ≈ 1.2 meV is roughly constant from 
~ 0.1 Ω up to ~ 10 kΩ. Most contacts have a Γ that varies 

between 10 μeV and 100 μeV without a clear tendency. 
The lifetime parameter Γ grows slightly with increasing 
resistance only for the contacts with Ag, independently of 
the temperature. The Z-parameter stays constant at 0.5 
from 0.1 Ω up to several 1 kΩ and does not vary from one 
normal conductor to another one. Larger Z-values appear 
for In–Ag junctions in the 10 kΩ range and for the In–Zn 
contacts above ~ 100 Ω. 

3. Discussion 

The BTK parameters of our contacts with supercon-
ducting In correspond well with those of superconducting 
Al [36]. Unlike 02 ( )RΔ  of Al, that increases with R, the In 
contacts have a rather constant 2Δ0 ≈ 1.2 meV. A syste-
matic increase of Γ with R  like for the Al contacts has 
only been found for In– Ag contacts, but to a lesser degree. 

Fig. 3. (Color online) Differential resistance spectra /dV dI  ver-
sus bias voltage V  of an In–Zn junction at the indicated tempera-
tures. At T = 0.1 K the Josephson-type anomaly at zero bias as
well as multiple Andreev reflection within the superconducting
gap are clearly visible. At T = 1.5 K the little dip at zero bias
could indicate proximity-induced superconductivity in Zn. It is
completely suppressed at T = 2.5 K. The spectra of this contact
show a side peak (arrow), which moves slightly with temperature
and is possibly caused by the self-magnetic field. The inset dis-
plays the details of the differential resistance around zero bias
with emphasis on the spectra at 1.5 and 2.5 K, respectively. 
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Fig. 4. (Color online) Selected differential resistance spectra 
/dV dI  versus bias voltage V  of In–Ag contacts at T = 0.7 K 

(thin lines). The underlying grey curves are fits with the modified 
BTK model [37]. Fit parameters are in Table 2. 
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Table 2. Normal contact resistance, measurement temperature, and BTK parameters of the spectra shown in Figures 4, 5, 6, and 7. 

Metal  R, Ω T, K 2Δ0, meV Γ, meV Z 
 6.9 0.7 1.18 0.025 0.420 

Ag 86.0 0.7 1.14 0.030 0.445 
 2071 0.7 1.17 0.063 0.535 
 0.92 0.40 1.14 0.020 0.505 

Pd 20.0 0.13 1.20 0.025 0.550 
 1950 0.1 1.30 0.060 0.580 
 0.15 0.5 1.14 0.110 0.540 

Pt 1.00 0.3 1.17 0.145 0.545 
 4.95 0.1 1.19 0.060 0.530 
 10.16 2.5 1.30 0.045 0.485 

Zn 32.4 2.5 1.22 0.030 0.495 
 275 2.5 1.23 0.040 0.555 
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For contacts with the other normal-conducting metals Γ  
ranges from 10 μeV to 100 μeV. However, most notable is 
Z ≈ 0.5 over up to five orders of magnitude in normal state 
resistance R  like for superconducting Al [36]. Point con-
tacts with superconducting Nb, measured at T = 4.2 K, 
have slightly larger average Z but with a wider variation 
[38]. In the discussion we will focus on the seemingly uni-
versal value of Z. 

Contact diameter. We estimate the contact diameter d  
with the ballistic Sharvin resistance 2= 8 /( )K FR R dk  
where 2= / .KR h e  In free-electron approximation the used 
metals have Fermi wave numbers Fk ≈ 14 nm–1 [39]. 
Then a 1 Ω contact has a diameter of d ≈ 32 nm, assum-
ing circular symmetry, or ~ 830 nm2 cross-sectional area. 
Thus our study covers contact areas from 10000 nm2 to 

Fig. 5. (Color online) Selected differential resistance spectra
/dV dI  versus bias voltage V  of In–Pd contacts at low tempera-

tures (thin lines). The underlying grey curves are fits with the
modified BTK model [37]. Temperatures and fit parameters are
in Table 2. 

1.0

0.8

20

2000

1500

(a)

(b)

(c)

In–Pd

–4 –3 –2 –1 0 1 2 3 4

V, mV

d
V

d
I

/
,

�

0.6

15

10

Fig. 6. (Color online) Selected differential resistance spectra
/dV dI  versus bias voltage V  of In–Pt contacts at low tempera-

tures (thin lines). The underlying grey curves are fits with the
modified BTK model [37]. Temperatures and fit parameters are
in Table 2. 
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Fig. 7. (Color online) Selected differential resistance spectra 
/dV dI  versus bias voltage V  of In–Zn contacts at T = 2.5 K 

(thin lines). The underlying grey curves are fits with the modified 
BTK model [37]. Fit parameters are in Table 2. 
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Fig. 8. (Color online) Superconducting energy gap 2Δ0 = 
= 2Δ (T→0) of In extracted from the point-contact spectra using 
the modified BTK theory [37] versus normal state resistance R. 
Different symbols mark separate measurement series. For In–Ag 
contacts we have two measurement series at T = 0.7 K (open 
symbols) and one at T = 0.1 K. All In–Zn contacts were measured 
at T = 2.5 K. The In–Pd and the In–Pt contacts were measured at 
low temperature down to T = 0.1 K. The solid lines are 2Δ0 = 
= 1.20 meV as a guide to the eye. 
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less than 1 nm2. According to the residual normal-state re-
sistivity of the bulk metals we estimate elastic mean free 
paths of 0l  10 nm. Therefore contacts with normal resis-
tance R >> 1 Ω should be ballistic, justifying our use of the 
BTK model. 

Superconducting energy gap. The energy gap 2Δ0 ≈ 
≈ 1.2 meV is almost constant from around 0.1 Ω up to 
about 10 Ω. The ratio 02 / B ck TΔ ≈  4.05 is larger than the 
BCS value 3.52 and the tunnelling-derived bulk value of 
3.58 [40]. A slightly enhanced energy gap has been found 
earlier for In break junctions [41]. These deviations could be 
caused by the pressure or lattice distortion at the contact. 

Lifetime parameter. The lifetime parameter Γ was orig-
inally introduced by Dynes et al. [42] to describe the en-
hanced pair breaking in superconducting lead alloy films. 
A point contact could cause pair breaking since it disturbs 
locally the crystal lattice symmetry. As an alternative ex-
planation, Raychaudhuri et al. [43] have suggested that an 
inhomogeneous superconducting gap in the contact region 
could also lead to a finite Γ-value. The order parameter can 
be reduced at the interface, and Cooper pairs can leak into 
the normal metal. This could also explain the zero-bias dip 
in the spectra of In–Zn junctions well above the critical 
temperature of Zn as shown in Fig. 3. 

Dielectric barrier. Metal surfaces usually oxidize when 
they are exposed to air. Because our setup does not allow 
transferring the samples to the refrigerator under ultra-high 
vacuum conditions, the sample surfaces are very likely oxi-
dized. For example, a typical metal oxide Al2O3 on bulk 
Al has a thickness of w ≈ 1 nm and a potential height of 
Φ ≈ 2 eV [44]. Assuming a Fermi velocity vF = 1500 km/s 

[39] we obtain Z = Φw/ vF ≈ 2, varying from 1 to more than 
10. The Z ≈ 0.5 observed in our experiments corresponds 
to a significantly weaker tunnel barrier. We have found 
considerably larger Z-values occasionally. 

Only when the contacts are very small, the intrinsic 
cleaning process of the shear method, when the two sample 
wires slide along each other before the contact forms, 
might fail and preserve a nearly undisturbed dielectric 
layer of the atomic-size contacts. The Z-value increases in 
the kΩ-range towards the transition to vacuum tunneling. 
Such high-resistance contacts consist of a few conduction 
channels, each with its own transmission coefficient. For 
the Zn contacts the deviations appear already at 100 Ω, 
possibly indicating that ZnO is more difficult to remove or 
to damage than the other metal oxides. Or it could be due 
to ZnO being a semiconductor instead of an insulator [45]. 

The argument against a tunnelling barrier is the inde-
pendence of the Z-parameter from contact size and normal 
metal electrode. In addition, reflection at a dielectric bar-
rier should lead to a strong variation of Z, depending on 
how a specific contact is made, because the transmission 
probability depends exponentially on the barrier width and 
height [3]. Therefore we would have expected Z not to 
converge to a single value, but to vary from almost zero, 
the lower bound defined by Fermi surface mismatch ac-
cording to Eq. (1), to Z >> 10 with a thick and nearly un-
disturbed oxide layer. 

Fermi surface mismatch. Electrons as well as Andreev-
reflected holes cross a dielectric tunneling barrier with a 
certain probability, while the rest are normal reflected. 

Fig. 9. (Color online) Dynes lifetime parameter Γ of In in contact
with the indicated normal metals extracted from the point-contact
spectra using the modified BTK theory [37] versus normal state
resistance R. Different symbols mark separate measurement se-
ries. For In–Ag contacts we have two measurement series at T =
0.1 K (open symbols) and one at T = 0.1 K. All In–Zn contacts
were measured at T = 2.5 K. The In–Pd and the In–Pt contacts
were measured at low temperature down to T = 0.1 K. 
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Fig. 10. (Color online) Z-parameter of normal reflection of con-
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However, normal reflection due to Fermi surface mismatch 
is different. This becomes obvious in the three-dimensional 
model: using the notation of Fig. 1, electrons with the di-
rection of incidence 2 1> = arcsin( / )c F Fk kΘ Θ  can not 
cross the interface [31,32]. The reflected electrons can not 
take part in Andreev reflection and, thus, produce no holes 
to be normal reflected. Since only electrons that have been 
transmitted can be Andreev-reflected, the retro-reflected 
holes have already the right properties to be transmitted 
back through the interface. Fermi surface mismatch should 
therefore be excluded from the BTK model. The electrons 
that are (partially) transmitted through a possible dielectric 
barrier take part in Andreev reflection, have their wave 
functions matched across the interface, and are treated as 
described by the BTK model. 

This isotropic case might approximate contacts between 
metals with nearly spherical Fermi surface, like potassium 
(K) or Ag, but it should fail for the transition metals, like 
Nb or tantalum (Ta). Their Fermi surfaces, that determine 
the transport processes, can consist of multiple sheets or 
isolated pockets [46]. Therefore one should expect a pro-
nounced difference with respect to Andreev and normal 
reflection when nearly free-electron metals, both normal 
and superconducting, are compared to the transition met-
als. This has not been found: for example the shape of the 
Andreev reflection spectra of contacts with Nb looks very 
similar to that of spectra with Al. 

A practical argument against Fermi surface mismatch in 
our point contacts is, like discussed above with respect to a 
dielectric barrier, the small variation of the Z-parameter. 
Each time we make a new contact, the orientation of the 
crystallites that form it also changes, and the Z-parameter 
should change accordingly. The same should happen when 
the normal conductor is replaced. This is not observed. 

Diffusive limit. Fig. 11 shows schematically a diffusive 
contact between two metal electrodes. The size of the link 
L  between the electrodes corresponds to the point-contact 
diameter d. The contact is diffusive when this length is 
much larger than the elastic electron mean path but shorter 
than the diffusion length 0 .l L ≤ Λ  Under these condi-
tions electrons flowing through the constriction suffer 
many elastic scattering processes, loosing the directional 
information of their momentum, but keep their energy at 
zero bias voltage or gain the excess energy eV when a bias 
voltage is applied. This is valid even if the electrodes have 
a much larger electron mean free path or superconducting 
coherence length. 

Naidyuk et al. [47] have already noticed that a Z-
parameter between 0.4 and 0.5 is often found for super-
conducting point contacts, including those with heavy-
fermion and high-temperature superconductors. Naidyuk 
and Yanson [48] have suggested that the contacts could be 
in the diffusive limit as described by Mazin et al. [49] who 
showed that the spectra of diffusive contacts without an 
interface barrier are almost identical to those of ballistic 

contacts with a finite Z-parameter close to 0.55. Artemen-
ko et al. [50] had derived this result earlier, and it is also 
mentioned in the seminal paper by Blonder et al. [1]. Note 
that typical contacts used for Andreev-reflection spectros-
copy usually have a resistance of less than 100 Ω and, thus, 
a diameter of more than a few nm. Such contacts could 
easily be in the diffusive regime. 

According to our earlier results on In break junctions 
[51] with an elastic mean free path of 25 nm in the contact 
region, our contacts with normal resistance below 1 Ω are 
probably in the diffusive regime. When the contacts are 
made smaller, they should become ballistic. However, we 
can not notice any change of contact properties that would 
indicate a transition between the two transport regimes. 
Therefore, in our earlier paper on contacts with supercon-
ducting Al [36] we have implicitly assumed that large re-
sistance contacts would be ballistic, and, without noticing a 
changing behavior, that they would stay ballistic when the 
contact resistance is reduced. Maybe the converse argu-
ment is more appropriate. 

4. Conclusion 

Understanding the role of normal reflection is an espe-
cially important topic for applying Andreev-reflection 
spectroscopy to investigate unconventional superconduc-
tors or the local spin polarization of ferromagnets. We 
have found that the BTK Z-parameter of interfaces with 
superconducting In does neither depend sensitively on the 
size of the contacts nor on the normal-conducting counter 
electrode. This agrees well with our earlier data for inter-
faces with superconducting Al. The tiny variation of Z over 
a wide range of contact areas has lead us to conclude that a 
dielectric tunneling barrier as well as Fermi surface mis-

Fig. 11. (Color online) Schematics of a diffusive point contact 
between two different metals. The contact (hatched area) has a 
spatial extension 0.L l  Its elastic electron mean free path 0l  is 
not necessarily the same as in the bulk electrodes. 

L

Metal 1Metal 2
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match do not contribute significantly. One explanation for 
this behavior could be that all of our contacts are in the 
diffusive limit. Our results question the use of one-
dimensional ballistic models in point-contact Andreev-ref-
lection spectroscopy and call for an investigation of the 
effects of dimensionality and transport regime. 
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