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Polaronic effects on the Josephson current through a vibrating quantum dot are considered. In the regime of 

strong electron–vibron interactions they lead to a power-law suppression of the critical current. This is mani-

fested in an anomalous temperature dependence of the critical current at temperatures of the order of the polaro-

nic energy shift. 

PACS: 74.45.+c Proximity effects; Andreev effect; SN and SNS junctions; 

85.85.+j Micro- and nano-electromechanical systems (MEMS/NEMS) and devices; 

71.38.–k Polarons and electron–phonon interactions; 

74.78.Na Mesoscopic and nanoscale systems. 
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1. Introduction 

Vibrational effects strongly influence electron transport 

in molecular transistors (see, e.g., the Rev. 1). As a rule, 

strong electron–vibron interactions in quantum dots (QD) 

suppress the electrical current at low temperatures and 

small bias voltages. This phenomenon is known as the 

Franck–Condon blockade [2]. It is manifested in a step-like 

dependence of the current on bias voltage (signalling the 

successive opening of additional inelastic channels for 

electron transport) and in an anomalous temperature de-

pendence of the conductance caused by the appearance of 

an additional low-energy scale (the vibron energy 0 )  of 

importance for electron transport. Recently these theoreti-

cal predictions (see, e.g., the Rev. 3) were observed in 

electron tunneling through suspended single-wall carbon 

nanotubes [4] and in carbon nanopeapod-based molecular 

transistors [5]. 

Another effect of electron–vibron interactions in quan-

tum dots is single–electron ―shuttling‖ [6] (see also the 

Rev. 7). Shuttling occurs when electron tunneling ampli-

tudes are sensitive to the displacement of a quantum dot 

located in the gap between source- and drain electrodes. 

Electron shuttling is a nonequilibrium phenomenon, which 

strongly enhances the electrical current at large bias vol-

tages, 0.eV  Therefore, depending on the physical 

situation the electromechanical coupling in quantum dots 

can in principle either suppress (polaronic effect) or en-

hance (shuttling effect) the electrical current. 

For more than a decade single-wall carbon nanotubes 

(SWNTs) have been used as normal elements (quantum 

dots) in Josephson junctions (see, e.g., Refs. 8 and 9). Al-

though suspended nanotubes were utilized as weak links in 

superconducting devices [10], the influence of vibrational 

effects on supercurrent so far was not observe in experiment 

[11]. The interplay of proximity-induced superconductivity 

and mechanical vibrations in nanotube-based SNS junctions 

has been investigated in several theoretical papers [13–16] 

(see also the brief Rev. 17). The influence of vibrations on a 

nonresonant Josephson current through a single-level quan-

tum dot was first considered in Ref. 13, where it was shown 

that in the regime of ―hard‖ vibrons 0 0  0(  is the 



A.V. Parafilo, I.V. Krive, R.I. Shekhter, Y.W. Park, and M. Jonson 

886 Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 8 

superconducting gap) the supercurrent is suppressed due to a 

strong (exponential) narrowing of the partial level widths 
2

0= exp( )j j g  ( = /j L R  stands for ―left‖ and ―right‖ 

partial width, g  is the dimensionless strength of electron–

vibron interaction). Notice that an exponential suppression 

(Franck–Condon blockade [2]) of the critical current 
2exp( 2 )c L RJ g  takes place only in the limit 

0 0  [13]. In this case the vibrational side-band levels 

0 0( ,n  where n  is an integer) fall within the conti-

nuum spectrum and therefore only weakly influence the dc 

Josephson current in a short 0 0( = / )FL v  junction. 

The exponential suppression of the elastic ( = 0)n  channel 

is nothing but a manifestation of the Franck–Condon block-

ade in the Josephson current. 

In this work we will show that in the opposite limit, 

where 0 0 ,  the virtual population of vibrational 

side-band levels in the superconducting gap lifts the 

Franck–Condon blockade. For strong electron–vibron inte-

ractions we find that this results in a weaker, power-law-

like suppression of the critical Josephson current. 

The influence of ―soft‖ vibrons, 0 0 ,  on the Jo-

sephson current was studied in Ref. 15. In this case the 

vibrational subsystem can be treated quasiclassically and 

the corresponding effective potential energy for vibrons, 

induced by "polaronic effects" on the Andreev levels, be-

comes anharmonic with minima that depend on the super-

conducting phase difference .  Numerical calculations 

performed in Ref. 15 in the regime 0 0  revealed a 

vibron-induced supression of the critical current and a 

weak influence of the electromechanical coupling on the 

current-phase relation. An analogous result concerning the 

Josephson current was obtained in Ref. 16 for the whole 

region of vibron frequencies and weak electron–vibron 

interaction (in Ref. 16 quantized electromagnetic fluctua-

tions in the superconducting circuit play the role of the 

vibrons in our terminology). 

The purpose of our paper is to predict experimental sig-

natures of strong electron–vibron interactions (polaronic 

effects) in Josephson junctions. The suppression of the 

critical current by itself does not provide an experimental 

test for vibrational effects. This is because the multiplica-

tive renormalization of level widths is hard to detect (since 

one would have to be able to vary the electron–vibron inte-

raction strength in a single experiment). 

We consider a simple model of an S–QD–S junction 

characterized by four independent parameters: the angular 

frequency 0  of the vibrational mode (only one vibration-

al QD mode is considered), the energy 0  and the width 

0  of a single QD electron level, and the characteristic 

electron–vibron interaction energy  (all these energies 

are assumed to be much smaller then the superconducting 

gap 0).  In the quasiclassical limit 0 0  this model 

can easily be solved analytically. In the strong interaction 

region 0  we find a power-law-like suppression of 

the critical current, 2 ,cJ  which is due to a displace-

ment of the QD accompanied by a polaronic shift 
2

0 0/p  of the electron energy level 0 .  At 

low temperatures 0T  the manifestation of polaronic 

effects in the Josephson current is the appearance of cusps 

[15] in the current-phase relation 2
0 0( )  and a 

hysteretic behavior of the supercurrent as a function of an 

increasing/decreasing value of the superconducting phase 

difference  or of a gate voltage .gV  

The most convincing manifestation of polaronic effects 

in the Josephson current is the anomalous temperature de-

pendence of the critical current. Temperature effects 

(caused by thermally excited vibrons) tend to restore the 

symmetric (unshifted) state of the QD and therefore in-

crease the supercurrent up to some ―critical‖ temperature 

mT  of the order of the polaronic energy, 2
0/ .mT  

Here, an abrupt transition to the standard temperature de-

pendence of the critical current, 0tanh( /2 ),cJ T  oc-

curs. In the quasiclassical approximation this transition 

takes the form of a sudden jump in the current. In the 

strong coupling regime the height of the jump is of the 

order of the resonant current and is not sensitive to other 

model parameters. We have also been able to show that a 

similar effect takes place in a model, where the tunneling 

matrix elements strongly depend on the QD position (as 

happens when the QD vibrates parallel to rather than per-

pendicular to an imaginary line between the source and 

drain electrodes, see Figs. 1(a) and 1(b)). Therefore the 

described anomalous temperature dependence of the criti-

cal current is indeed a signature of polaronic effects on the 

supercurrent through a Josephson junction containing a 

soft 0 0( )  vibrational subsystem. 

In the quasiclassical approach the behavior of the criti-

cal current in the vicinity of the polaronic temperature mT  

is not controlled by the approximation. In order to verify 

the predicted anomalous temperature dependence of criti-

Fig. 1. Two examples of a system where a movable quantum dot 

serves as a weak link between two superconducting electrodes: 

the weak link is a suspended carbon nanotube electrostatically 

interacting with a gate electrode (Vg) (a), the weak link is a fulle-

rene molecule confined by an effective potential in the gap be-

tween source and drain electrodes (b). 
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cal current we have therefore also calculated the Josephson 

current through a vibrating quantum dot by a Green's func-

tion method. In Ref. 18 a general formula for the supercur-

rent through an interacting quantum dot was suggested. 

The proposed expression generalizes the well-known 

Meir–Wingreen formula [19] to the case of superconduct-

ing leads and allows one to express the supercurrent in 

terms of the retarded QD Green's function in the Nambu 

representation. This can be evaluated analytically in the so 

called polaron tunneling approximation [20,21], which is 

valid when the characteristic polaron energy 2
0/p  

is much larger than the level width 0 ,  i.e., when 
2

0 0.  This inequality coincides with the one used 

to define the validity of the quasiclassical approach and 

allows us to cross-check our analytical results for the criti-

cal current at = 0T  and to obtain the temperature depen-

dence of the critical current in a quantum mechanical 

treatment of the problem. At low temperatures, 0 ,T  

we find a result for the critical current that exactly coin-

cides with the one we obtained in the quasiclassical ap-

proximation. A numerical calculation of ( )cJ T  confirmed 

our assertion that polaronic effects in Josephson current are 

manifested in an anomalous temperature dependence of the 

critical current. 

2. Polaronic suppression of critical current. 

Quasiclassical approach 

Following Refs. 13 and 15 we consider the simplest 

model that can describe vibrational effects in the Joseph-

son current. The model describes a movable (vibrating) 

quantum dot with a single spin-degenerate electron level 

0( )  weakly coupled to bulk superconductors (see Fig. 1). 

The QD Hamiltonian takes the form 

 † †
0

= ,

ˆ ˆ= ( )( )
2

QDH d d n n b b   

 †
0 ˆ ˆ ,b b Un n  (1) 

where 0  is the energy of the dot level measured from the 

Fermi level, † ( )d d  is the electron creation (destruction) 

operator, †ˆ =n d d ,  is the electron–vibron interaction 

energy, †( )b b  is the vibron creation (destruction) operator, 

0  is the vibron frequency, and U  is the Coulomb ener-

gy. In this section we will not consider electron–electron 

interaction effects, assuming that .U  

The superconducting left ( = )j L  and right ( = )j R  

electrodes are described by the standard BCS Hamiltonian 

 
† † †

,, , ,
,

= h.c.j kj j k jj k j k j k
k k

H c c c c  (2) 

0( = e
i j

j  is the superconducting order parameter). 

The coupling of the QD to the leads is modeled by the 

tunneling Hamiltonian 

 
( ) †

,
,

= h.c.
j

t kj j k
k

H t c d  (3) 

In what follows we will assume the tunneling amplitudes 

kjt  to be independent of energy, 0 .kj jt t  This assump-

tion is justified when all characteristic energies in our 

problem 0 0 0, , , , T  ( 2
0 0= 2 ( ) | |F jt  is the 

level width, T  is the temperature,  is the density of 

states) are much smaller then 0.  Additionally, in this 

Section the tunneling amplitudes are considered to be 

coordinate-independent. This is the case, e.g., for a sus-

pended single-wall carbon nanotube subject to a gate po-

tential as sketched in Fig. 1(a), from which it is clear that 

nanotube vibrations do not affect the coupling of electronic 

states in the tube and in the leads. The opposite case of a 

strong dependence of the tunneling matrix elements on the 

QD coordinate †
0ˆ = ( )/ 2x x b b  0(x  is the amplitude of 

zero-point fluctuations), see Fig. 1(b), will be studied in 

Sec. 4. 

The influence of a vibrational degree of freedom on the 

supercurrent is different for ―hard‖ 0 0( )  and ―soft‖ 

0 0( )  vibrons. In the first case the vibrational sub-

system is always in its vacuum (unshifted) state ˆ = 0x  

and zero-point fluctuations of the QD coordinate results in 

a Franck–Condon blockade of the critical current [13]. Soft 

vibrons, on the other hand, by means of interacting with 

the Andreev bound states (see below) are ready to form a 

new ground state ˆ 0x  in order to minimize the total 

energy. Such a transition mimics the formation of a gap in 

the conduction band of electrons and the condensation of 

phonons that follow from a Peierls phase transition. 

In the limit 0 0  the vibrational subsystem can be 

treated quasiclassically. When 0 0 0| |,  only subgap 

states contribute to the Josephson current. Replacing the di-

mensionless coordinate †
0ˆ ˆ= / = ( )/ 2cx x x b b  in Eq. (1) 

by the classical variable 1,cx  it is easy to find the spec-

trum of the two Andreev bound states in our problem as 

= ,A AE E  with 

 2 2 2
0

1
= ( ) ( 2 cos ).

4
A c L R L RE x  (4) 

At zero temperature (or more precisely if 0)T  the 

Josephson current is given by the derivative of the ground 

state energy 0E  of the weak link with respect to the super-

conducting phase difference ,  

 02
( ) = ,

Ee
J  (5) 

where in our case 0 ( , ( ))cE x  depends on the vibrational 

degree of freedom ( ).cx  The equilibrium coordinate 

( )cx  can be found by minimizing the total energy, 

   
20 0

0

( , )
= 0, ( , ) = ( , ).

2

c
c c A c

c

E x
E x x E x

x
 (6) 
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First we analyze the case of resonant tunneling, 0 = 0.

Recall that in the absence of electron–vibron interaction 

( = 0)  the expression for the resonant Josephson current 

through a symmetric 0( = = )L R  junction is (see, 

e.g., [23,24]) 

 0( ) = sin sgn cos .
2 2

r

e
J  (7) 

In a strongly asymmetric junction, ( ) ( ) ,L R R L  the 

current-phase relation takes the familiar Josephson form 

( ) = sin ,a cJ J  where the critical current cJ  is deter-

mined by the smallest partial level width, ( )= ( / )c R LJ e  

(the nonresonant critical current is proportional to 2
0 ).  

Electron–vibron interactions strongly modify the resonant 

supercurrent. One readily finds three solutions of Eq. (6): 

= 0cx  and 

 

2 2
22 2

0

( ) = ,cos sin
2 2 2

cx  (8) 

where = ,L R  = ( )/ .L R  Note that the qua-

siclassical approximation holds for 1,cx  i.e., for QD 

shifts much larger than the amplitude 0x  of zero-point 

fluctuations. One can see from Eq. (8) that the required 

inequality is always satisfied in the regime of strong inte-

ractions, 2
0 0.  In this case (or more precisely if 

2
0 0>  for a symmetric junction) the energy mini-

mum corresponds to 0,cx  given by Eq. (8), and = 0cx  

is an unstable solution (see the two-well potential in 

Fig. 1(b). The supercurrent (5) takes the form 

 0 2
( ) = sin

2

L RJ e  (9) 

which looks like a nonresonant Josephson current 
2
0( ).cJ  The conclusion that interactions always sup-

press the resonant critical current agrees with the results of 

Refs. 15 and 16. Notice that for strong interactions 
2

0 0( )  the suppression of the critical current (we 

will call it a ―polaronic suppression‖) is power-law like, 
2 ,cJ  in distinction to the exponential suppression 

(Franck–Condon blockade) caused by the zero-point fluc-

tuations of the QD coordinate in the regime of ―hard‖ vi-

brons 0 0( ).  Equation (9) can be physically inter-

preted as the standard formula for the nonresonant critical 

current (see, e.g., [23,13]) 0 0 0( / )( / | |),cJ e  where 

the level energy 0  is replaced by the  polaronic energy 
2

0 0/ .p  In Sec. 5 we show that an analogous 

expression for the critical current can be derived by a 

Green's function approach. 

A suppression of the critical current will be difficult to 

detect directly in an experiment since this requires an abili-

ty to vary the electron–vibron interaction strength. There-

fore we will now consider how the interaction affects the 

current-phase relation. The interesting regime is that of 

weak or intermediate-to-strong interactions, 2
0 0 ,  

when a variation of the phase difference  induces reen-

trant transitions of the vibrational subsystem from the ―un-

shifted‖ ( = 0)cx  to the ―shifted‖ ( 0)cx  state. One can 

see from Eq. (8) that for a symmetric junction and 
2

0 0= c  (where < 1c  is a numerical constant) the 

―shifted phase‖ 

 20 2

0

1
( ) = [ ( /2)]coscx c

c
 (10) 

exists only in a finite interval of phase difference 

(| cos( / 2) |< ).c  For other values of  the symmetric 

coordinate position ( = 0)cx  is realized. It is easy to check 

that at the transition points ( )t  the supercurrents calculated 

in the quasiclassical approximation for both phases coincide. 

However, in the vicinity of the transition points ( 1)cx  

we have to take into account quantum effects to correctly 

describe this region. In Fig. 2 we have plotted the J  

relation for a symmetric junction and medium-strong elec-

tron–vibron interaction 2
0 0( / =1.1)  by taking into 

account the zero-point energy of the vibrons in the new 

―shifted‖ vacuum given by Eq. (8) (polaritons in the termi-

nology of Ref. 16). The vibron energy is then given by the 

expression 

 

2 2 2
0

0 3

cos
2( ) = .

( )
v c

A c

x
E x

 (11) 

Although the ―unshifted phase‖ is not controlled by the 

quasiclassical approximation when  is close to = ,  

the reentrant transitions take place at the points t  and 

2 t  far away from the dangerous region. We see in 

Fig. 2 the appearance of special features (cusps) in the 

J  curve at the transition points (see also Ref. 15). 

Fig. 2. Josephson current (normalized to 0 0= / )J e  plotted as a 

function of the superconducting phase difference  for 
2

0 0 / =1.1.  The marked region indicates a cusp at 1.13  

in the current-phase curve. 



Manifestation of polaronic effects in Josephson currents 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 8 889 

Another manifestation of vibrational effects is the hys-

teresis-like behavior of the supercurrent caused by phase-

induced transitions from the double- to the single-well po-

tential. When the level energy 0 0| |  the effective 

double-well potential 0 ( )cE x  becomes nonsymmetric. By 

using perturbation theory with respect to 0  it is easy to 

obtain the following analytical expressions for the QD dis-

placement and the critical current (for 0 < 0)  

 

2

( / ) 0 0

2
0 0 0

cos( /2)1
1 ,

2 | |

l gx  (12) 

 

2
( / ) 0 0

2
0 0

,
2 | |

l g
c

e
J  (13) 

Here ( / )l g  denote local and global minima. It is interesting 

to note that vibrational effects could enhance the critical 

current (13) compared to the nonresonant critical current 

0 0 0( / ) ( / | |)cJ e  in the absence of electron–vibron 

interactions. 

The global (g) and local (l) minima can be inter-

changed by a gate voltage pulse ( ).gV t  The critical cur-

rent corresponding to the local minimum is always larger 

than the one corresponding to the global minimum, 
( ) ( )> .l g
c cJ J  For a special choice of model parameters 

(see Fig. 3) the barrier between the local and global mi-

nima disappears at t  and 2 t  (see also [15]). If we 

neglect macroscopic quantum tunneling of the QD (the cor-

responding time scale is exponentially large in the limit 

0 0  since 1
0 0exp[ ( )/ ],t U  where ( )U  is 

the barrier height which weakly depends on 0 )  the transi-

tions from local to global minimum will occur only at 

transition points when the barrier disappears. Then one 

can imagine a hysteretic behavior of the Josephson cur-

rent (see Fig. 3) caused by a gate voltage-induced transi-

tion in the vicinity of =  and phase induced transi-

tions at t  and 2 .t  

3. Anomalous temperature behavior of critical current 

In the previous Section we showed that electron–vibron 

interactions tend to diminish the maximum supercurrent, 

which occurs on resonance, i.e., when 0 = 0.  For strong 

interactions the critical current is greatly suppressed. A 

superconducting junction with a movable quantum-dot 

weak link in this case behaves as a strongly asymmetric 

Josephson junction and all interaction effects at zero tem-

perature are hidden in a renormalization of the critical cur-

rent. This polaronic suppression is lifted at high tempera-

tures where it is natural to expect the standard 1/T  

temperature scaling (see, e.g., Ref. 25) of the critical cur-

rent to be recovered. In this Section we will show that in 

the presence of electron–vibron interactions the cross-over 

from the low- T  to the high- T  regime is nonmonotonic 

with a maximum critical current at temperatures of the 

order of the polaron energy, 
2

0/ .pT  

At finite temperatures the Josephson current is deter-

mined by the φ-derivative of the grand canonical potential 

,  which in the quasiclassical approach comprises three 

terms: the elastic (potential) energy of the vibrational sub-

system, the grand canonical potential of the vibron excita-

tions and the grand canonical potential of the two-level 

system formed by Andreev bound states. Hence 

 
20 ( )

= ln 1 exp
2

v c
c

x
x T

T
  

 
( )

2 ln 2cosh ,
2

A cE x
T

T
 (14) 

where AE  is determined by Eq. (4) (for simplicity we con-

sider symmetric junction 0= = )L R  and ( ),v cx  

given by Eq. (11), is the vibron energy in the state with a 

shifted coordinate .cx  The equilibrium coordinate 

= ( , )cx x T  is found from the extremum equation 

/ = 0.cx  Using this equation it is easy to express the 

Josephson current in the simple form 

 
2
0 ( )2

( ) = = tanh sin .
2 ( ) 2

A c

A c

E xe e
J T

E x T
 (15) 

The equilibrium QD coordinate is plotted as a function 

of temperature for different electron–vibron coupling 

strengths in Fig. 4. The upper part of each curve corres-

ponds to the potential minimum and the lower part corres-

ponds to the local maximum of  (these states are abso-

Fig. 3. Hysteretic behavior of the Josephson current plotted as a 

function of the superconducting phase difference  for 
2

0 0 / = 0.2  and 
2

0 0 / = 0.6.  In the vicinity of =  

the quantum dot is transferred to the local potential energy mini-

mum (see text) by a gate-voltage pulse. The system remains in 

the local minimum up to = t  (or = 2 ),t  where the 

barrier between the two minima disappears and the system ―falls‖ 

to the global potential energy minimum. 



A.V. Parafilo, I.V. Krive, R.I. Shekhter, Y.W. Park, and M. Jonson 

890 Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 8 

lutely unstable). We see that an increasing temperature 

tends to decrease the average coordinate and for tempera-

tures > mT T  the only solution of the extremum equation is 

= 0.cx  The ―critical‖ temperature mT  and the correspond-

ing "critical" coordinate mx  are found from the two equa-

tions ( , )/ = 0m m cx T x  and ( , )/ = ,c m mx x T T  which 

for temperatures 0T  takes the form 

 

2

4

22
5

tanh 3 = 0,
2

1
1 12 = 0.cosh

2 2

x T
x

T x

x T

T T x

 (16) 

Here 
2

0 / <1,  0= | cos( /2) |  and 

0= / ,mx x  2
0= / .mT T  It is straightforward to 

show that in the strong interaction limit ( 0)  the 

asymptotic solution of Eq. (16) is 
2/7

1 ,mx C
2 4/7

0 2( /2 )(1 ),mT C  where 1,2C  are numerical 

constants of order 1. From Fig. 4 it is clear that for inter-

mediate-to-strong interactions 2 2
0 0(1< / 10 )  the 

transition temperature mT  is of the order of the polaronic 

energy 2
0/mT  and the corresponding coordinate 

0/ 1.mx  The transition to the regime of resonant 

tunneling ( = 0)cx  in this case occurs abruptly ( 1)x  

and is manifest in a jump-like dependence of the critical 

current on temperature (see Fig. 5). 

With an increase of temperature the QD is shifted to-

wards its symmetrical coordinate position in the junction 

and hence up to temperatures mT T  the Josephson cur-

rent is monotonically increased. Note that the temperature 

enhancement of the current is entirely due to the vibronic 

excitations (second term in Eq. 14). Without this contribu-

tion to  the Josephson current would be temperature 

independent. For temperatures 2
0/T  one can de-

rive an analytical expression for the temperature depen-

dence of the Josephson current, 

 

2 2
2 0 0 0

02
( ) 1 3 ( ) sincos

2
BJ T J n ,  

  (17) 

0 0( ) =1/[exp( / ) 1],Bn T  2
0 0 0( /2 )( / ).J e  

Temperature corrections are exponentially small as long as 

0T  while the current increases linearly with tempera-

ture in the interval 2
0 0/ .T  At high tempera-

tures, > ,mT T  the junction is in the state = 0cx  (i.e., in the 

regime of resonant tunneling if 0 = 0) and the Josephson 

current is 

 0 0 | cos( /2) |
( ) = sin sgn cos tanh .

2 2 2
r

e
J T

T
  

  (18) 

In the general case of a finite 0| | p  the supercurrent in 

the high temperature region reads (see, e.g., [23,24]) 

 

2 22
00

2 2
0

sin
( ) = tanh .

2 2

e
J T

T
 (19) 

In the quasiclassical approximation the currents in the low-

T  and high-T  ―phases‖ are not matched at = mT T  and 

here one expects a ―jump‖ of the critical current (see 

Fig. 5, where 0 = 0  and the expected effect is maximal). 

In our approach the jump is of the order of the critical re-

sonant current. 

Could quantum corrections and thermal fluctuations 

smear out the nonanalytical behavior in the transition re-

gion? In the state where 1cx  the quantum fluctuations 

Fig. 4. Dimensionless equilibrium coordinate for the weak-link 

quantum-dot, 0= / ,cx x  plotted as a function of dimension-

less temperature, 2
0/ = / ,pT T T  for =1,  0 / = 0.25,  

and different values of 
2

0 0= / .  

Fig. 5. Temperature dependence of the Josephson current for =1,  

0 / = 0.25,  0 = 0,  and = 0.2  (inset:  = 0.05). The current 

is normalized to the maximum critical current 0 0= / ,J e  and 

temperature to the polaron energy 2
0= / .pT  
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are small and can be neglected. On the contrary, quantum 

fluctuations could certainly modify the resonant critical 

current ( = 0).cx  This question will be considered in 

Sec. 5 by using a Green's function approach. We will show 

that in the regime of strong coupling, 2
0 0 ,  the 

critical current does demonstrate an anomalous tempera-

ture behavior with a maximum at .m pT  The effect is, 

however, quantitatively small. Nevertheless the tempera-

ture dependence of the critical current significantly differs 

from the standard tanh (ε0/2T)-dependence (see Fig. 8). 

Although the quasiclassical approximation can not quan-

titatively describe the transition region ( )pT  it has cer-

tain advantages compared to the quantum field approach. 

The calculations in a simple model Eqs. (1)–(3) can easily 

be generalized to the more realistic case when the electron 

tunneling amplitudes are coordinate-dependent quantities 

and the vibrations of QD are strongly anharmonic. 

4. Coordinate-dependent tunneling amplitudes 

In the previous Section we studied the influence of po-

laronic effects on the Josephson current in a model where 

the electron tunneling matrix elements were assumed to be 

coordinate-independent. Large shifts of the QD inside the 

junction could, however, strongly affect tunneling proba-

bilities. This would be the case, e.g., if a movable quantum 

dot (molecule) is placed in the gap between two supercon-

ducting electrodes as in Fig. 1(b). In this situation it is rea-

sonable to model the coordinate dependence of the tunne-

ling amplitudes as (see, e.g., [6]) 

 0ˆ ˆ( ) = exp ( ),j j tt x t j x  (20) 

where = ( , ) = ( , )j L R  and 0= /t tx l  ( tl  is the elec-

tron tunneling length). In addition, for large thermal fluc-

tuations shifts one has to take into account the effects of 

anharmonicity of the vibration potential, which now is 

modeled by the expression 

 0

2
( ) = [cosh ( ) 1].bV x ax

a
 (21) 

Here 0  is the vibrons frequency (for 0)a  and 

0= / ,a x W  W  is a length that characterizes the steepness 

of the confining potential. A more realistic model would be 

a sum of two Morse potentials separated by some distance 

0.d  Such a potential is double-well-like and for small QD 

displacements it describes a strongly asymmetric Joseph-

son junction. Here we consider the situation when 

L R  and therefore we will use the single-well poten-

tial (21). It will be shown that qualitatively the temperature 

behavior of the critical current is not sensitive to the con-

crete form of the confining potential. 

In the quasiclassical approach the ground state energy 

of the weak link now takes the form 

 0
0 2
( , ) = [cosh ( ) 1]c cE x ax

a
  

 
2 22 2

0
1

( ) ( e e 2 cos ).
4

x xt c t c
c L R L Rx  

  (22) 

This energy is bounded from below only when > ,ta  

otherwise the energy minima correspond to .cx

Physically this would mean that the QD is ―glued‖ to one 

of the electrodes and that the mechanical motion is frozen. 

The displacement of the QD can be found from the eq-

uation 0 / = 0.cE x  In the region 1,ta  where the 

tunneling rates are strongly renormalized by the displace-

ment of QD, the equilibrium coordinate position cx  in the 

considered limit , 0L R  is 

   
( )

( ) ( )
0

1
ln 1, > .

R L
c t R L L R

t

x a
a

 (23) 

We see that in the limit 0 0  the dot displacement de-

pends neither on the superconducting phase  nor on the 

interaction constant . The QD is shifted towards the 

nearest electrode in order to enhance the contribution of 

the negative energy Andreev level (and maximize the co-

hesive energy) (see also [26]). The junction behaves as a 

strongly asymmetric tunnel junction supporting a non-

resonant supercurrent 0 0( , ) = ( )sin ,cJ J  where 

 
( ) 0

0 ( ) ( )
( )

1
( ) , > .

t

a tL R
c R L L R

t R L

e
J

a
  

  (24) 

Next we will discuss the temperature dependence of this 

critical current, noting that we again expect it to be non-

monotonic. 

At finite temperatures there are two oppositely directed 

tendencies, which influence the supercurrent. The popula-

tion of the positive energy Andreev level ( )AE  at 0T  

tends to decrease the Josephson current and at tempera-

tures much larger then the Andreev level spacing the Jo-

sephson current scales as 1/ .T  On the other hand thermally 

excited vibrons at 0T  diminish the average coordi-

nate ( ) < (0)c cx T x  and thus at low temperatures the su-

percurrent is enhanced. Therefore we expect an anomalous 

temperature dependence of critical current analogous to the 

results of Sec. 3. Numerical calculations support our phys-

ical arguments and (see Fig. 6) show that qualitatively the 

temperature dependence of the Josephson current in the 

adiabatic regime 0 0  is not sensitive to the shape of 

the confining potential and the choice of bare tunneling 

amplitudes. In our quasiclassical approach the supercurrent 

experiences a jump at some critical temperature which is 
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the result of a transition of the QD from a strongly asym-

metric ( 1)cx  to a symmetric position ( = 0).cx  

5. Temperature enhanced Josephson current. 

Green's function approach 

In this Section we will calculate the temperature depen-

dence of the critical current by using a Green's function 

approach. We are interested in the strong coupling regime 

of the model defined by Eqs. (1)–(3). In this case it is use-

ful (see, e.g., [27]) to perform a unitary transformation 

using 

 † †

= ,

= exp ( ) / 2 ,U g b b d d   

where 0= /g  is the dimensionless electron–vibron 

interaction constant. This transformation eliminates the elec-

tron–vibron interaction from the Hamiltonian (1) and shifts 

the level energy 
2

0 0 0= /2ps g  (polaronic shift) 

while changing the electron-electron correlation energy so 

that 2
eff 0=U U U g  [13]. The electron–vibron 

interaction term reappears in the tunneling Hamiltonian (3), 

where the tunneling amplitude 0 jt  is replaced by the opera-

tor 0 0ˆ ˆ( ) = exp( )j jt p t igp  †ˆ( = ( )/ 2).p i b b  

The nonequilibrium Green's function method (Keldysh 

technique) allows one to express the electrical current 

through an interacting quantum dot in terms of retarded 

Green's functions of the dot levels. For normal metal (non-

interacting) electrodes this formula is known as Meir–

Wingreen formula [19]. Its generalization to superconduct-

ing leads was reported in Ref. 18. Here we consider a sim-

plified form of the Josephson current [Eq. (30) in Ref. 18] 

when the superconducting order parameter is considered to 

be the largest energy in the problem (formally 0 ).  

The current in this limit reads 

2
0

( ) 1 ( ) 1 2
11 22

2 1
= ( )Im sin ,

( )
r r

e
J d f

g g
 (25) 

where ( )f  is the Fermi distribution function,  is the su-

perconducting phase difference, and 
( )r

g  are the retarded 

Green's function of the QD in the Nambu representation and 

0= cos( /2).  For a QD without interactions ( = 0,g  

eff = 0).U  1
11(22) 0= ( 0)rg i  one recovers the stan-

dard expression (19) for the Josephson current through a 

resonant level 0 0(| | )  from Eq. (25). 

To proceed further we neglect the effective electron–

electron interaction and let eff 0U  in the transformed QD 

Hamiltonian. Note that the contribution of the electron–

vibron interaction to the electron–electron correlations al-

ways suppresses the effects of Coulomb repulsion, which 

depends on the the effective capacitance effC  of the QD. 

Therefore it is possible to minimize effU  by changing effC . 

Even without electron–electron correlations the Green's 

function ( )rg  in our model can not be evaluated exact-

ly. One needs additional approximations to calculate the 

Josephson current from Eq. (25). We will use the ―polaron 

tunneling approximation‖ [20] where the electron propaga-

tors are replaced by polaron Green's functions, 

 ( ) ( )† † ˆ ˆ( ) ( ) exp [ ( )]exp [ ]p pd t d d t d igp t igp  

 
ˆ ˆ† [ ( )] [ ]( ) e e .igp t igp

f bd t d  (26) 

Here the symbol ,... f b  stands for a thermodynamic aver-

age with respect to noninteracting fermionic (f) and boson-

ic (b) Hamiltonians. Factorization of boson and fermion 

averages is always justified in perturbation theory to low-

est order in the level width 0.  Beyond perturbation 

theory the ―polaron tunneling approximation‖ [20] holds 

when the characteristic time of polaron formation 
2

0( / 1/ )p g  is much shorter than the electron "life-

time" in the QD 0( / ),  i.e., in the regime of strong 

coupling 2
0 0/ .g  This criterion coincides with the 

one considered in Sec. 2, where the quasiclassical approx-

imation was studied. 

In the polaron tunneling approximation the desired re-

tarded Green's functions in the Nambu representation, 

 

( ) ( )†

( )( )†

{ ( ), } 0
= ( ) ,

0 { ( ), }

p p

r

pp

d t d
g i t

d t d
  

  (27) 

take the form (after switching to the energy representation 

by taking a Fourier transform) 

Fig. 6. Temperature dependence of the Josephson current in a 

model system with coordinate-dependent tunneling matrix ele-

ments plotted for =1,  0 / = 0.05,  
2

0 / = 0.07,R  
2

0 / = 0.04,L  0/ =11,a  and 0/ = 8.t  The current 

is normalized to 0 = / )L LJ e  and temperature to 2
0= / .pT  
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 2
11(22) = exp[ (1 2 )]r

Bg g n   

 

20

0=

exp [2 (1 )]
2

,
0

n B B

psn

n
I g n n

T

n i
 (28) 

where 0=1/[exp( / ) 1]Bn T  is the Bose–Einstein dis-

tribution function and ( )nI z  is the modified Bessel func-

tion of the first kind. 

At low temperatures, 0 ,T  the argument of the 

Bessel functions in Eq. (28) is small, ( 0)nI z  
| |( /2) / ( 1)nz n  [28], and Eq. (28) simplifies to read 

2
2

11(22)
0=0

( ; = 0) = exp( ) .
!( 0)

n
r

psn

g
g T g

n n i
  

  (29) 

It is easy to see that the corresponding spectral function, 

( ) = 2Im[ ( )],rA g  is a series of δ-function peaks (spa-

ced by 0 )  with a Poisson distribution of weights. Note 

that for a strong interaction, 1,g  many terms (up to n of 

the order of 2 )g  contribute to the sum in Eq. (29). 

When evaluating the normal current (or conductance) 

by using the Meir–Wingreen formula the difference of the 

Fermi distribution functions ―cuts out‖ a finite interval 

( )eV  in the integral over energies .  When 0<eV  

only the the ―elastic peak‖ ( = 0)n  survives after integra-

tion. The weight of the elastic peak is exponentially sup-

pressed, which is how the Franck–Condon blockade is ma-

nifested 

When evaluating the supercurrent from Eq. (25) we 

have to sum over all > 0n  in the considered limit 

0 0.  Actually the required inequality for 1g  is 

reduced to 2
0 0g  since for 2> = [ ]mn n g  the series 

in Eq. (29) quickly converges. Then we can approximate 

the Green's function by the simple expression 

 11(22) 2
0

1
( ) ,

( 0)

r

ps

g
g i

 (30) 

which after substitution into Eq. (25) results in a Josephson 

current of the form (19) at = 0T  but with 0  replaced by 
2 2

0 0 0= /2.ps g g  Note that in the region of 

model parameters where the polaron tunneling approxima-

tion is valid 2
0 0( )g  we can neglect the term 

0= cos( /2)  in Eqs. (25) and (19) and the critical 

current coincides with the corresponding expression, 

Eq. (9), derived in the quasiclassical approximation. The 

unrestricted summation over n  in Eq. (29) means that the 

exponential Franck–Condon blockade is lifted by virtual 

emission and absorbtion of vibrons. The remaining pola-

ronic (power-law) suppression of the Josephson current in 

a S–QD–S junction is analogous to the Franck–Condon 

blockade of co-tunneling in normal transport through a 

vibrating QD [2]. Note that although in our derivation of 

the vibrationally mediated Josephson current we cannot 

consider the limit of resonant tunneling 0( ),ps  the 

exponential suppression of the resonant Josephson current 

found in Ref. 14 is difficult to verify for the case of soft 

vibrons 0 0 ,  when virtual vibron processes strong-

ly modify the QD Green's function. 

Now we turn to studying the temperature dependence of 

the nonresonant critical current [see Eqs. (25) and (28)] 

 

2
20( ) = exp[ 2 coth( )]c

e
J T g x   

 

2 2
( )

0, =

e
sinh ( ) sinh ( )

( ),
2 ( )

n l x
n l

l n
psn l

g g
I I

x x
f f

n l
  

  (31) 

where 0= /2x T  and 0= [ ( )].j psf f j  At low 

temperatures it is easy to recover Eq. (9) from Eq. (31). 

The high temperature region can be considered by using 

the well known exact formula for the summation of Bessel 

functions (see, e.g., [28]) 

 

1

2

=

( ) = e .

z
t

k t
k

k

t I z  (32) 

With the help of this formula it is easy to evaluate the high 

temperature asymptotics of Eq. (31). It reads 

 
2 2

2 0 0
0

1
( ) 1 .

4 3
c

e g
J T g

T T
 (33) 

We see that when the thermal energy is much larger than the 

polaronic energy the polaronic suppression of the Josephson 

Fig. 7. Temperature dependence of the Josephson current norma-

lized to 0 0= /J e  and evaluated for 0 0/ = 0.3  and 

0 0/ = 0.1.  The solid (dash-dotted) curve is the result for 

=1.7g  ( = 2.2).g  0J  is the maximum zero-temperature value 

of the current, which obtains at resonance, i.e., for 0 = 0,  with-

out electron–vibron interactions ( = 0).g  
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current is lifted and the critical current scales as 1/ .T  Nu-

merical calculations show (see Fig. 7) that in the region 

0T  the temperature dependence of the critical current 

is anomalous — the Josephson current is enhanced by an 

increase of temperature. The supercurrent peaks at a temper-

ature of the order of the vibron energy. Our calculations in 

the polaronic tunneling approximations did not reveal a par-

ticularly pronounced temperature enhancement of the super-

current since the ratio max min min( )/ 0.1J J J  is always 

small. However, this ratio tends to increase as one appro-

aches (by varying 0 )  the region of resonant tunneling, 

which can not be correctly described in the polaron tunne-

ling approximation. 

In Fig. 8 we have plotted the temperature dependence 

of critical current normalized by the standard result, 

tanh ( /2 ).T  We see that the temperature dependence of the 

normalized current is anomalous. At low temperatures the 

lifting of the polaronic suppression results in a tempera-

ture-enhanced supercurrent. At high temperatures the Jo-

sephson current approaches its standard 1/T  asymptotics 

from below (see Eq. (33)). This leads to a pronounced 

nonmonotonic behavior of the normalized supercurrent 

with a maximum and a minimum in a large temperature 

interval. 

6. Conclusions 

We have investigated vibrational effects on the Joseph-

son current through a single-level 0( )  quantum-dot weak 

link between two bulk superconductors when the dot inte-

racts with a vibrational mode 0( ).  

It is physically evident that an electron–vibron coupling 

should tend to suppress the critical Josephson current. In-

deed, for different regimes of coherent electron transport it 

has been demonstrated [13,15,16] that the Josephson cur-

rent is influenced by the electron–vibron interaction at low 

temperatures, 0.T  However, these results do not 

necessarily facilitate an experimental detection of vibra-

tional effects on the Josephson current since these are 

―hidden‖ in a multiplicative renormalization of unknown 

bare tunneling probabilities. 

In this work, on the other hand, we have shown that 

electron–vibron interactions give rise to polaronic effects 

manifested in an anomalous temperature dependence of the 

critical current, which is both measurable and significantly 

different from the standard 0tanh ( /2 )T -behavior. We 

find that interactions with a low-energy vibrational mode 

0( )  lead to a small anomalous increase of the crit-

ical current with increasing temperature at low tempera-

tures ( < ),mT T  a significant increase of the critical current 

at mT T  and for higher temperatures a decrease of the 

current, which becomes proportional to 1/T  (approaching 

the standard result from below) at high temperatures, 

,mT T  when the polaronic suppression of the Josephson 

current is completely lifted. The characteristic temperature 

mT  is of the order of the polaronic energy shift 
2 2

0 0/ = ,g  which depends on the strength of the 

electron–vibron interaction — either characterized by the 

interaction energy  or the dimensionless electron–vibron 

coupling constant g. This temperature behavior is analog-

ous to what one finds in normal electron transport, where 

the influence of vibrational effects on the conductance 

leads to an anomalous temperature scaling of the peak 

conductance in the regime of sequential electron tunneling. 

It is interesting to note that the effect of a temperature en-

hancement is neither sensitive to the choice of vibron po-

tential (which could be strongly anharmonic) nor to a poss-

ible coordinate dependence of the tunneling amplitudes. 

We conclude that the predicted anomalous temperature 

dependence of the critical Josephson current is a distinct 

signature of polaronic effects on the Josephson current. It 

is easy to estimate the transition temperature mT  by using 

known experimental parameters for normal electron tunne-

ling through (i) a suspended single wall carbon nanotube 

(SWNT) (see, e.g., [29]) and (ii) a C60-based molecular 

transistor [30]. In experiments with a suspended SWNT it 

has been shown [29] that the electron–vibron interaction is 

strong with a dimensionless coupling constant g of about 

1–3. Using data from Ref. 29 one finds that the characteris-

tic ―polaronic‖ temperature is 1mT  K for a 1 μm long 

SWNT coupling to the stretching mode or for a 100 nm 

long SWNT coupling to the bending mode. This means 

that the polaronic energy scale falls within the range of 

typical energies of weak links between ordinary low-T 

superconductors. For a fullerene-based quantum dot the 

characteristic temperature is 10mT  K. 

Fig. 8. Temperature dependence of the Josephson current norma-

lized to the standard temperature-dependent expression 
2

st 0= ( /2 ) tanh( /2 ).J e T  Here  is determined by the critical 

current at zero temperature 
2
0( = /2 ( = 0))ce J T  in order for 

the normalized current to be unity at = 0.T  At high temperatures 

the normalized Josephson current saturates to unity from below 

(see inset). Deviations from unity at low and intermediate tem-

peratures indicate an anomalous temperature dependence of the 

Josephson current. 
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In summary we have shown that in a suspended 

SWNTs the interplay of polaronic and superconducting 

effects results in an unusual temperature dependence of the 

critical Josephson current. An experimental observation of 

the predicted effects could lead to a new type of spectros-

copy of weak links. 
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