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We consider the spin-1/2 antiferromagnetic Heisenberg model on the two-dimensional square-kagome lat-
tice with almost dispersionless lowest magnon band. For a general exchange coupling geometry we elaborate 
low-energy effective Hamiltonians which emerge at high magnetic fields. The effective model to describe the 
low-energy degrees of freedom of the initial frustrated quantum spin model is the (unfrustrated) square-lattice 
spin-1/2 XXZ model in a z-aligned magnetic field. For the effective model we perform quantum Monte Carlo 
simulations to discuss the low-temperature properties of the square-kagome quantum Heisenberg antiferro-
magnet at high magnetic fields. We pay special attention to a magnetic-field driven Berezinskii–Kosterlitz–
Thouless phase transition which occurs at low temperatures. 

PACS: 75.10.Jm Quantized spin models, including quantum spin frustration. 

Keywords: quantum Heisenberg antiferromagnet, square-kagome lattice, localized magnons, Berezinskii–
Kosterlitz–Thouless transition. 

1. Introduction

Antiferromagnetic interactions between the spins car-
ried by magnetic ions placed on a nonbipartite lattice (like 
the triangle lattice or the kagome lattice) are competing, 
i.e., frustrated. The Zeeman interaction with an external
magnetic field introduces even more competition. As a 
result, the quantum Heisenberg antiferromagnet on a low-
dimensional nonbipartite lattice in a magnetic field pro-
vides an excellent playground for the study of the interplay 
between quantum fluctuations and frustration. In such sys-
tems new phenomena may emerge. Therefore, the study of 
frustrated quantum antiferromagnets attracts much atten-
tion nowadays [1]. Interestingly, in some cases frustrated 
quantum Heisenberg antiferromagnets admit a rather de-
tailed study of their low-temperature properties at high 
magnetic fields, namely for the so-called localized-magnon 
systems which have a dispersionless (flat) lowest magnon 

band [2,3]. It has been shown that the localized-magnon 
systems in the high-field low-temperature regime may be 
understood using specific methods of classical statistical 
mechanics [2–8]. However, this classical description of the 
localized-magnon quantum spin systems was developed 
under the assumption of the so-called ideal geometry, i.e., 
the conditions for localization of the magnon states are 
strictly fulfilled (i.e., the lowest magnon band is strictly 
flat). As a rule, this assumption is violated in real-life sys-
tems. Hence, the case of nonideal geometry, when the lo-
calization condition is (slightly) violated, is more relevant 
from the experimental point of view. There were several 
papers related to this nonideal situation [9–13], which, 
however, did not use the localized-magnon paradigm. 

Recently [14] we have developed a systematic treat-
ment of a certain class of localized-magnon systems, 
namely the monomer class [6], to consider small deviations 
from ideal geometry. In particular, we have investigated 
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the antiferromagnetic quantum Heisenberg model in a field 
on the diamond chain, the dimer-plaquette chain, and the 
square-kagome lattice (for the latter lattice see Fig. 1). We 
mention that all of these models of frustrated quantum 
antiferromagnets have attracted attention previously as 
strongly frustrated quantum spin systems, and they were 
investigated by various authors also at zero or moderate 
fields, where the localized-magnon scenario is not relevant, 
see Refs. 15–17. Inspired by the situation in the diamond-
chain like compound azurite [12,18,19], in Ref. 14 it was 
assumed that 25 54 36 61 1= = = =J J J J J  and 15 53= =J J

26 64 3= = =J J J  (cf. Fig. 1) that we will call azurite-like 
geometry. For that type of exchange geometry, by elimi-
nating high-energy degrees of freedom, we constructed 
several low-energy effective Hamiltonians which are much 
simpler to treat than the initial ones. Thus for the N-site 
frustrated square-kagome lattice with the azurite-like devi-
ation from ideal geometry [12,19] we obtained the Hamil-
tonian of the  -site ( = / 6N ) unfrustrated square-
lattice (pseudo)spin-1/2 XXZ  model in a z -aligned mag-
netic field. Then we performed exact-diagonalization 
studies for the obtained effective model of = 20  sites 
(corresponding to = 120N  sites for the initial square-
kagome system) to discuss the low-temperature properties of 
the spin-1/2 square-kagome Heisenberg antiferromagnet in a 
field. The most intriguing feature that we found in Ref. 14 is 
the existence of a magnetic-field driven Berezinskii–Kos-
terlitz–Thouless (BKT) phase transition at low temperatures. 

The aim of the present paper, which continues the 
preceeding study [14] with a special focus on the square-
kagome system, is three-fold. First, we will provide effec-
tive Hamiltonians for a general exchange coupling scheme, 

see Fig. 1, going beyond the azurite-like geometry. (Be-
sides, we will report in Appendix A similar results for the 
one-dimensional diamond-chain case.) Second, instead of 
the exact-diagonalization method that is restricted to small 
systems only, we now present data obtained by quantum 
Monte Carlo simulations for the effective model of much 
larger size up to = 24 24 = 576×  sites (corresponding 
to = 3456N  sites for the initial square-kagome system). 
Based on these data we are able to make more precise pre-
dictions for the high-field low-temperature properties of 
the square-kagome quantum Heisenberg antiferromagnet, 
in particular, for the phase diagram of the model. Third, we 
will provide a more detailed discussion of the BKT phase 
transition which may occur in the square-kagome quantum 
Heisenberg antiferromagnet emphasizing some tasks for 
further studies. 

2. Low-energy effective Hamiltonians at high magnetic 
fields 

In this paper, we consider the standard spin-1/2 antifer-
romagnetic isotropic Heisenberg model in a magnetic field 
with the Hamiltonian 

 
( ) =1

= , = , > 0.
N

z z z
ij i j i ij

ij i
H J hS S s J⋅ −∑ ∑s s  (2.1) 

Here the first sum runs over all nearest-neighbor bonds on 
the square-kagome lattice, whereas the second one runs 
over all N  lattice sites. It is convenient to label the sites by 
a pair of indeces, where the first vector index = ( , )x ym mm  
enumerates the = / 6N  unit cells and the second one 
enumerates the position of the site within the unit cell, see 
Fig. 1. Since [ , ] = 0zS H , the eigenvalues of zS  are good 
quantum numbers. We consider magnetic fields in the vi-
cinity of the saturation field sath . For the ideal geometry, 
when 15 64 2= = =J J J J≤ , we have sat 1 2= = 2 .h h J J+  
Then for 1>h h  the ground state is the fully polarized fer-
romagnetic state, and the band of the lowest-magnon exci-
tations is dispersionless (flat). An eigenstate from this band 
can be written as a localized-magnon state [2], where the 
spin-flip (magnon) is trapped on a square (trapping cell), 
see Fig. 1. Owing to the localized nature of these states the 
many-magnon states in the subspaces = / 2 2, ,zS N − 

/ 2N −  can be constructed by filling the traps by local-
ized magnons. Clearly, all these states are linear independ-
ent [20]. Moreover, these localized-magnon states have the 
lowest energy in their corresponding zS -subspace, if the 
strength of the antiferromagnetic bonds of the trapping 
cells 2J  exceeds a lower bound [2,21]. The degeneracy of 
the localized-magnon states is calculated via mapping of 
these states onto spatial configurations of hard monomers 
on an auxiliary square lattice [5,6]. At low temperatures 
and for magnetic fields h  around the saturation field 

sat 1=h h  the contribution of localized-magnon states domi-
nates the partition function [6]. 

Fig. 1. (Color online) The square-kagome lattice described by 
Hamiltonian (2.1). The trapping cells for localized magnons 
(squares) are indicated by bold red lines ( 2J  bonds). 
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In what follows we consider the most general violation of 
the ideal geometry by allowing that all values of 15 64, ,J J  
are different, see Fig. 1. However, we assume that the devia-
tions from ideal geometry are not too large, i.e., perturbation 
theory is applicable. To derive the effective Hamiltonian we 
follow closely the lines given in Ref. 14. 

At high fields considered here, only a few states of the 
trapping cell are relevant, namely, the fully polarized state 

1 2 3 4| = |u〉 ↑ ↑ ↑ ↑ 〉  with the energy 2 2J h−  and the one-
magnon state  

( )1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4| = | | | | / 2d〉 ↑ ↑ ↑ ↓ 〉− ↑ ↑ ↓ ↑ 〉+ ↑ ↓ ↑ ↑ 〉− ↓ ↑ ↑ ↑ 〉
 

with the energy 2J h− − . All other sites carry fully polar-
ized (i.e., z -aligned) spins. Decreasing the magnetic field 
from 1>h h  to 1<h h , in the case of ideal geometry, the 
ground state of the cell undergoes a transition from the 
state | u〉  to the state | d〉  at the saturation field sat 1=h h . 
Therefore it is a reasonable approximation to take into ac-
count further only these 2 most relevant states | u〉  and | d〉  
for each square instead of the complete set of 16 states of a 
square. According to Ref. 14, we use this restricted set of 
states and consider as the starting point instead of H  (2.1) 
the projected Hamiltonian 
 = ,H     
 ( )= , = | | | | .u u d d⊗ 〉〈 + 〉〈m m m m    (2.2) 

Here m  is the projector on the relevant states of the trap-
ping cell m. Introducing (pseudo)spin-1/2 operators for 
each cell, 

( )1= | | | | , = | |, = | |,
2

zT u u d d T u d T d u+ −〉〈 − 〉〈 〉〈 〉〈  (2.3) 

we can write the Hamiltonian   in Eq. (2.2) as 

 ( )2 ,5
3 3= 2
2 2

z z
hh h J T h J s  − − − − − −   

∑ m m
m

   

 15 25
,6 ,5

3
2 4

z z zJ J
h J s T s

+ − − + + 
 

m m mv   

 ( )15 25
,5 ,52

yx x yJ J
T s T s

− +
+ + +m m m m   

 54 53
,5 1,4

z z
m mx y

J J
s T +

+
+ +m   

 54 53
,5 ,51, 1,2

y yx x
m m m mx y x y

J J
s T s T+ +

−  + + + 
 

m m   

 ( )26 36 26 36
,6 ,6 ,64 2

yz z x x yJ J J J
T s T s T s

+ −
+ + + +m m m m m m   

 61 64
,6 , 14

z z
m mx y

J J
s T +

+
+ +m   

 61 64
,6 ,6, 1 , 1 ,

2
y yx x

m m m mx y x y

J J
s T s T+ +

− +  + +  
m m   

15 25 54 53= ,
4h

J J J J
J

+ + +
   26 36 61 64= .

4
J J J J

J
+ + +

v   

  (2.4) 

This Hamiltonian   corresponds to a spin-1/2 XXZ  model 
on a decorated square lattice (which is also known as the 
Lieb lattice [22]). 

Although the obtained effective model (2.4) is unfrust-
rated and therefore is much easier to study (for example, 
using quantum Monte Carlo simulations), it can be further 
simplified by eliminating the spin variables ,5ms  and ,6ms  
belonging to the sites which connect the squares by treat-
ing small deviations from the ideal geometry perturbati-
vely. More specifically, the Hamiltonian   given in 
Eq. (2.4) is separated into a «main» part main  

 ( )main 1 1 2
3= 2
2

zh h J T− − − −
∑ m
m

   

 ( )1 ,5 ,6
3
2

z zh J s s − − + + 
 

m m   

 ,5 ,5 ,6 ,61, , 12
z z z z z z z z

m m m mx y x y

J T s s T T s s T+ +
 + + + +  

m m m m m m  

  (2.5) 

[i.e., the Hamiltonian   for the ideal geometry case 
15 64 15 64= = = = ( ) / 8J J J J J+ +   at 1 2= = 2h h J J+ ] 

and a «perturbation»   

 ( ) ( )1 1
3=
2

zh h h h T− − − − −


∑ m
m

   

 ( ) ( )1 ,5 1 ,6
3 3
2 2

z z
hh h J J s h h J J s   − − − − − − − − +      

m mv   

 ( )15 25 15 25
,5 ,5 ,5

2
4 2

yz z x x yJ J J J J
T s T s T s

+ − − +
+ + + +m m m m m m  

 54 53
,5 1,

2
4

z z
m mx y

J J J
s T +

+ −
+ +m   

 54 53
,5 ,51, 1,2

y yx x
m m m mx y x y

J J
s T s T+ +

−  + + + 
 

m m   

 ( )26 36 26 36
,6 ,6 ,6

2
4 2

yz z x x yJ J J J J
T s T s T s

+ − −
+ + + +m m m m m m   

 61 64
,6 , 1

2
4

z z
m mx y

J J J
s T +

+ −
+ +m   

 61 64
,6 ,6, 1 , 12

y yx x
m m m mx y x y

J J
s T s T+ +

− +  + +  
 

m m  (2.6) 

(i.e., main= −   ). The ground state 0| ϕ 〉  of the Hamil-
tonian main  (then ,5 ,6= = 1/ 2z zs sm m ) has the energy 

0 2= (5 )J Jε − +  . It is 2-fold degenerate (since it does 
not depend on the value of = 1/ 2zT ±m ) and forms a model 
space defined by the projector 0 0= | |P ϕ 〉〈ϕ . Explicitly this 
projector can be written as 

 = ,P P⊗m m   

 ( )5 5 6 6= | | | | .P ⊗ ↑ 〉〈↑ ⊗ ↑ 〉〈↑m m m
  (2.7) 

For 15 0J J− ≠ , ..., 64 0J J− ≠ , and 1 0h h− ≠  we con-
struct an effective Hamiltonian eff  which acts on the 
model space only but which gives the exact ground-state 
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energy. eff  can be found perturbatively and it is given by 
[23–25] 

 eff
00

| |
= .P P P Pα α

αα≠

ϕ 〉〈ϕ
+ +

ε − ε∑      (2.8) 

Here | αϕ 〉  ( 0α ≠ ) are the known excited states of main  
(2.5). The set of relevant excited states which enters the 
second term in Eq. (2.8) is constituted of the states with one 
flipped spin on those sites that connect two neighboring 
squares. The energy of the excited states depends on the 
states of these two squares. Namely, it acquires the value 

0 2= 2J Jαε ε + −  if both squares are in the | u〉  state, the 
value 0 2= 2 / 2J Jαε ε + −  if one of the squares is in the 
| u〉  state and the other one in the | d〉  state, and the value 

0 2= 2Jαε ε +  if both squares are in the | d〉  state. Taking 
this into account, we can calculate the second term of 
Eq. (2.8) and after using (pseudo)spin operators (2.3) we 
finally arrive at the Hamiltonian  

 ( )eff
( ) =1

= ,
N

x x y y z z z z
mn m n m n mn m n m

mn m
T T T T T T h T + + − +  ∑ ∑ J CJ   

  (2.9) 

where the first sum runs over the neighboring sites of an 
-site square lattice. The parameters mnJ , z

mnJ , h, and C 
are given by 

 ( )( )15 25 54 53

2 2

1= ,
16 1 / 2h

J J J J
J J J

− + −
−

−
J   

 ( )( )26 36 61 64

2 2

1= ,
16 1 / 2

J J J J
J J J

− − +
−

−vJ   

 
2 2 2

1 1= ,
16 1 / 2 1 / 4

z h
h

S
J J J J J

 
− − − 

J   

 
2 2 2

1 1= ,
16 1 / 2 1 / 4

z S
J J J J J

 
− − − 

v
vJ   

 1
2 2

1= ,
16 1 / 4
hS S

h h
J J J
+

− −
−

vh   

 5 3=
2 2

h J− + −C   

 
2 2 2

1 1 ,
64 1 / 2 1 / 4
hS S

J J J J J
 +

− + − − 
v   

 15 25 54 53 26 36 61 64= ,
8

J J J J J J J J
J

+ + + + + + +   

 ( ) ( )2 2
15 25 54 53= ,

2h
J J J J

S
− + + −

  

 ( ) ( )2 2
26 36 61 64= ,

2
J J J J

S
− + − +

v   

 1 2= 2 .h J J+  (2.10) 

Here the index h  (v) corresponds to the horizontal (verti-
cal) direction. For the special case 25 54 36= = =J J J

61 1= =J J  and 15 53 26 64 3= = = =J J J J J  Eqs. (2.9) and 
(2.10) transform into Eqs. (3.10) and (3.11) of Ref. 14. 

In the limit 2/ 0J J →  Eqs. (2.9) and (2.10) transform 
into the effective Hamiltonian effH  obtained by the strong-
coupling approximation with the parameters 

 ( )( )15 25 54 53

2
= ,

16h
J J J J

J
− + −

−J   

 ( )( )26 36 61 64

2
= ,

16
J J J J

J
− − +

−vJ   

 = = 0,z z
h vJJ      1

2
= ,

16
hS S

h h
J
+

− − vh   

 
2

5 3= .
2 2 32

hS S
h J

J
+

− + − vC  (2.11) 

In this limit the effective Hamiltonian is the square-lattice 
spin-1/2 isotropic XY  model in a transverse magnetic field. 
Again Eq. (2.11) transforms into Eq. (A7) of Ref. 14 for 
the azurite-like nonideal geometry. 

The considered case of a general nonideal geometry al-
lows us to discuss the quality of the elaborated effective 
description. The effective theories are based on accounting 
of only two states for each square, | u〉  and | d〉 , and may 
overestimate a tendency for localization. This can be seen 
already from inspection of the constants hJ  and vJ  given in 
Eqs. (2.10) and (2.11). According to these formulas, having, 
for example, 15 25=J J  and 26 36=J J  but 53 54J J≠  and 

61 64J J≠  would be sufficient to suppress completely a 
spreading of localized states over the lattice. By contrast, 
exact-diagonalization results (not shown here) demonstrate 
that this condition is not sufficient to avoid the spreading, 
rather we need in addition the equalities 53 54=J J  and 

61 64=J J . In Fig. 2 we compare exact-diagonalization data 
for the low-temperature magnetization curve calculated for 
the full model of = 24N  sites for two sets of parameters, 

25 54 36 61= = = = 0.8J J J J , 15 53 26 64= = = = 1.2J J J J , 
2 = 2J  [the azurite-like nonideal geometry, cf. Fig. 5(a) of 

Ref. 14] and 15 54 26 61= = = = 0.8J J J J , 25 53 36= = =J J J
64= = 1.2J , 2 = 2J , with the predictions obtained from 

corresponding effective models (2.4), (2.9), (2.10), and 

Fig. 2. (Color online) Field dependence of the low-temperature 
magnetization per site m  of the full and effective models for the 
distorted square-kagome lattice of = 4  cells ( = 0.001T ). The 
first set of parameters (I) corresponds to the azurite-like nonideal 
geometry: 25 54 36 61= = = = 0.8J J J J , 15 53 26 64= = = = 1.2,J J J J  

2 = 2J  [cf. Fig. 5(a) of Ref. 14]. The second set of parameters (II) 
is as follows: 15 54 26 61= = = = 0.8J J J J , 25 53 36 64= = = = 1.2,J J J J  

2 = 2J . 
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(2.9), (2.11). For this choice both sets yield identical re-
sults within each of the effective theories, but both sets 
lead to different results for the full initial model. While for 
the first set the effective models (except the strong cou-
pling-approximation) work well, see the short-dashed blue 
curves and dotted red curves in Fig. 2, for the second data 
set the agreement is less satisfactorily, since the initial 
model exhibits a wider field region where magnetization 
varies between the two plateau values, = 1/ 3m  and 

= 1/ 2m  (dash-dotted magenta curve in Fig. 2). In the latter 
case a discrepancy emerges already between the results 
which follow from H  (2.1) and   (2.2), which leads to the 
conclusion that the restriction to only two states of each 
square yields excellent or only modest results depending 
on specific nonideal geometry under consideration. 

Similar to model (2.4), the obtained spin lattice models 
(2.9), (2.10) and (2.9), (2.11) are also unfrustrated, howev-
er, they are simpler and have less sites = / 6N . There-
fore they are more appropriate for further analysis using, 
for example, quantum Monte Carlo techniques. We will re-
port such quantum Monte Carlo results in the next section. 

3. High-field low-temperature specific heat and phase 
diagram 

After having derived the effective models (2.9), (2.10) 
and (2.9), (2.11), the beautiful results known for the 
square-lattice spin-1/2 0XX / XXZ  Heisenberg model in a 
z -aligned magnetic field can be used to understand the 
high-field low-temperature properties of the square-
kagome quantum Heisenberg antiferromagnet. Since we 
know that our effective models work very well for azurite-
like distortions of ideal geometry (see the above discus-
sion), in what follows we restrict ourselves to this case and 
consider the specific parameter set 1 = 0.8J , 2 = 2J , and 

3 = 1.2J . For this set of parameters exact-diagonalization 
data have been reported already in Ref. 14. However, those 
results were restricted to small systems up to = 20 . 
Now we again consider the effective model eff  given in 
Eqs. (2.9) and (2.10) but present results of more time-
demanding quantum Monte Carlo calculations which refer 
to much larger systems up to = 24 24 = 576× . To per-
form these calculations we used the dir loop_sse package 
(the directed loop algorithm in the stochastic series expan-
sion representation) from the ALPS library [26]. For con-
creteness we will focus on the temperature dependence of 
the specific heat per site ( , )c T h  which may be quite sensi-
ble to the system size   (in contrast, for example, to the 
temperature dependence of the magnetization which shows 
no size effect). It should be noted that the effective spin 
models were investigated via quantum Monte Carlo simu-
lations in the past for particular parameter sets. Note fur-
ther that these models are also considered in the context of 
hard-core bosons, where the z-aligned magnetization corre-
sponds to the particle number and the magnetic field to the 

chemical potential [27]. Although these previous studies 
[28–37] provide a physical picture in general, we have here 
to perform specific calculations for the effective model 
with special parameter sets corresponding to the distorted 
square-kagome quantum Heisenberg antiferromagnet at 
hand. 

From preceding studies (see Ref. 14) we know that de-
viations from the ideal geometry lead to the following 
modifications in a small region of h  around the saturation 
field sat 1=h h . (i) Instead of the jump of the ground-state 
magnetization ( = 0)m T  at 1h  from a plateau at = 1/ 3m  to 
saturated magnetization = 1/ 2m , there is a small finite 
region 1 1l hh h h≤ ≤  around 1h  (for 1 = 0.8J , 2 = 2J , and 

3 = 1.2J  we have 1 = 5h , 1 4.996lh ≈ , 1 5.027hh ≈ ) where 
the magnetization shows a steep increase between the two 
plateau values, = 1/ 3m  and = 1/ 2m . (ii) Instead of a non-
zero residual entropy at 1h , there is zero residual entropy 
followed by a strong enhancement of the entropy at very 
small temperatures. (iii) Instead of zero specific heat at 1h , 
the specific heat ( )c T  shows a 2T -decay as 0T →  in a 
small region of h  around 1h , but it vanishes exponentially 
as 0T →  in the plateau regions, i.e., in the gapped phase. 
Our quantum Monte Carlo results ( = 100, 256, 400, 576)  
for the specific heat collected in Fig. 3 support this scenario 
for the low-temperature behavior of ( , )c T h . In particular, 
from Fig. 3 one can find indications for different decay 
laws as 0T →  for = 4.99h  and = 5.03h  (exponential) and 
for = 5.01h  and = 5.02h  (power-law). Note, however, that 
at extremely low-temperatures quantum Monte Carlo data 
become noisy that restricts our consideration to tempera-
tures above = 0.0005T . (We note that exact-diagonali-
zation data at extremely low temperatures become also 
unreliable, since they suffer from finite-size artifacts.) New 
features with respect to our previous exact-diagonalization 

Fig. 3. (Color online) Specific heat per site ( , )c T h  at high fields 
( = 4.99,5.01,5.02,5.03h ) and low temperatures for the distorted 
square-kagome Heisenberg antiferromagnet (2.1) with 1 = 0.8J , 

2 = 2J , 3 = 1.2J  obtained by quantum Monte Carlo simulations 
for the effective Hamiltonian eff  (2.9), (2.10) with = 100,
256, 400, 576 (the line thickness increases with increase of N ). 
For comparison, we also show exact-diagonalization data for 

= 20  by very thin curves with circles [cf. Fig. 11(b) of 
Ref. 14]. 
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study [14] appearing for larger systems are obvious from 
Fig. 3, where for comparison also exact-diagonalization 
data for = 20  are shown. As   increases, the peak for 

= 5.01h  and = 5.02h  becomes somewhat higher and 
sharper and moves to slightly lower temperatures. For 

= 5.02h  it changes even its form. On the other hand, the 
temperature profiles for = 4.99h  and = 5.03h  are insensi-
tive to the system sizes. This behavior of temperature pro-
files as h  varies reflects the difference in the low-
temperature specific heat for the gapless phase (h  is inside 
the region 1 1l hh h h≤ ≤ ) and the gapped phases (h  is out-
side this region). 

The most intriguing property of the effective models 
(2.9), (2.11) and (2.9), (2.10) is the existence of a BKT 
transition. A classical two-dimensional isotropic XY  model 
undergoes a transition from bound vortex-antivortex pairs 
at low temperatures to unpaired vortices and antivortices at 
some critical temperature cT  [38]. For < cT T  (superfluid 
phase) the system is characterized by quasi-long-range 
order, i.e., correlations decay algebraically at large distanc-
es without the emergence of a nonvanishing order parame-
ter. For > cT T  (normal phase) the system is disordered 
with an exponential increase of the correlation length ξ  as 

cT T→ , 

 /e , = .b c

c

T T
T

τ −
ξ ∝ τ  (3.1) 

The BKT transition temperature for the classical square-
lattice isotropic XY  model (without field) is 0.893 | |cT ≈ J  
[39–42]. Within numerical studies dealing with finite sys-
tems it is quite difficult to extract an exponential diver-
gence of ξ  at cT  from the finite-size data for the large-
distance behavior of spin correlations. Another important 
quantity to pin down the BKT transition is the so-called 
helicity modulus ϒ which is related to the superfluid densi-
ty sρ  [43]. In the quantum spin-1/2 case, the BKT critical 
behavior occurs too [28,29,31]. The critical temperature 
for the = 1/ 2s  case is estimated as 0.34 | |cT ≈ J  [31,36,37]. 
The quantum model is gapless with an excitation spectrum 
that is linear in the momentum. The specific heat ( )c T  shows 

2T  behavior for 0T → , it increases very rapidly around cT , 
and it exhibits a finite peak somewhat above cT  [29]. This 
kind of the low-temperature thermodynamics survives for 
not too large z-aligned magnetic field | |< 2 | |h J  (see, e.g., 
Figs. 3 and 8 in Ref. 34 or Fig. 1 in Refs. 36 and 37). Also 
for the spin-1/2 square-lattice XXZ  model with dominating 
isotropic XY  interaction in a z-aligned magnetic field the 
BKT transition appears [35]. 

Following our previous study [14], we use the observa-
tion of Ref. 29 that the BKT transition point cT  is located 
somewhat below the well-pronounced peak-like maximum 
of the specific heat. Although the adopted criterion to fix 
the critical temperature cT  for different h  is a rather rough 
one, it can provide a sketch of the phase diagram based on 
specific-heat data. Since the peak in ( )c T  calculated by 

exact diagonalization shows noticeable finite-size effects 
[14], we use here the quantum Monte Carlo approach to 
obtain data for much larger systems thus getting more ac-
curate predictions. A sketch of the phase diagram of the 
distorted square-kagome Heisenberg antiferromagnet in the 
h–T  plane which uses the maximum in the specific heat as 
an indicator of the BKT transition is reported in Fig. 4(a). 
In this figure the thick solid blue line corresponds to the 
position *T  of the maximum in the specific heat per site 

( , )c T h  obtained by exact diagonalization earlier for 
= 20  (cf. Fig. 12 of Ref. 14). The blue symbols corres-

pond to quantum Monte Carlo data ( = 100, 256, 400, 576)  

Fig. 4. (Color online) (a) Sketch of the phase diagram of the dis-
torted square-kagome Heisenberg antiferromagnet ( 1 = 0.8J , 

2 = 2J , 3 = 1.2J ) at high magnetic field (thick dashed green line) 
as it is indicated by the position of the maximum *T  of the spe-
cific heat ( , )c T h  shown by the thick solid blue curve ( = 20 ) 
and the blue symbols (triangles — = 100 , squares — 

= 256 , pentagons — = 400 , circles — = 576 ). By 
filled violet circles the values of 1 4.996lh ≈  and 1 5.027hh ≈  are 
indicated. (b) Height of the maximum in the specific heat *( , )c T h  
(multiplied by 0.12): dashed red curve — = 20 , red triangles — 

= 100 , squares — = 256 , pentagons — = 400 , circles — 
= 576 . (c) Dependence of *( )T h  on 1 /   at various fields .h  
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for *( )T h . Based on these data for *T  we have drawn the 
thick dashed green line showing a tentative BKT-transition 
line ( )cT h . Figure 4(b) shows the height of the maximum 
in the specific heat, i.e., the value of *( , )c T h  (here multi-
plied by 0.12 to get correspondence to Fig. 12 of Ref. 14). 
Again we compare exact-diagonalization data for = 20  
(thin red line) with new quantum Monte Carlo data for 

= 100, 256, 400,  and 576 (symbols). It is obvious that 
the height of the maximum increases noticeably in the field 
region where a BKT transition appears. Finally, we illus-
trate the finite-size dependence of *( )T h  in Fig. 4(c), 
which is obviously weak. Although *( )T h , 1 1l hh h h≤ ≤ , is 
shifted to slightly lower temperatures for large values   
in comparison with the previous prediction [14], the values 
of *( )T h  apparently are already close to their values in the 
limit →∞ . 

4. Conclusions 

In the present paper we have improved the low-energy 
theory of the almost flat-band square-kagome quantum 
Heisenberg antiferromagnet at high magnetic fields. Ana-
lytical results for effective Hamiltonians refer now to 
(small) deviations of general case from the flat-band situa-
tion. The relevant effective model has been investigated for 
quite large system sizes using quantum Monte Carlo simu-
lations. The high-field low-temperature phase diagram of 
the distorted square-kagome quantum Heisenberg antifer-
romagnet reported in Fig. 4(a) refines previous findings 
which were based on exact-diagonalization data for small 
systems. Although the existence of the BKT transition is 
not questionable, the precise phase diagram remains an 
open question. To find precise values for the BKT-trans-
ition temperature for the square-kagome quantum Heisen-
berg antiferromagnet, in fact, one has to determine accu-
rately, e.g., by quantum Monte Carlo techniques, the BKT-
transition temperature of the corresponding effective 
square-lattice spin-1/2 XXZ easy-plane model in a z-align-
ed magnetic field. To the best of our knowledge, this prob-
lem has not been studied yet and its consideration is out of 
the scope of this article. Finally, the reported results shed 
more light on possible manifestation of localized-magnon 
effects in experiments, if a realization of the square-ka-
gome Heisenberg antiferromagnet becomes available. 
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Appendix A: Effective Hamiltonians for the quantum 
Heisenberg antiferromagnet on a distorted frustrated 

diamond chain at high magnetic fields 

In this appendix we provide a similar extension for the 
one-dimensional counterpart of the square-kagome lattice, 
namely the distorted diamond chain, for completeness and 
comparison. In the case of the diamond chain [15] with a 
most general exchange coupling scheme [see Eq. (2.1) and 
Fig. 5] we arrive at the following results. The effective 
Hamiltonian   [cf. Eq. (2.4)] reads 

 ( ) ( )2
2 ,3

=1
=

2 4
z z

m m
m

Jh h J T h J s− − − − − − +
∑


   

 ( )13 23 13 23
,3 ,3 ,32 2

yz z x x y
m m m m m m

J J J J
T s T s T s

+ − +
+ + + +   

 ( )31 32 31 32
,3 1 ,3 1 ,3 1 ,

2 2
y yz z x x

m m m m m m
J J J J

s T s T s T+ + +
+ − 

+ − + 


 

 13 23 31 32= .
4

J J J J
J

+ + +
 (A.1) 

The effective Hamiltonian eff  [cf. Eqs. (2.9), (2.10)] is 
given by the formula 

 ( )eff 1 11
=1

= yx x y z z z z
m m m m m mm

m
T T T T T T T+ ++

 + + − + ∑


 h CJ J  

  (A.2) 

with the following parameters: 

 ( )( )13 23 31 32

2 2

1= ,
4 1 /

J J J J
J J J

− + −

−
J   

 
( ) ( )2 2

13 23 31 32

2 2

1= 1 ,
8 1 /

z J J J J
J J J

− + + −  
− − 

J   

 ( ) ( )2 2
13 23 31 32

1
2

= ,
8

J J J J
h h

J
− + + −

− −h   

( ) ( )2 2
13 23 31 322

2 2
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4 2 32 1 /

J J J JJ Jh
J J J
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C
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4

J J J J
J
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 1 2= .h J J+  (A.3) 

Fig. 5. (Color online) The diamond chain described by Hamilto-
nian (2.1). The trapping cells for localized magnons (vertical 
dimers) are indicated by bold red lines 2(J  bonds). 
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In the limit 23 31 1= =J J J  and 13 32 3= =J J J  these re-
sults coincide with those ones obtained in Ref. 14, see 
Eqs. (3.6) and (3.7) of Ref. 14. 

Similar to the case of the square-kagome lattice, effec-
tive theories overestimate the tendency of localization. For 
example, 13 23=J J  but 31 32J J≠  or vice versa is suffi-
cient to suppress completely a spreading of localized states 
within the effective models. On the other hand, exact-
diagonalization data for the full model indicate that this 
condition is not sufficient to suppress the spreading, rather 
we need both equalities to hold, 13 23=J J  but 31 32=J J . 
In Fig. 6 we compare exact-diagonalization data for the 
low-temperature magnetization curve for the initial full 
model and the effective models considering two sets of 
parameters: 23 31= = 0.85J J , 13 32= = 1.15J J , 2 = 3J  [cf. 
Fig. 3(a) of Ref. 14] and 13 31= = 0.85J J , 23 32= = 1.15J J , 

2 = 3J . Each effective model yields identical predictions 
for both sets of parameters, whereas the results for the ini-
tial model are different (compare solid black and dash-
dotted magenta curves in Fig. 6). Furthermore, for the az-
urite-like nonideal geometry the effective theory based on 
Eqs. (A.2), (A.3) provides a quite good quantitative de-
scription of the magnetization curve, whereas in the other 
case the agreement is only qualitative. 
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