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An exact diagonalization method is applied to solve the quantum-mechanical problem of spinless helium at-
om in an external electric field of arbitrary magnitude. The basis set for two-electron problem is built from dif-
ferent pair combinations ψnalama(αra)ψnblbmb(αrb) of orthonormalized single-particle hydrogen-like wave func-
tions ψnml(r) belonging to any possibly bound states of the individual a- and b-electrons in the Coulomb central 
field renormalized by the scale parameter α > 0. Within the selected basis the matrix elements of the total Hamil-
tonian allows an exact analytical representation in the form of finite numerical sums. The diagonalization proce-
dure is performed by Jacobi algorithm for N×N square Hermitian matrix built on the basis of dimension N = 25. 
The systematics and the numerical values of the low-lying energy levels at zero field are in good agreement with 
known experimental data. The field dependences of low-lying levels (Stark effect) and polarizability in 
the ground state of helium atom are presented. It is shown that even extremely high external fields lead only 
to shifting or splitting of existing low levels, without disturbance of their systematics. Typically, no new low-
energy excitation can be created under external electric field of moderate intensity. Radical reconstruction 
in spectrum of individual helium atoms can be expected in condensed helium phases where each atom is deeply 
affected by interaction fields from neighbors. This result should be taken into account at interpretation 
of electrodynamic experiments on superfluid helium. 

PACS: 31.15.ac High-precision calculations for few-electron (or few-body) atomic systems. 

Keywords: helium atom, two-electron shell, exact diagonalization. 

1. Introduction

Unusual response of superfluid helium under external 
electromagnetic exposure is a subject of intensive discus-
sions over last decade [1–8]. The most impressive thing is 
detection of a certain low-frequency mode of 180.3  GHz 
which behaves like specific eigenstate of superfluid flow in 
4 He [7,8]. This mode can be splitted by an external sta-
tionary and uniform electric field, and such a splitting in-
creases linearly with applied field [7,8]. The nature of the 
low-frequency mode is still not quite understood, but it is 
evident that the corresponding phenomena can not be in-
terpreted properly without correct solution of the quantum 
mechanical problem on helium atom in an external electric 
field of arbitrary intensity. Standard approach for description 
of Stark effect in helium based on perturbation theory [9] 
does not allow us to accomplish the necessary treatment 
because of restrictions on the magnitude of the external 
field connected with typical conditions of the perturbation 
smallness. The corresponding solution can be built within 

exact diagonalization method, and we realize this program 
in the present paper. 

Two-electron helium atom is the simplest three-body 
atomic system absolutely stable at zero temperature. The 
widest literature is devoted to the quantum mechanics of 
two-electron atomic shell (the main part of this literature is 
reviewed and discussed in the classical books [9,10], for 
recent publications see also reviews Refs. 11, 12). From 
the formally point of view the Schrödinger equation for 
two mutually repulsive electrons in the central attractive 
Coulomb field of the infinite heavy nucleus is a linear six-
variable differential equation of second order in partial 
differentials. An exact analytical solution of this equation 
is still unknown [12], so that this problem was treated by a 
number of approximate approaches. Since the initial paper 
of Hylleraas [13] the Ritz variational approach based on 
artificial trial functions of different kind [14–22] predomi-
nates in the problem of helium states. It should be noted 
that all these results are the conditional variational solu-
tions with reduced (as compared with initial six-coordinate 
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statement) number of spatial variables, so that they are 
approximate solutions whose accuracy should be estimated 
by independent methods. The energy of the helium atom 
ground state was also estimated by various approximate 
methods as perturbation study with 1/Z-expansion [23–25], 
semiclassical approach [26,27] and Hartree–Fock approxi-
mation [9,10,28–34]. 

Mathematically, the solution of a linear differential 
equation can be built unambiguously as an expansion over 
a complete orthonormalized basis. As the corresponding 
basis it should be used any complete set of eigenfunctions 
belonging to a suitable Sturm–Liouville problem [35,36]. 
Thus, the initial problem reduces to an algebraic problem 
on eigenvalues and eigenvectors of an Hermitian matrix. 
The algebraic problem can be solved by direct 
diagonalization of the obtained matrix, and it is the essence 
of exact diagonalization method. In this paper we apply 
this method to the spinless helium atom in an external elec-
tric field. 

In Sec. 2, we present the statement of the problem. 
In Sec. 3, we describe the method to solve the problem in 
general. Section 4 contains the diagonalization for the case 
of zero field with basis of dimensionality = 25N  to illustrate 
the structure and classification of eigenstates of free heli-
um atom. In Sec. 5 we show the field dependences of low-
lying levels and polarizability of the ground state. 

2. Statement of the problem 

Helium electronic shell consists of two electrons which 
we denote as “a” and “b” particle, and all the values be-
longing to corresponding particle will be labeled by the 
corresponding index. In the spherical coordinate system 
with origin at immobile nucleus the radius-vectors of parti-
cles are = { , , }a a a ar ϑ ϕr , = { , , }b b b br ϑ ϕr , and the Hamil-
tonian of the spinless helium shell (4 He) under external 
stationary and uniform electric field E can be written using 
the standard Hartree units [9,37] in the form 

 (0)ˆ ˆ= ( ).a bH H + +E r r  (1) 

Here (0)Ĥ  is the Hamiltonian of the free (at = 0E ) helium 
shell, 

 (0) ( ) ( )
int

ˆ ˆ ˆ ˆ= ,a bH H H H+ +  (2) 

where one-particle Hamiltonians ( )ˆ aH  and ( )ˆ bH  are 

 ( ) ( )0 01 1ˆ ˆ= , = ,
2 2

a ba b
a b

a b

Z Z Z Z
H H

r r
− ∆ + − ∆ +  (3) 

and the interaction term, intĤ , is 

 int
ˆ ( , ) = .

| |
a b

a b
a b

Z Z
H

−
r r

r r
 (4) 

The nucleus charge is 0 = 2Z +  and particle charges are 
= = 1a bZ Z − . 

An important property of the free atom (at = 0E ) is that 
the square of the total angular momentum of its shell, 

 2 ( ) ( ) 2ˆ ˆ ˆ= ( ) ,a bL +L L   

and z-projection of the shell angular momentum, 

 ˆ = ,z
a b

L i
 ∂ ∂

− + ∂ϕ ∂ϕ 
  

obviously commutate with Hamiltonian (2) [38]. Thus, the 
both dynamical variables are integrals of motion for field-
free problem which means conservation both of the total 
angular momentum and its z-projection on an arbitrary 
quantization axis. However, these variables have some-
what different meaning. To clarify this statement we intro-
duce, as the temporary variables, new azimuthal coordi-
nates 

 ˆ= , = , = 2 ,a b a b zL i+ −
+

∂
Φ ϕ +ϕ Φ ϕ −ϕ −

∂Φ
  

and rewrite the angular-dependent part of the interaction 
Hamiltonian, intĤ , in the form 

 2 2
int

ˆ ( , , , , ) = {a b a b a bH r r r r−ϑ ϑ Φ + −   

 1/22 (cos cos sin sin cos )} .a b a b a br r −
−− ϑ ϑ + ϑ ϑ Φ  (5) 

It is seen that +Φ  is a cyclic variable because the total 
Hamiltonian Ĥ  does not depend on +Φ , so that its conju-
gate dynamical variable ˆzL  is an integral of motion. Eigen-
values of this operator, 

 = = 0, 1, 2...a bM m m+ ± ±  (6) 

(here am  and bm  are magnetic quantum numbers of indi-
vidual electrons) serve as good quantum numbers of the 
general problem. It means that every pure eigenstate of the 
Hamiltonian, 0Ĥ , can be represented as infinite superposi-
tion of pair compositions of single particle wave functions 
with arbitrary ,am bm , but only under condition (6). This 
property will be used below for classification of the two-
electron shell states. 

3. Exact diagonalization method 

Mathematically, the spinless Schrödinger equation 

 ˆ ( , ) = ( , )a b a bHΨ Ψr r r r  (7) 

is the linear partial differential equation of second order 
with six spatial variables ,ar  br , and the variables can not 
be separated due to the special form of intĤ . An exact ana-
lytical solution of the two-particle equation (1) even at 

= 0E  is still unknown [12], let alone the case of nonzero 
external fields. Up to now the problem of free helium atom 
was analyzed with different approximate methods, among 
them in the most common use are direct Ritz variational 
approach [14–22], self-consistent (Hartree–Fock) approxim-
ation [9,10,28–34] and perturbation theory [9,10]. An ef-
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fect of external electric fields was discussed exclusively 
within framework of standard perturbation theory with 
computation methods based on a certain variational proce-
dure [39,40]. Here we shall build the formally exact solu-
tion of the problem Eq. (1) by exact diagonalization meth-
od which in our case is, in fact, standard Fourier procedure 
of mathematical physics [35,36]. It provides derivation of 
the solution in the form of an expansion over a basis built 
of the selected complete set of orthonormalized functions. 

Below, we consider only bound states of two-particle 
Hamiltonian (1) with discrete spectrum < 0 . Let us find 
the exact solution ( , )a bΨ r r  of the linear partial differential 
equation (1) as an expansion [35,36] 

 
=1

( , ) = ( , )a b p p a b
p

c u
∞

Ψ ∑r r r r  (8) 

over a complete set { ( , )}p a bu r r  of functions orthonormal-
ized with standard condition 

 3 3| = ( , ) ( , ) = ,p q a b p a b q a b pqu u d d u u+〈 〉 δ∫ r r r r r r  (9) 

where pqδ  is Kronecker delta. The solution should satisfy 
the natural reciprocity relations, ( , ) = ( , )a b b aΨ ±Ψr r r r , 
which means the invariance relative to spatial permutations 
of the equivalent shell electrons. To determine the solution 
of Eq. (1) unambiguously, the coefficients pa  have to be 
obtained by any reasonable procedure. If the elements of 
the basis { ( , )}p a bu r r  are not eigenfunctions of the Hamil-
tonian Ĥ  then determination of the coefficients pc  by sub-
stitution of Eq. (8) into Eq. (1) with regard to condition (9) 
leads to infinite system of linear algebraic equations prin-
cipally coupled each other, 

 
=1

( ) = 0,pq pq q
q

H c
∞

− δ∑   (10) 

where 

3 3ˆ ˆ= | | = ( , ) ( , )pq p q a b p a b q a bH u H u d d u Hu+〈 〉 ∫ r r r r r r . (11) 

Thus, the problem is reduced to standard algebraic eigen-
value problem with infinite Hermitian matrix pqH . 

The best way to solve the problem (10) is diagonali-
zation of pqH  by corresponding unitary transformation 
[41,42], 

 1
1 2

=1 =1
= diag { , ,..., ...},ip pq qj ij k

p q
H

∞ ∞
− ε ε ε∑ ∑S S  (12) 

where 

 1

=1

ˆ= ; Det = 1.ip pj ij
p

∞
− δ∑S S S  (13) 

The eigenvalues 1 2 ... ...kε ≤ ε ≤ ≤ ε ≤  are the spectrum of 
the problem (10), including degenerated states. The j-column 
of the unitary matrix pjS  consists of the components of the 

infinite-dimensional eigenvector ( )| j
pe 〉  of the matrix pqH  

belonging to eigenvalue jε , 

 ( ) ( )

=1
= .j j

pq q j p
q

H e e
∞

ε∑  (14) 

The eigenvectors ( )| j
pe 〉  are naturally orthonormalized by 

definition, 

 ( ) ( )

=1
= .j k

p p jk
p

e e
∞

δ∑  (15) 

The components of eigenvectors realize the representation 
of corresponding eigenstates in the initial basis { ( , )}p a bu r r , 

 ( )
( )

=1
( , ) = ( , ).j

j a b p p a b
p

e u
∞

Ψ ∑r r r r  (16) 

It is easy to check that Eq. (16) is an eigenvector of Hamil-
tonian Ĥ . As a result, the solution of Eq. (1) is reduced to 
algebraic problem of eigenstates (14) with infinite Hermi-
tian matrix pqH . A problem of such kind can be solved 
with any desirable accuracy by different numerical me-
thods [41,42]. 

Practically, the solution of the infinite algebraic system 
Eqs. (10), (12) is usually built by successive approxima-
tions [41,43]. Let us suppose that the system is obtained 
using the truncated functional basis ( ){ ( , )}N

p a bu r r  consist-
ing of first N functions of the complete basis { ( , )}p a bu r r , 
so that 

 ( ) ( ) ( )

=1
( , ) = ( , ).

N
N N N

a b p p a b
p

c uΨ ∑r r r r  (17) 

The corresponding algebraic system based on N×N Hermitian 
submatrix ( )N

pqH  of the complete matrix pqH  produces N 

eigenvalues, ( ) ( ) ( )
1 2, , ... ,N N N

Nε ε ε , and eigenvectors of dimen-
sionality N [41]. This system can be considered as N-ap-
proximate solution of the initial infinite-dimensional problem 
of eigenstates. To prove the convergence of the procedure 
we calculate ( 1)N + -approximate solution based on first 
( 1)N +  basis functions, 1{ ( , )}p a b Nu +r r , which generate an

( 1) ( 1)N N+ × +  Hermitian matrix, ( 1)N
pqH + . The eigenvalues 

of this (N+1)-approximation are ( 1) ( 1) ( 1)
1 2 1, , ...,N N N

N
+ + +

+ε ε ε . 
The described process leads to the following chain of ine-
qualities for successive approximate eigenvalues [41,43,44] 

 ( ) ( 1)| | | | | |,N N
jj j

+ε ≤ ε ≤ ε  (18) 

where = 1, 2, ...,j N , and jε  is an exact j -eigenvalue, ob-
tained as a limit at N →∞ . It means monotonic conver-
gence of the described procedure. The rigorous prove of 
the convergence demands more detailed mathematical 
treatment of the asymptotic behavior of the matrix ele-
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ments pqH  at ,p q →∞ . The analysis of corresponding 
criteria [41,44] is far from goals of the present paper, it 
will be a matter of special research. Eigenvalues and ei-
genvectors can be found for each submatrix ( )N

pqH  and, 
consequently, the main problem can be solved practically 
with any desirable accuracy if the elements ( )N

pqH  are built 
exactly at arbitrary N . The described approach reduces the 
functional problem with differential equation to an infinite 
algebraic eigenvalue problem whose spectrum and the func-
tional representation Eq. (16) of eigenvectors in the limit 
N →∞  coincides exactly with the spectrum and eigen-
states of the original Hamiltonian. Eigenvectors of the al-
gebraic problem give representations for eigenfunctions of 
original Hamiltonian in the basis { ( , )}p a bu r r . 

4. Eigenstates of two-electron shell at = 0E  

Here we start from the solution for free helium atom 
without external fields. We produce the spectrum and wave 
functions of isolated helium atom (at = 0E ) with Hamilto-
nian (2). It will make us below to explain corresponding 
field dependences for arbitrary fields  0≠E . 

For our goals it is naturally to select the basis 
{ ( , )}p a bu r r  as every possible direct products, 

 ( , ) = ( , , ) ( , , )p a b n l m a a a n l m b b ba a a b b b
u r rψ α ϑ ϕ ψ α ϑ ϕ ≡r r   

 ,a a a

b b b

n l m
n l m

≡  (19) 

of single-particle hydrogen-like functions [10,46], 

 ( ) = ( ) ( , ) | ,nlm nl lmR r Y nlmψ α α ϑ ϕ ≡ 〉r  (20) 

where ( , )lmY ϑ ϕ  are spherical harmonics in standard de-
termination [10,37], and radial function ( )nlR rα  depends 
on radial coordinate renormalized by scale parameter 

> 0α , 

 
3/2

2 3
2 ( 1)! 2( ) =

[( )!]

l

nl
n l rR r

nn n l
α − − α α − × 

 +
  

 2 1 2 exp ,l
n l

r rL
n n

+
+

α α   × −   
   

 (21) 

where ( )m
nL x  are Laguerre polynomials, 

 2

=0

( )( ) = ( 1) ( !) .
!( )!( )!

n m k
m m
n

k

xL x n
k m k n m k

− −
−

+ − −∑  (22) 

Note, that functions nlR  of the set Eq. (21) are orthonor-
malized at any real positive > 0α . The case = 1α  in sin-
gle-particle function corresponds to the simple hydrogen 
atom. For two-electron helium shell we have 0= Zα −σ, 
where 0 < < 1σ  is the screening parameter [9,37,45]. The 
presence of the screening parameter σ  means that each of 
the electrons moves in the nucleus field renormalized due 
to influence of another electron. Physically, this fact can be 
considered as an effective account of Hartree's self-con-
sistency. 

Each basis function number 

 a a a

b b b

n l m
p

n l m
 

→  
 

 (23) 

is determined in univocal correspondence to a double set of 
single-particle hydrogen-like quantum numbers. The com-
plete basis must include all functions ( )n l m aa a a

u r  and 
( )n l m bb b bu r  corresponding to all degenerate states with 

different am  and bm  at given an , bn , al , bl . The complete 
basis must contain all m-dependent functions because azi-
muthal variables are connected directly with true quantum 
number M of the general problem. Each function (19) 
is the eigenfunction of the zL -operator (see Eq. (5)) with 
eigenvalue = a bM m m+ . Consequently, all eigenstates of 
the Hamiltonian (2) which are linear combinations of the 
basis elements (19) with different ,a bm m  will be evidently 
eigenfunctions of zL  corresponding to determined M. Thus, 
the total space of the basis functions is naturally separated 
on subspaces from basis elements belonging to the deter-
mined = a bM m m+ . This property is principally important 
for rigorous classification of two-particle states. 

As a result, we will find the solution of the problem 

 (0) (0)ˆ ( , ) = ( , )a b a bH Ψ Ψr r r r  (24) 

in the form Eq. (8) with the basis (19). Matrix elements of 
the Hamiltonian (0)H  on the basis (19) are (cmp. Ref. 37)

 ___________________________________________________  

 
2

(0) (0)
2 2

1 1 1 1 1= | | = | | | | ( , = 1,2,...).
2 | |pq p q pq p q p q a b

a b a ba b
H u H u u u u u n n

r rn n

 α
〈 〉 − + δ −σ〈 + 〉 + 〈 〉   −  r r

 (25) 

The matrix elements of interelectron repulsion intĤ  can be obtained through cumbersome, but elementary integrals, 

 
21 1 1 2 2 2 1 1 2 2 1 1 2 2

1 1 1 2 2 2 1 1 2 2 1 1 2 2= 1

, ,1 1| | = = .
, ,| | | |

L
a a a a a a a a a a a a a a

p q l l
b b b b b b b b b b b b b ba b a b l L

n l m n l m n l n l l m l m
u u F

n l m n l m n l n l l m l m
  

〈 〉 Φ   − −   
∑r r r r

  

  (26) 
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Here 1 1 2 2 1 2 1 2
1 2 1 2

1 1 2 2
= (2 1)(2 1)(2 1)(2 1)

0 0 0 0 0 0
a a a a a a b b

l a a b b
b b b b

l m l m l l l l l l
l l l l

l m l m
    

Φ + + + + ×   
   

  

 1 2 1 2

1 2 1 2=
( 1) ,

l
a a b bm M

a a b bm l

l l l l l l
m m m m m m

+

−

  
× −   − − −  
∑  (27) 

 ______________________________________________ 

where 
a b c
d e f
 
 
 

 are Wigner 3 j -symbols [47], 

1 1a bM m m= + 2 2 0, 1, 2, ...a bm m= + = ± ±  
is the shell quantum number (see Eq. (6)),  

1 1 2 1 2= max{|   |, |   |}a a b bL l l l l− − , 2 1 2= min{ ,a aL l l+ 1 2}b bl l+  
(max{ , }a b  or min{ , }a b  means maximal or minimal value 
of two comparable integers, respectively). The Wigner sym-

bol 1 2  0
0 0 0
l l l 

≠ 
 

 only if 1 2 = 2 0l l l s+ + ≥  is even integer 

and   0
a b c
d e f
 

≠ 
 

 only if = 0d e f+ +  (see Refs. 46–48). 

Thus, nontrivial matrix elements exist at the compatibility of 
the conditions 1 2 = 0a am m m− + −  and 1 2 = 0b bm m m− + + , 
as well as the conditions 1 2 = 2a al l l p+ +  and 1 2 = 2 ,b bl l l q+ +  
p and q are positive integers. The first pair of the equalities 
reduces to the identity M M≡ , whereas the second pair 
gives 1 1 2 2( ) ( ) = 2( )a b a bl l l l p q− + − −  which means that both 
of 1 1a bl l−  and 2 2a bl l−  are odd or even simultaneously 
(zero is considered as the even integer). Consequently, at 
any determined M the total space of solutions separates 
onto 2(2 | | 1)M +  subspaces corresponding to each 
0 | | | |M M′≤ ≤  and divided additionally at any determined 
M ′ on two subspaces with a certain parity of | |a bl l− . 
Function lF  as double integral over radial variables can be 
represented in the form of multiple finite numerical sums 
(see Appendix 1). 

Matrix elements of the nucleus-electron interaction are 

 1 1 1 2 2 2

1 1 1 2 2 2

1 1| | = =a a a a a a
p q

b b b b b ba a

n l m n l m
u u

n l m n l mr r
〈 〉   

 
1 2 1 2 1 2 1 2 1 2

= n n l l m m l l m mb b b b b b a a a a
δ δ δ δ δ ×  

 1 1 1 2 2( , | , ),a a a an l n l−×   (28) 

 1 1 1 2 2 2

1 1 1 2 2 2

1 1| | = =a a a a a a
p q

b b b b b bb b

n l m n l m
u u

n l m n l mr r
〈 〉   

 
1 2 1 2 1 2 1 2 1 2n n l l m m l l m ma a a a a a b b b b

= δ δ δ δ δ ×  

 1 1 1 2 2( , | , ),b b b bn l n l−×   (29) 

where integral s  is presented in Appendix 2. Thus, all 
matrix elements (26), (28), (29) can be obtained as observ-
able analytical expressions and calculated with any desira-
ble accuracy. 

The total angular momentum ( ) ( )ˆ ˆ ˆ= a b+L L L  of the shell 
is a dynamic variable which conserves due to central sym-
metry of the two-electron system relative to center on 
the nucleus. The angular and translational variables can not 
be separated in the Schrödinger equation (24), so that there 
are not a simple quantization rule for 2L̂ , as we have for ˆ .zL  
However, the matrix elements 2ˆ| |p qu L u〈 〉 can be calcu-
lated easily, so that we have an average value of this opera-
tor in each eigenstate with number j ,

 ___________________________________________________  

 2 ( ) ( ) 2
( ) ( )

=1 =1

ˆ ˆ( , ) | | ( , ) = ( , ) | | ( , ) =j j
j a b j a b p q p a b q a b

p q
L e e u L u

∞ ∞
〈Ψ Ψ 〉 〈 〉∑ ∑r r r r r r r r   

 ( ) ( )
, , , , 2 2 2 2 2 2 , ,1 2 1 2 1 2 1 2 1 2 1 2

=1 =1
= {[ ( 1) ( 1) 2 ]j j

p q n n n n l l l l a a b b a b m m m ma a b b a a b b a a b b
p q

e e l l l l m m
∞ ∞

δ δ δ δ + + + + δ δ +∑ ∑   

 2 2 2 2 2 2 2 2 , 1 , 11 2 1 2
( 1) ( 1) ( 1) ( 1)a a a a b b b b m m m ma a b b

l l m m l l m m + −+ + − + + − − δ δ +   

 2 2 2 2 2 2 2 2 , 1 , 11 2 1 2
( 1) ( 1) ( 1) ( 1) }a a a a b b b b m m m ma a b b

l l m m l l m m − ++ + − − + − + δ δ  , (30) 

 ______________________________________________ 

with correspondence between p, q and others indexes giv-
en by Eq. (23). 

After diagonalization (0)
pqH  (25) we have spectrum and 

eigenstates of the two-electron atom. In our calculations, as 
usual, α will be considered as an additional nonlinear vari-
ational parameter (cmp. with Refs. 9, 37, 45) which is de-
termined from direct optimization of the ground state energy 

(0)
1 ( )ε α  obtained with truncaded basis of dimensionality N, 

 
(0)
1 ( )

= 0
∂ε α

∂α
. (31) 

In our statement, it can be proved that 0Zα →  (or 0σ→ ) 
with N →∞ , as the approximate solution tends to its exact 
form. Of course, the problem can contain a set of nonlinear 
parameters (see, for example, Refs. 21, 22) with corre-
sponding modification in conditions for their optimization. 
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Here we use the basis set formed by pair combinations 
of five single-particle hydrogen-like states corresponding 
to = 1,2n . Nomination of this two-particle basis functions 
is given in Appendix 3. As a result, we obtain the Hermi-
tian matrix pqH  of the 25 25×  dimensionality with spec-
trum (0)

jε  (1 25)j≤ ≤  and eigenvectors ( )j
pe . The diagonal-

ization of this matrix is fulfilled by Jacobi method [49] 
with an absolute accuracy (for energy levels and eigenvec-
tors orthonormality) of 1310− . The spectrum of the problem 
(at screening constant = 0.23231σ ) is shown in Table 1. 
The wave function of state with number j  is 

 
25

( )
( )

=1
( , ) = ( , ).j

j a b p p a b
p

e uΨ ∑r r r r  (32) 

Table 1. Helium spectrum in the truncated basis = 25N  

Level ,pε  a.u. M  al  bl  2ˆ〈 〉L  
Symmetry 

of state 
(0)
1ε  –2.85688 0 0 0 0 s  

(0)
2ε  –2.05239 0 0 0 0 s  

(0)
3ε  –2.13341 0 0 0 0 a  

(0)
4ε  –2.06874 0 0 1 2 a  

(0)
5ε  –2.01338 0 1 0 2 s  

(0)
6ε  –2.06882 –1 0 1 2 a  

(0)
7ε  –2.01314 –1 1 0 2 s  

(0)
8ε  –2.06882 1 0 1 2 a  

(0)
9ε  –2.01314 1 1 0 2 s  

(0)
10ε  –0.76609 0 0 0 0 s  

(0)
11ε  –0.64193 0 0 1 2 s  

(0)
12ε  –0.74991 0 1 0 2 a  

(0)
13ε  –0.59056 –1 0 1 2 s  

(0)
14ε  –0.80144 –1 1 0 2 a  

(0)
15ε  –0.59057 1 0 1 2 s  

(0)
16ε  –0.80144 1 1 0 2 a  

(0)
17ε  –0.54766 0 1 1 0 s  

(0)
18ε  –0.69679 –1 1 1 2 a  

(0)
19ε  –0.65963 –1 1 1 6 s  

(0)
20ε  –0.69679 1 1 1 2 a  

(0)
21ε  –0.65963 1 1 1 6 s  

(0)
22ε  –0.65963 –2 1 1 6 s  

(0)
23ε  –0.65963 0 1 1 6 s  

(0)
24ε  –0.69679 0 1 1 2 a  

(0)
25ε  –0.65963 2 1 1 6 s  

It can be seen that total space of eigenstates decompos-
es to 2(2 | | 1)M +  independent subspaces corresponding to 
each quantum number 0 | | ( )a bM l l≤ ≤ + . The ground 
state (1) ( , )a bΨ r r  (with (0)

1 = 2.85688285585356ε − ) is 
composed of basis functions ( , )p a bψ r r  satisfying the con-
dition of quantum number = = 0a bM m m+  at =a bl l , 

 (1) 1 2( , ) = 0.91428 ( , ) 0.0892[ ( , )a b a b a bu uΨ − +r r r r r r   

 3 10 17( , )] 0.0223 ( , ) 0.0145 ( , )a b a b a bu u u+ − − +r r r r r r   
 23 240.0145[ ( , ) ( , )].a b a bu u+ +r r r r  (33) 

Within the system of two fermions in the central field of 
spinless nucleus (atom 4 He) it should be completed by 
antisymmetric singlet spin function [37]. The average square 
of the shell angular momentum Eq. (30) in the ground states 
is equal to zero (see Table 1) despite the eigenstate (33) is 
a superposition of basis elements with , 0l m ≠ . Thus, the 
ground state (0)

1ε  is the spatially symmetric level of 1
01 1s s S  

nomenclature (para-helium) [50]. 
The second on the energy scale is the spatially 

antisymmetric level (0)
3 = 2.13340673120655ε −  with wave 

function 

 (3) 2 3
1( , ) = [ ( , ) ( , )].
2a b a b a bu uΨ − −r r r r r r  (34) 

In the case of spinless 4 He nucleus it should completed by 
the triplet spin function [37], and it has to be nominated as 
the 3

11 2s s S  state (the ground state of ortho-helium) [50]. 
The third level, (0)

2 = 2.05239223447308ε − , is spatially 
symmetric state 1

01 2s s S  with 

 (2) 1 2( , ) = 0.12818 ( , ) 0.6992[ ( , )a b a b a bu uΨ + +r r r r r r  

 3 10 17( , )] 0.07092 ( , ) 0.0167 ( , )a b a b a bu u u+ + + −r r r r r r  

 23 240.0167[ ( , ) ( , )].a b a bu u− +r r r r  (35) 

The most impressive result is that the next on the energy 
scale is spatially antisymmetric triplet 3 0

0,1,21 2s p P  of levels 
(0)
4 = 2.06874256496409ε −  and (0) (0)

6 8= = 2.06874256496454ε ε − . 
Lower state is doubly degenerated, but in reality it is 
slightly splitted and the distance between upper and lower 
sublevels is higher due to spin-orbital interaction [50]. 
Three wave functions, (4) (6),Ψ Ψ  and (8)Ψ , are presented 
in Appendix 4. No more comparisons with experimental 
spectroscopic data could be made because the used basis is 
restricted by only single-particle states with , = 1,2a bn n . 
As it can be seen, even without taking into account any 
possibly nonrelativistic and relativistic corrections [9] our 
theoretical calculations agree with experiment on a good 
quantitative level. Our approximate solution reproduces 
correctly the real nomenclature of low-lying states of 
the real helium shell [50]. 
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5. Two-electron shell under uniform static electric field 

In this section we apply the above-described procedure 
to the total Hamiltonian (1). Let us suppose that electric 
field E has the only component 0=zE E . Then, in the basis 
of Sec. 4 

 

 (0))
0= | ( ) |pq pq p a b qH H E u z z u+ 〈 + 〉 , (36) 

where

 ___________________________________________________  

 2 2 2 2
1 2 1 2 1 2 1 2 1 2 12 2

( 1)( 1)
| ( ) | =

(2 1)(2 3)
a a a a

p a b q n n l l m m m m l lb b b b a a b b a aa a

l m l m
u z z u

l l +

 − + + +
〈 + 〉 δ δ δ δ δ +

+ +
  

 2 2 2 2
1 1 1 2 21 2 12 2

( )( )
( , | , )

(2 1)(2 1)
a a a a

l l a a a aa aa a

l m l m
n l n l

l l −

− +
+ δ +

− + 
   

 2 2 2 2
1 2 1 2 1 2 1 1 2 12 2

( 1)( 1)
(2 1)(2 3)

b b b b
n n l l m m m m l la a a a b b a ba b bb b

l m l m
l l +

 − + + +
+δ δ δ δ δ +

+ +
  

 2 2 2 2
1 1 1 2 21 2 12 2

( )( )
( , | , )

(2 1)(2 1)
b b b b

l l b b b bb bb b

l m l m
n l n l

l l −

− +
+ δ 

− + 
  . (37) 

 ______________________________________________  

After diagonalization according to the procedure of Sec. 3 
we have spectrum 0( )j Eε  and eigenvectors with compo-
nents ( )

0( )j
pe E . It is easy to prove that the spectrum 0( )j Eε  

does not depend on a mutual orientation of the field E and 
z  axis. Indeed, let us suppose that 0Θ  is an angle between 
E and z  direction. We can reduce the problem to above-
described when rotate the coordinate system on angle 0Θ  
to superposition of z  axis with E. Under such an operation 
each single-particle basis function | nlm〉  transforms as a 
linear combination of functions | nlm′〉 with different 

l m l′− ≤ ≤  [47]. As a result, although components of ei-
genvectors ( )j

pe  are functions of 0Θ , both spectrum jε  and 
average values of dynamical variables are independent on 
the angle 0Θ  between z and E. In this connection, we can 
put 0= {0,0, }EE . 

It should be noted that our consideration is not a pertur-
bation, but exact diagonalization approach. In this connec-
tion we obtain results which are correct at arbitrary 0E . 

Figure 1 shows the field dependences of the several lowest 
levels in helium spectrum. The ground-state energy 1 0( )Eε  
( 1

01 1s s S ) decreases slightly with 0E . Decrease in 3 0( )Eε  
(the ground state 3

11 2s s S  of ortho-helium) within the same 
field interval is more essential, so that the levels 1 0( )Eε  and 

3 0( )Eε  approach each other when 0E  decreases. The behavior 
of 3 0

0,1,21 2s p P  triplet levels is quite different. The highest 
level of the triplet increases with field, whereas two lowest 
levels remain degenerated and field-independent. For illust-
ration, we show the behavior of 11 0( )Eε  level which rapidly 
decreases with 0E  and becomes zero at 0 = 0.18443425E . 
However, this fact can not be interpreted surely as the shell 
instability in view of finite dimensionality of the used ba-
sis. Anyway, we can conclude that helium spectrum could 
be sufficiently reconstructed under electric field of rather 
high intensity, comparable with intra-atomic fields. In real-
ity, such fields can be produced by neighboring atom 
placed in the immediate vicinity of the actual shell. 

Atomic polarizability 0( )p Eα  in each p state is deter-
mined by standard way [46], 

 0 0= ( ) ,z p pd E E〈 〉 α  (38) 

through average dipole moment in the corresponding state, 

 ( ) ( )= | ( ) | ,z p p a b pd z z〈 〉 〈Ψ + Ψ 〉  (39) 

which can be calculated from Eq. (37). Field dependence 
of 4 He polarizability 1 0( )Eα  in the ground state ( 1

01 1s s S ) 
is presented in Fig. 2. The calculated low field value 

(0) = 1.517α  is a bit higher than experimentally observed 
= 1.383α  [50], but this result should be considered as quite 

satisfactory in view of the fact that our calculation does not 
take into account neither nonrelativistic, nor relativistic 
corrections [9]. More essential is the fact that 1 0( )Eα  re-
mains constant up to extremely high fields and demon-

Fig. 1. Spectrum of 4He lowest states vs external electric field. 
All values are given in atomic units. 
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strates an essential nonlinearity only at approximately 
0 > 0.01E . 

6. Conclusions 

Our results are obtained within standard concept of 
mathematical physics [35] based on Fourier expansion for 
the solution of linear partial differential equation depend-
ing on six spatial variables (exact Schrödinger equation 
describing two-electron shell in the nucleus central field). 
Owing to exact analytical representation for any matrix 
elements of interaction Hamiltonian, the problem reduces 
to standard algebraic diagonalization of infinite Hermitian 
matrix which gives the spectrum and eigenvectors (wave 

functions of eigenstates) with any desirable accuracy. As 
one can see from our solution, the determined value of 

= a bM m m+  and correspondence between al  and bl  in any 
quantum state means that both electrons of the shell are 
strongly correlated during their “motion” around nucleus. 
The ground state of the helium shell with =a bm m−  and 

=a bl l  means that two individual electrons are in equiva-
lent quantum states, and z  projections of their angular 
momenta are oriented strongly oppositely. The wave func-
tion of the ground state is spatially symmetric, so that spins 
of the electrons in this state are in opposite orientations. 
This situation can be characterized exactly as pairing of the 
equivalent electrons within the unitary shell. 

No low-energy excitations appear under external elec-
tric field. No nonlinear polarization effects up to atomical-
ly high fields can be predicted. Helium atom (as any other 
electrically neutral system) responds to external field by 
formation of intrinsic dipole moment which is a function of 
external electric field through field-dependent polariz-
ability. However, a radical reconstruction of spectrum is 
inevitable in condensed helium phases (liquid and solid) 
because of an essential effect from fields of neighboring 
atoms. Thus, we can expect an appearance of low-energy 
excitations in helium condensed phases. Such excitations 
should be manifested through details of interatomic inter-
actions in liquid and solid helium. To describe this effects 
theoretically we need to solve corresponding many-particle 
quantum-mechanical problem. This program will be a sub-
ject of further researches. 

 ___________________________________________________  

Appendix 1 

After integration over radial variables we have 

 
1 2 1 2

1 1 2 2
1 2 1 2 1 2 1 22 2 2 21 1 2 2 1 2 1 21 2 1 2

, , 16 2 2 2 2 ! ! ! ! ! ! ! !
, ,

l l l la a b b
a a a a

l a a b b a a b b
b b b b a a b ba a b b

n l n l
F

n l n l n n n nn n n n

         α
= ν ν ν ν τ τ τ τ ×        

        
  

 )
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2
1 2 1 2=0 =0 =0 =01 2 1 2

, , ,
( , , , ) , , , .

, , ,

a a b b a a a a
a a b b l a a b b

b b b ba a b b

n n l l
I

n n l l

τ τ τ τ

κ κ κ κ


× φ κ κ κ κ κ κ κ κ


∑ ∑ ∑ ∑  (40) 

Here = 1a a an lτ − − , = 1b b bn lτ − − , =a a an lν + , =b b bn lν + , where = , = ,a a a b b bn l n lν + ν +  

 
1 2 1 2 1 2 1 2

1 2 1 2
1 2 1 2 1 2 1 2

2 2 2 2 ( 1)( , , , ) =
! ! ! !

a a b b a a b b
a a b b

a a b b a a b bn n n n

κ κ κ κ κ +κ +κ +κ        −
φ κ κ κ κ ×        κ κ κ κ       

  

 
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 ,
( )! ( )! ( )! ( )! ( )! ( )! ( )! ( )!a a a a b b b b a a a a b b b b

×
λ + κ λ + κ λ + κ λ + κ τ − κ τ − κ τ − κ τ − κ

 (41) 

with = 2 1, = 2 1,a a b bl lλ + λ +  and 

)
1

1 2 1 2
1 2 1 2 2 1 11 2 1 2 =0

, , , ( 1)! ( )! ( )!
, , , =

, , , ! ( )

N l ka aa a a a a a b b b b
l a a b b N l N l N l ka a b b b bb b b b k

n n l l N l N l N l kaI
n n l l ka b a b

+κ + +

+κ + + +κ − + +κ − + +

  + κ + + + κ − + κ − + κ κ κ κ − +   +   
∑  

Fig. 2. Polarizability α1 of 4He isolated atom in the ground state 
vs external electric field E0 (atomic units). 
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1

1 2 2 1 1
=0 =0

( )! ( 1)! ( 1)! ( )! ( )!
=

! !( ) ( )

N l N lk ka a b b
a a b b b b a a a a
N l N l k N l N l N l ka a b b b b a a a ak k

N l N l k N l N l N l ka b
k ka a b b a a b

+κ − +κ + +

+κ − + +κ + + + +κ + + +κ − + +κ − + +

 + κ − + κ + + + + κ + + + κ − + κ − + + − + 
+ +  

∑ ∑  

 1 2
=0

( )! ( 1)!
,

! ( )

N l kb b
b b a a
N l N l kb b a ak

N l N l kb
kb a b

+κ −

+κ − + +κ + + +
+ κ − + κ + + +

+
+

∑  (42) 

where 

 1 2 1 2 1 2 1 2
1 2 1 2

1 1 1 1= , = , = 1, = 1, = , = .a a a b b b a a a b b b
a a b b

a b N l l N l l
n n n n

+ + + + + + κ κ + κ κ κ + κ   

The result (42) is invariant relative to simultaneously replacement a b⇔  in all factors and indexes. 

Appendix 2 

We have 

 
1 2

2
1 1 2 2 1 2 1 22 211 2 2 1 21 20

4 2 2( , | , ) = ( ) ( ) = ! ! ! !
l l

s
s n l n l sn l n l dr r R r R r

n nn n

∞
+    

α α ν ν τ τ ×   
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∫   

 
1 21 2 1 2 1 2 1 2

31 2 1 21 2 1 2 1 1 2 2 1 1 2 2=0 =01 2

( 2)!2 2 ( 1) 1 .
! ! ( )! ( )! ( )! ( )!

k k k k

k k l l s
a a a ak k

k k l l s
n n k k k k k ka

τ τ +

+ + + + +
    + + + + +−

×     λ + λ + τ − τ −   
∑ ∑  (43) 

The integral is regular at > 2s − . 
 ______________________________________________  

Appendix 3 

The functions of the basis set are 

 1 100 100
1 0 0

( , ) = ( ) ( ) ,
1 0 0a b a bu u uα α ≡r r r r   

 2 3
1 0 0 2 0 0

( , ) = , ( , ) = ,
2 0 0 1 0 0a b a bu ur r r r   

 4 5
1 0 0 2 1 0

( , ) = , ( , ) = ,
2 1 0 1 0 0a b a bu ur r r r   

 6 7
1 0 0 2 1 1

( , ) = , ( , ) = ,
2 1 1 1 0 0a b a bu u

−
−

r r r r   

 8 9
1 0 0 2 1 1

( , ) = , ( , ) = ,
2 1 1 1 0 0a b a bu ur r r r   

 10 11
2 0 0 2 0 0

( , ) = , ( , ) = ,
2 0 0 2 1 0a b a bu ur r r r   

 12 13
2 1 0 2 0 0

( , ) = , ( , ) = ,
2 0 0 2 1 1a b a bu u

−
r r r r   

 14 15
2 1 1 2 0 0

( , ) = , ( , ) = ,
2 0 0 2 1 1a b a bu u

−
r r r r   

 16 17
2 1 1 2 1 0

( , ) = , ( , ) = ,
1 0 0 2 1 0a b a bu ur r r r   

 

 

 

 18 19
2 1 0 2 1 1

( , ) = , ( , ) = ,
2 1 1 2 1 0a b a bu u

−
−

r r r r   

 20 21
2 1 0 2 1 1

( , ) = , ( , ) = ,
2 1 1 2 1 0a b a bu ur r r r   

 22 23
2 1 1 2 1 1

( , ) = , ( , ) = ,
2 1 1 2 1 1a b a bu u

− −
−

r r r r   

 24 25
2 1 1 2 1 1

( , ) = , ( , ) = .
2 1 1 2 1 1a b a bu u

−
r r r r   

  (44) 

Appendix 4 

The rest of eigenfunctions for solution with = 25N  is 

 (4) 4 5( , ) = 0.7066[ ( , ) ( , )]a b a b a bu uΨ − +r r r r r r   

 11 120.02696[ ( , ) ( , )],a b a bu u+ −r r r r   

 (5) 4 5( , ) = 0.70538[ ( , ) ( , )]a b a b a bu uΨ + +r r r r r r   

 11 120.0494[ ( , ) ( , )],a b a bu u+ +r r r r   

 (6) 6 7( , ) = 0.70655[ ( , ) ( , )]a b a b a bu uΨ − +r r r r r r   

 13 140.02806[ ( , ) ( , )],a b a bu u+ −r r r r   
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(7) 6 7( , ) = 0.7055[ ( , ) ( , )]a b a b a bu uΨ + +r r r r r r  

13 140.04762[ ( , ) ( , )],a b a bu u+ +r r r r  

(8) 8 9( , ) = 0.7065[ ( , ) ( , )]a b a b a bu uΨ − +r r r r r r  

15 160.0281[ ( , ) ( , )],a b a bu u+ −r r r r  

(9) 8 9( , ) = 0.7055[ ( , ) ( , )]a b a b a bu uΨ + +r r r r r r  

15 160.04762[ ( , ) ( , )].a b a bu u+ +r r r r  
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