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We present numerical solutions of Aslamazov–Lempitskiy (AL) equations for distributions of the transport 

current density in thin superconducting films in the absence of external magnetic field, in both the Meissner and 

the vortex states. These solutions describe smooth transition between the regimes of a wide film and a narrow 

channel and enable us to find critical currents and current-voltage characteristics within a wide range of the film 

width and temperature. The normalized critical currents and the electric field were found to be universal func-

tions of the relation between the film width and the magnetic field penetration depth. We calculate the fitting 

constants of the AL theory and propose approximating formulas for the current density distributions and critical 

currents. 

PACS: 74.25.Sv Critical currents; 

74.25.Uv Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses); 

74.78.–w Superconducting films and low-dimensional structures. 

Keywords: superconducting films, vortex state, critical current. 

 

 

1. Introduction 

The main distinguishing property of current states in 

wide superconducting films is an inhomogeneous distri-

bution of the current density j  across the film as a result 

of the Meissner screening of the current-induced magnet-

ic field. It should be noted that the current state of a film 

is qualitatively different from the Meissner state of a 

bulk superconductor. Whereas the transport current I  in 

the latter case flows basically within a surface layer with 

the thickness of the order of the London penetration 

depth , the current in a thin film with the thickness 

d  is distributed over its width w  according to the 

approximate power-like law [1,2], 2 2 1/2[( /2) ]j w x , 

where x  is the transversal coordinate with the origin in 

the middle of the film. Thus, the characteristic length 
2( ) = 2 ( )/T T d  [3], which is commonly referred to as 

the penetration depth of the perpendicular magnetic 

field, is actually not the scale of the current decay, but 

rather plays the role of a “cutoff factor” in the above-

mentioned law of the current distribution at the distances 

 from the film edges and thereby determines the 

magnitude of the edge current density. The latter was 

estimated in [1] as / ,ej I d w  assuming w  to be 

larger than  and the coherence length .  

In such an inhomogeneous situation, the resistive transi-

tion of a wide film occurs [1–4] when ej  reaches the value 

close to the critical current density GL
cj  in the Ginzburg–

Landau (GL) theory. This leads to the expression 
GL

c cI j d w  for the critical current [1] which is 

widely used in analysis of experimental data (see, e.g., 

[5,6]) and imposes a linear temperature dependence of the 

critical current ( ) 1 /c cI T T T  near the critical tempera-

ture .cT  The quantitative theory by Aslamazov and 

Lempitskiy (AL) [2] also predicts the linear dependence 

( )cI T  but gives its magnitude numerically larger than the 

above estimate. This result has been confirmed in recent 

experiments [7–9]. 

The instability of the current state at = cI I  results in 

the entry of vortices into the film which leads to formation 

of the vortex part of its I–V characteristic (IVC). The mo-

tion and annihilation of the vortices of opposite signs form 

a peak in the current density along the middle axis of the 

film. For certain current value ,mI  the magnitude of this 

peak reaches ,GL
cj  which causes instability of the station-

ary vortex flow [2]. Further behavior of the film depends 

on the conditions of the heat removal [10] and the quality 

of the films. In early experiments, an abrupt transition to 

the normal state has been usually observed at = ,mI I  

whereas in later researches, in which optimal heat compli-

ance was provided, a step-like structure of the IVC, associ-

ated with the appearance of phase-slip lines, was observed 

at > mI I  [7,11–14]. 
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In the immediate vicinity of cT  where ( )T  unlimited-

ly grows, any film reveals the features of a narrow channel at 

:w  the critical current in this case is due to uniform 

pair-breaking thus showing the temperature dependence of 

the GL pair-breaking current 3/2( ) (1 / ) .GL
c cI T T T  As 

the temperature decreases, the film is expected to exhibit a 

crossover to the wide film regime at ,w  when the vor-

tex part of the IVC occurs and the temperature dependence 

( )cI T  should be linear [1,2]. However, it was found [8,9] 

that in moderately wide films, the nonlinear temperature de-

pendence of cI  holds down to low enough temperatures and 

transforms to the linear one only when ( )T  becomes 

smaller than the film width by the factor of 10–20, although 

the vortex state already occurs at much larger values of 

(0.2–0.25) .w  Similar difficulties were met in the ex-

periment [15] when trying to interpret the IVC measurements 

by using asymptotical results of the AL theory, because the 

strong condition c mI I  used in [2] can be fulfilled only in 

extremely wide films whose width exceeds ( )T  by sever-

al orders of magnitude. Thus, there exist a considerable in-

termediate region of the film widths and temperatures, where 

the assumptions and initial equations of the AL theory re-

main valid, but the asymptotic results cannot provide satis-

factory agreement with the experimental data. 

In order to obtain a quantitative theoretical description 

of the current states within a wide region of the ratio 

/ ,w  we perform in this paper a numerical solution of 

the AL equations which describes smooth transition be-

tween the regimes of a wide film and a narrow channel. 

The critical currents cI  and mI  normalized on the GL 

critical current ,GL
cI  as well as the specifically normalized 

IVC, were found to be universal functions of the ratio 

/ .w  We calculate the fitting constants in the asymptotic 

formulas of the theory [2] and propose approximating ex-

pressions for the current density distributions which are in 

rather good agreement with the results of the numerical 

computations. 

We note that the AL model assumes rather weak pin-

ning, taking the presence of defects into consideration only 

through the viscosity of the vortex fluid. The opposite case 

of strong pinning corresponds to the model of critical state 

with unmovable vortices, which results in quite different 

distributions of the current and magnetic field (see, e.g., 

the reviews [16,17]). 

2. Basic equations and asymptotic results of AL theory 

A starting point of the AL theory are static GL equa-

tions for the dimensionless modulus F  of the order pa-

rameter (normalized on its equilibrium value in the GL 

theory) and the gauge-invariant vector potential 
1

eff= ,Q A  

 2 2 2 2
eff (1 ) = 0,F F F Q  (1) 

 2rot rot = ( ).F zQ Q  (2) 

Here the electromagnetic vector potential A is measured in 

units of 0 /2 ,  0  is the magnetic flux quantum,  is 

the order parameter phase and eff = /  is the effective 

GL parameter. The axis z  is perpendicular to the film 

whose thickness is assumed to be infinitely small, and all 

distances are measured in units of .  

Usually in thin films, the GL parameter is large, 

eff 1.  Assuming the film width much larger than 

( ),T  one thus can neglect the gradient term in Eq. (1) and 

use the local relation 2 2= 1F Q  between the order pa-

rameter and the vector potential. Inside the thin film, the 

latter has only one component yQ Q  and can be found 

from equation 

   

/2 2

/2

1 ( )[1 ( )]
= – , = / ,

2

w

w

dQ Q x Q x
dx w w

dx x x
 (3) 

with the Biot–Savard integral which relates the magnetic 

field /dQ dx  to the dimensionless density 2= (1 )j Q Q  of 

the surface current. Equations (1)–(3) determine the stabil-

ity threshold of the Meissner state, when the vortices begin 

to penetrate into the film, and the edge value of the vector 

potential appears to be close to its critical value 

=1/ 3GL
cQ  in the GL theory for narrow channels.* The 

asymptotic value of the critical current at w  has 

been calculated in [2] and then refined in [18]: 

 1/2= 15/8 ( / ) .AL GL
c cI I w  (4) 

The resistive vortex state of a wide film is described by 

including the contribution of the vortices 0n  ( ( )n x  is the 

vortex density) to the net magnetic field induction in the 

hydrodynamic approximation [1,2,19]. Using the continui-

ty equation for the flux density nv  of the vortex fluid, 

expressing the vortex velocity v  through the linear current 

density j  and the viscosity coefficient  as [21] 

 1
0= sign ,v j x  (5) 

and the average electric field — through the flux density as 

0= ,E nv  one obtains equation 

 

1 3

01

( )
4 2 – = sign

( )

dj j x dx c E
x

w dx x x j x
. (6) 

* Actually, according to the definition of Q, the correct formula for the dimensionless current density must have the opposite sign, 

j = –Q(1 – Q
2
). Thus, to deal with positive values of the transport current, one should consider negative values of Q. To avoid this 

inconvenience, the authors of [1,2] define j as presented in the text and use positive Q values, that does not affect the results. In 

our paper, we also follow this convention. 
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Here and below, the coordinate x  is normalized on the 

film half-width /2,w  and the expression sign x  indicates 

the opposite direction of the vortex motion in different 

halves of the film. 

An asymptotic analysis of Eq. (6) at w  shows [2] 

that the IVC is linear in the vicinity of ,cI  whereas at large 

currents, the voltage grows quadratically, 

   

2
0

0 02 2 3

( )/ , ; 8
= = ,

( / ) , ,

c c c c c

c c

I I I I I I I
V E L E

C I I I I w c
 (7) 

until the transport current reaches the threshold of stability 

of the vortex state, 

 1/2= ( / ).ln
GL

m cI C I w  (8) 

In Eqs. (7) and (8), L  is the film length, GL
cI  is the GL 

critical current formally calculated for uniform current 

distribution and C , C  are fitting constants which cannot 

be determined by the asymptotic analysis. 

We note that the validity of the AL theory for the analy-

sis of the vortex state is confined by applicability of the 

static Ginzburg–Landau equations to the description of the 

vortex motion. With this approach, the order parameter 

relaxation time ( / )cT  (  is the energy relaxation 

time) is assumed to be much smaller than other characteris-

tic times of the system. In the opposite case, finiteness of 

 results in a considerable deformation of the vortex core 

and in occurrence of a wake with suppressed order parame-

ter behind the moving vortex. As shown by numerical sim-

ulation [20], this may anomalously enhance the vortex ve-

locity and lead to creation of rapidly moving chains of 

vortices treated in [21] as nuclei of the phase-slip lines. 

3. Results of numerical calculations 

In our calculations, we perform numerical solution of  

Eq. (6) with a certain modification. As is obvious, the left-

hand side of Eq. (6) is the approximate form of Eq. (3) , in 

which the vector potential Q  in the gradient term is re-

placed by the current density j. Such an approximation 

corresponds to the linear London relation j Q  between 

the current and the vector potential which assumes inde-

pendence of  of the vector potential. For this reason, 

Eq. (6) is usually referred to as a generalized London equa-

tion [1,2]. This does not essentially affect the asymptotic 

results [2] because the gradient term is small at ;w  

however, in our calculations, we will use the full 

nonlinearized version of Eq. (6) in a dimensionless form 

(see also [18]): 

 

1

1

1 ( ) sign
– = ,

4 ( )

dQ i x dx E x

dx x x i x
 (9) 

where the following definitions are introduced, 

 
2

0
3 3

= (1 ), = , ( ) = ( ),
2

GL
cIi Q Q E E E j x i x
w

  

 
20

0 2 3

54
= ( ) , =

2

GL
cE I

ww c
. (10) 

The distribution of the vector potential is obviously 

symmetric, ( ) = ( ),Q x Q x  which enables us to consider  

Eq. (9) only in the region > 0x  and to reduce the integral 

in (9) to the region > 0x . After integration of Eq. (9) 

from the film edge to a given point x , we finally get* 

   

1 2 2

2
0 1

1
[ ( ) ] = ( ) ln ,

4 ( )1

x

e
x x dx

Q x Q i x dx E
i xx

 (11) 

where (1)eQ Q  is the edge value of the vector potential. 

In these notations, the net current I  is given by equation 

 

1 1

0 0

3 3
= ( ) = ( )

2

GL
cI w j x dx I i x dx . (12) 

At < cI I , the quantity eQ  increases with the current 

and has to be determined self-consistently from  Eqs. (11) 

and (12) at zero electric field; this procedure simultaneous-

ly gives the solution for the current distribution across the 

film. As noted above, the resistive state of a wide film at 

= cI I  occurs when eQ  approaches the critical value 

= 1/ 3.cQ  Such a relation is also obviously valid for nar-

row channels, that makes it reasonable to extend it over the 

films of arbitrary width. In the resistive vortex state, 

> ,cI I  the quantity eQ  holds its critical value ,cQ  and 

Eqs. (11) and (12) determine the dependence ( ),E I  i.e., 

the IVC, 0( ) = ( ) .V I E I E L  

A specific property of these equations is that their solu-

tions, i.e., the normalized current density distribution ( )i x  

and the electric field ,E  are universal functions of the 

parameters /w  and / .GL
cI I  This implies that the nor-

malized critical current / GL
c cI I  and the maximum current 

of existence of the vortex state, / ,GL
m cI I  as well as the 

normalized maximum electric field 0= ( )/ ,m mE E I E  are 

universal functions of the parameter / .w  Thus, the tem-

perature dependencies of these quantities, being expressed 

through the variable / ( ),w T  must coincide for the films 

with different widths and thicknesses, which has been 

demonstrated in experiments [8,9]. 

3.1. Solution in subcritical regime cI I  

Solution of Eqs. (11) and (12) can be found by iteration 

method, using eQ  as initial approximation for the function 

( ).Q x  Although the iteration parameter 1 /w  is 

large for a wide film, convergence of the iterations can be 

* Similar method has been applied to the problem of critical magnetic field of a wide film at I = 0 [22]. 
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nevertheless provided by introducing certain weight factors 

for contributions of previous and current iterations. The 

result of numerical calculation of the reduced critical cur-

rent, shown in Fig. 1, describes transition from the uni-

formly distributed GL depairing current 3/2( )GL
c cI T T  

in a narrow channel to the critical current AL
c cI T T  for 

a wide film (4). As seen from Fig. 1, the asymptotic de-

pendence (4) can be achieved with appropriate accuracy 

only at rather large ratio / >w  10–20. 

It should be noted that in some experiments [9,7,23], 

the behavior of ( )cI T  at the beginning of transition to the 

wide film regime was found to be different from the 

smooth dependence following from the AL theory. Name-

ly, when the temperature decreases and the ratio /w  

exceeds 4–5, the critical current sharply falls to the value 

( ) 0.8 ( )GL
c cI T I T  and holds this level until / 10.w  

Within this temperature interval, the film enters the vortex 

state at > ,cI I  although the temperature dependence of 

cI  is similar to the case of a vortex-free narrow channel. 

Analogous behavior of the critical current in wide films 

has been registered in early experiments [24,25]. To ex-

plain such a specific dependence of ( ),cI T  it was sup-

posed [9] that the Pearl vortices [26,27] in moderately 

wide films may overcome the edge barrier at the edge cur-

rent density 2(1 / )cT T  much smaller than the GL criti-

cal current density 3/2(1 / ) ,cT T  possibly due to interac-

tion with the opposite film edge. 

In Fig. 2(a) we present the current density distribution 

across the film at the resistive transition point = cI I  and 

different ratios / .w  Interestingly, these distributions are 

well approximated by function 

 1
2 2

( ) = .

1 (1 )
e

a
j x j

a x

 (13) 

Equation (13) represents a modification of the asymptotic 

function [1,2,19] 2 1/2( ) = (0)(1 )j x j x  with a regulariza-

tion parameter 1= (0)/ ea j j  which provides finiteness of 

the approximated current density (13) at the film edges. As 

follows from its definition, this parameter characterizes 

suppression of the current in the middle of the film due to 

the Meissner screening. Substituting Eq. (13) with 

= /GL GL
e c cj j I w  into Eq. (12), we obtain equation for its 

value = cosca  at the critical current, 

 / = / tan .GL
c cI I  (14) 

In the case of a wide film, ,w  the coefficient ca  is 

small, 1,ca  and it can be estimated by using the asymp-

totic value (4) of the critical current as 

 1/2= 2.74( / ) .ca w  (15) 

Within the framework of the generalized London's 

equation (6) in which the effect of the current on the order 

parameter is neglected, the current distribution is deter-

mined only by geometric factors, therefore the coefficient 

a  is independent of the current and holds a constant value 

ac. The edge current density in this approximation varies 

linearly with the transport current, that reproduces the re-

sult of [1], 

 = ( / ) GL
e c cj I I j  (16) 

(see dashed lines in Fig. 2(b))*. In the general case de-

scribed by Eq. (9), the dependence ( )ej I  appears to be 

nonlinear, and the coefficient a  increases with the current 

and approaches a maximum value ca  at = cI I  (solid lines 

in Fig. 2(b)). Physically, this is due to suppression of the 

* Numerical solutions of (6) have been obtained in [28] and used for determination of the penetration depth. 

Fig. 1. Numerically calculated critical current (1) compared to the 

asymptotical estimate (4) (2). 

Fig. 2. Current distributions over the film width at the resistive 

transition point, I – Ic, numerically calculated for different values 

w/  = 1, 5, and 20 (solid lines). Dashed lines show the approxi-

mating dependence (13) with the critical value of the coefficient 

a = ac found from Eq. (14) (a); numerically calculated dependen-

cies of the edge current density je and the current suppression 

coefficient in the middle of the film, a = j(0)/je, on the transport 

current I for the wide film w/  = 20 (solid lines). For compari-

son, the values (15) and (16) found from the generalized Lon-

don's equation (6) are shown by the dashed lines (b). 
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Fig. 3. Solid lines — distributions of the net current density (a) 

and the vortex contribution (b) in the vortex state at w/  = 20 

numerically calculated at different values of the transport current: 

I = Ic (1), I = 0.5(Ic + Im) (2), I = Im (3). The approximating dis-

tributions (17) are shown by dashed lines. 

order parameter by the transport current, that weakens the 

screening effect while the current increases. 

3.2. Solution in the vortex state, <c mI I I  

In the region of the vortex resistivity, the distribution of 

the screening current is superimposed by the distribution 

associated with the vortex motion and having a peak at the 

middle of the film, as shown in Fig. 3. The logarithmic 

feature 1/2( / )ln w  of this peak predicted in [2] appears 

to be rather weak and remains visible only for a certain 

intermediate current value; at ,mI I  this feature practi-

cally vanishes. Such an inhomogeneous current distribu-

tion with three maxima in the vortex state of wide films 

has been visualized experimentally [29] by using the laser 

scanning microscope. 

For moderately wide films, in which the above-men-

tioned logarithmic factor is of the order of unity, the vortex 

contribution can be approximated by a piecewise-linear 

function 

 2( ) = (1 | |)GL
cj x j b x  (17) 

depicted in Fig. 3(b) by dashed lines. As follows from (17), 

the parameter 2= (0)/ GL
cb j j  represents the relative (in 

units of )GL
cj  current density created by vortices in the 

middle of the film. Within such an approximation, this 

parameter linearly depends on the transport current, 

 ( ) = 2( )/ .GL
c cb I I I I  (18) 

According to [2], the vortex state becomes unstable 

when the height of the central peak of the current distribu-

tion approaches .GL
cj  Using this condition and solving  

Eqs. (9) and (11) at the critical edge value of the vector 

potential, = ,e cQ Q  we determine the maximum current of 

existence of the vortex state mI  and the normalized maxi-

mum electric field = ( ).m mE E I  The results of numerical 

calculation compared to the asymptotic results of the AL 

theory are presented in Fig. 4 by solid and dashed lines, 

respectively. At large enough values of /w  20–30, 

the asymptotic dependencies [2] 

   21/2
1 2 3/ = ( / ), = ( / ) ,ln

GL GL
m c m m cI I C C w E C I I  (19) 

can be fitted to the numerical results by an appropriate 

choice of the fitting constants of the AL theory (shown in 

the caption of Fig. 4) which cannot be evaluated within the 

framework of the asymptotical analysis. In order to obtain 

a satisfactory agreement, one has to introduce an additional 

constant 2C  into the argument of the logarithm, since the 

formulas (19) were derived in [2] with logarithmic accura-

cy. At smaller / 20,w  the asymptotic results (19) 

considerably overestimate the numerically obtained values 

of mI  and .mE  

Another useful expression for mI  suitable for a rather 

wide range of film widths can be obtained from the ap-

proximating current distributions (13) and (17). At the sta-

bility threshold of the vortex state, where (0) =j

1 2(0) (0) = ,GL
cj j j  the relation =1 cb a  is fulfilled 

which leads to equation 

 = 0.5 (1 ).GL
m c c cI I I a  (20) 

As seen from Fig. 4, this approximation (dotted line) rather 

well reproduces the result of numerical calculations of ,mI  

up to the point of nucleation of the vortex resistivity at 

/ 4.w  For extremely wide films, in which m cI I  

and the logarithmic peak of the current is well pronounced, 

the AL asymptotic expression (19) for mI  with numerical-

ly calculated fitting constants is more preferable. 

In Fig. 5 a normalized IVC per unit length of a wide 

film ( / = 20)w  is shown by the curve 1 within the re-

Fig. 4. Dependencies of the maximum current of existence of the 

vortex state Im and the normalized maximum electric field E m on 

the parameter w/  (solid lines). Dashed lines show their asymptot-

ic behavior (19) in the AL theory with the fitting constants C1 = 

= 1.2, C2 = 0.4, C3 = 0.062. Dotted line depicts the approximating 

dependence (20) of Im, in which the result of numerical calculation 

of Ic  (see Fig. 1) and the formula (15) for the parameter ac were 

used. 
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gion of the stable vortex state < < 1.7 .c m cI I I I  Its ini-

tial part coincides with the linear AL asymptotic (line 2) at 

c cI I I , 

 

2
4

( ) = 1 0.873 1 ,
27

c

GL
c cc

I I I
E I

I w II
 (21) 

obtained by using Eq. (4) for cI . At > 1.4 ,cI I  the IVC is 

well described by the modified AL asymptotic for :cI I  

  

2 2 2

1 2 1 2
4

( ) = 0.873
27

c

GL
c cc

I I I
E I C C C C

I w II
  

  (22) 

with the fitting constants 1 = 0.97C  and 2 = 0.7.C  Intro-

duction of an additional constant 2 ,C  which shifts the 

original AL parabola, enables us to generalize the result 

obtained in [2] for the case of large supercriticality, 

,cI I  to the region of currents comparable with .cI  

Such a modification of the AL asymptotic formulas has 

been successfully used for fitting of the parabolic part of 

the IVC [15]. In experiments with films of relatively small 

width (in which the vortex state nevertheless exists), the 

region of vortex resistivity is rather narrow, ,m c cI I I  

and only a linear part of the IVC is observed [7,15,23]. 

Similar current distributions and IVCs were obtained by 

numerical simulation of the vortex motion in an infinitely 

long and thick superconducting slab [20]. Although these 

results cannot be quantitatively applied to the thin film 

because of essential difference between Abrikosov vortices 

in a bulk slab and Pearl vortices in a thin film [26,27], they 

give an additional theoretical evidence of intrinsic nonline-

arity of the IVCs in the vortex state, which is often as-

cribed to the flux creep or to the nonequilibrium state of 

quasiparticles in the vortex core [30]. 

4. Summary 

We studied distributions of the transport current density 

in thin superconducting films in zero external magnetic 

field within a wide range of the film widths w  and tem-

peratures, using numerical solutions of the integro-

differential equations for the gauge-invariant vector poten-

tial. We found that these solutions can be approximated by 

rather simple analytical formulas, the parameters of which 

have a clear physical meaning and can be relatively easily 

calculated. 

We found that the reduced critical current cI  and the 

reduced maximum current of existence of the vortex state 

mI  (both normalized on the Ginzburg–Landau critical 

current in a uniform current state), as well as the reduced 

maximum electric field in the vortex state are universal 

functions of the parameter / ;w  this has been confirmed 

in the experiment. We calculated numerically the current-

voltage characteristic of a wide film in the vortex state and 

propose a modification of the asymptotic results [2] which 

provides much better fitting with the experimental data. 

For wide enough films, /w  20–30, our results coin-

cide with the asymptotic dependencies [2,18] with properly 

chosen fitting constants. 

The author is grateful to I.V. Zolochevskii for helpful 

discussions and advices. 
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