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Quasilinear theory of a weakly turbulent quantum Fermi liquid is presented. Landau’s linear theory of Fermi 
liquids is generalized by consideration of weak nonlinear regime. A newly derived kinetic equation of the Fermi 
particles is used to derive a slowly varying distribution function f0, which satisfies the diffusion equation. It is 
shown that the magnitude of the diffusion coefficient D depends on weak interactions between atoms and the de 
Broglie waves diffraction. 
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In 1961 quasilinear theory for plasma particles was cre-

ated by A.A. Vedenov et al. [1] and W. Dramond and 
D. Pines [2]. The quasilinear theory describes the dynam-
ics of the interaction between the resonance particles and 
the waves. The theory is able to treat such processes when 
the energy of the medium oscillations is appreciably less 
than the total internal energy of the particles, but is, at the 
same time, much greater than the noise energy of the sound 
waves. 

The quasilinear theory lies in the division of the particle 
distribution function into two parts: a rapidly oscillating 
part and a slowly varying part, and also in calculating the 
influence of the mean square of the oscillating part of the 
number density of particles on the slowly varying part. It is 
found that the behavior of the slow part of the distribution 
function can be described by a diffusion equation in the 
momentum space, but the rate of damping or growth of the 
rapid oscillations is given by the linear theory equations in 
which the slowly varying part of the distribution function 
varies slowly with time. 

We have applied quasilinear theory to the Fermi liquid. 
It is well known that at temperatures 1–2 K only two quan-
tum liquids exist in nature, the isotopes of helium 3He and 
4 He, and all other substances solidify. The peculiarly 
weak interaction between the helium atoms is the reason 
for helium to remain liquid. Based on this fact, namely that 
in 3He the weak interactions take place between atoms at 
sufficiently low temperatures, Landau has created the theo-
ry of Fermi liquid [3]. In which he took into account only 
the weakly excited energy levels of the liquid, lying fairly 

close to the ground state. Landau assumed that any weakly 
excited state of a macroscopic body can be represented as 
an assembly of separate elementary excitations (quasipart-
icles). Moreover, the elementary excitations are represent-
ed as the collective motion of atoms in liquid and it can not 
be identified with individual atoms. Therefore, an import-
ant characteristic of the energy spectrum is the establish-
ment of the dispersion relation ( )pε  for elementary excita-
tions. Landau has then shown that the undamped zero 
sound can exist in an almost ideal Fermi gas, which was 
confirmed in experiment by W.R. Abel et al. [4]. 
Pomeranchuk has shown that Landau’s liquid can be un-
stable [5]. Landau’s theory of Fermi liquids was general-
ized by incorporating the de Broglie waves diffraction [6]. 

In this article, we describe the quasilinear theory of Fer-
mi liquids by taking into account the de Broglie wave dif-
fraction and derive the corresponding diffusion equation in 
momentum space written for equilibrium distribution func-
tion. To achieve this we employ a novel quantum kinetic 
equation derived in Ref. 6, where use was made of the 
quasiclassical function = exp ( / )A iSψ  . The difference 
between the Landau kinetic equation and ours is that in our 
equation an additional term, namely the Madelung term is 
incorporated due to the diffraction of de Broglie waves. 

Nonequilibrium states of a Fermi quantum liquid are 
described by the one particle distribution function ( , , ),f r p t  
which satisfies the quantum Boltzmann equation [6]: 

 
2 1( ) = ( )

2
f f ff n C f
t m n

∂ ∂ ∂
+ ⋅∇ −∇ε ⋅ + ∇ ∆

∂ ∂ ∂
v

p p
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ε is the energy of the quasiparticle, m and n are mass and 
density of particles, respectively, and ( )C f  is the collision 
integral, which describes the variation of the distribution 
function due to particle collisions. 

Note that when the spin of the particles is taken into ac-
count, the distribution function is an operator with respect 
to the spin variables σ . The quasiparticles in a Fermi liquid 
have spin 1/2. However, there is a wide range of problems 
in which it is sufficient to consider a distribution independ-
ent of spin variables, so that f  becomes the ordinary quasi-
classical distribution function ( , , )f tr p . We recall here that 
the condition for quasiclassical motion is that the de Brog-
lie wavelength = /d Fpλ   ( Fp  is Fermi momentum) of 
the particle must be very small compared with the charac-
teristic length L , over which ( , , )f tr p  varies considerably. 
Following the Landau’s theory, hereafter, we consider 
Fermi liquid as a spinless, and the energy ε of quasiparticle 
is a functional of the distribution function; a variation of 
distribution function 

 0( , , ) = ( ) ( , , )f t f f t+ δr p p r p  (2) 

produces a variation of energy given by 

 
3

3
2= ( , ) ( , , )
(2 )

df t
′

′ ′δε φ δ
π∫

pp p r p


 (3) 

where the factor 2 appears due to spin, 0 ( )f p  and ( , )′φ p p  
are the equilibrium distribution function and the quasi-
particle interaction function, respectively; in a Fermi gas 

= 0φ . Thus the distribution function (2) refers to the ener-
gy of quasiparticle 

 0= ( ) ( , , )tε ε + δεp r p  (4) 

where 0 ( )ε p  is the energy corresponding to the equilibrium 
state. 

Near the surface of the Fermi sphere the variation of 
distribution function ( , , )f t′δ r p  is appreciably different 
from zero, i.e., the magnitude = = Fp p′p  . The same is 
true for the function ( , )′φ p p . So that both depend only on 
directions of the vectors p and ′p . Hence, the quasiparticle 
interaction function φ and fδ  can be expressed at the Fer-
mi surface as 

 
2 3

*
( , ) = ( )

F
Q

m p
π′φ θp p  , (5) 

 = ( ) ( , , )Ff F t′δ δ ε − ε n r  (6) 

where * = /F Fm p v  is the effective mass of quasiparticle, 
′n  is the unit vector in the direction of ′p , and ( )Q θ  is the 

function of the angle θ between p and ′p . 
We now employ Eq. (1) to study the propagation of 

small perturbations in the Fermi quantum liquid. We sub-
stitute the Eqs. (2) and (4) into Eq. (1) and linearize it with 
respect to the perturbation fδ  to obtain 

2
0 0

0
( ) = ( )

4
f ff nf C f

t m n
∂ ∂∂δ δ

+ ⋅∇ δ −∇δε ⋅ + + ∇ ⋅∆ δ
∂ ∂ ∂

v
p p

 . (7) 

We look for wave solutions in space and time for 
( , , )F t′n r , assuming that it is proportional to exp [ ( )]i t⋅ −ωk r . 

Taking into account Eqs. (3)–(6), ∇ε can be written as 

 = ( ) ( , , ) = ( ) ( )
2 2

d dQ F t i Q F
′ ′Ω Ω′ ′ ′ ′∇δε θ ∇ θ∫ ∫n r k n  (8) 

where = sind d′ ′ ′Ω θ θ . 
If we assume that ( )Q ′θ  is constant, i.e. 0( ) =Q Q′θ , 

then 

 ( )
0= e ( )

2
i t di Q F⋅ −ω ′Ω′∇δε ∫k rk n . (9) 

For density perturbation nδ  we get 
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Since 3
0 = 8 / 3(2 )Fn pπ π , 
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and 
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0 * 0
=
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δ
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To see what impact does quasiparticle collisions have 
on Fermi liquid, for a rough estimate of collision integral, 
we can put 

 0( ) = = =
f f fC f f
− δ

δ − −νδ
τ τ

 (13) 

where 1= −τ ν  is the mean free time. 
We substitute Eqs. (12) and (13) into Eq. (7) and finally 

for perturbation fδ  we get 

 
2 2 2

0 0
* *0 0

1 1=
3 4
Fp Q fk nf

n n im m

  ∂δ
δ − + ⋅   ω+ ν − ⋅ ∂ 

k
k v p

 . (14) 

The main criteria for using linear approximation is 

 0| |f fδ  . (15) 

In other words this means, that oscillation energy due to 
perturbation must be less than Fermi liquid internal energy. 
For degenerate Fermi liquid this condition has form 

 1
F

W
Nε

  (16) 

where FNε  is an internal energy of the Fermi liquid and 
W  is the oscillation energy due to perturbation. 

Condition (16) holds true for the most mass of the liq-
uid, but there exists some number of particles for which 
this condition is not maintained. Those are the particles, 
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which move in phase with the sound waves and due to this 
they become involved in Landau damping. In this process 
the distribution function changes. This change has a non-
linear character and because of this, its behavior greatly 
depends on spectral composition of the sound wave. In 
linear theory influence of oscillations on distribution func-
tion is neglected. Contrary to this, in quasilinear theory 
waves are still considered linear, but distribution function 
change due to oscillations is not neglected. 

To study Fermi liquid in quasilinear theory we consider 
perturbations, which are ensemble of waves and their wave 
vectors are located inside narrow k∆  interval around some 
arbitrary 0k  wave vector. Because wave vector interval is 
narrow, small amount of quasiparticles will be involved in 
the Landau damping and as a result their distribution func-
tion will change significantly. 

In order to derive the equations in the quasilinear ap-
proximation, we split up the distribution function ( , )f t p  
into a large slowly and a small fast developing part: 

 ( )
0 0= ( , ) ( , ) = ( , ) ei t

k
k

f f t f t f t f ⋅ −ω+ δ + δ∑ k rp p p , (17) 

 
2

( )0

0
= e

3
i tF k

k

p Q n
i

m n
⋅ −ωδ

∇δε ∑ k rk , (18) 

where perturbation kfδ  is defined in Eq. (14). 
Second term in the Eq. (17) is a rapidly oscillating term 

and so it vanishes after a time averaging over fast oscilla-
tions. First term 0 ( , )f t p  represents slowly varying aver-
aged part of the distribution function. 

Now we substitute Eqs. (17) and (18) into Eq. (1) repre-
senting quantum-kinetic equation and take a time average 
over the fast oscillations. The time interval 0τ  must satisfy 
the conditixon 

 0
2π

τ
ω
 . (19) 

Here 0τ  is the time during which the oscillations influence 
the equilibrium quantum liquid state. Then we have 

 
0

0
0 0

1( , , ) = ( , ) =f t f t fdt
τ

〈 〉
τ ∫r p p . (20) 

Due to averaging Eq. (1), we obtain for the slow part of 
the distribution function: 
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As a result, after taking an average of Eq. (21), we ob-
tained quasilinear equation for the slow part of the distribu-
tion function in momentum space, which has the form 

 0 0= ij
i j

f f
D

t p p
∂ ∂∂
∂ ∂ ∂

 (22) 

where ijD  is the tensor of diffusion coefficients 

2 22 2 2
0
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Theory that is established on this equation is called 
quasilinear theory. The process absorption can be describ-
ed with quasilinear theory, which, as we said above, takes 
into account changing of equilibrium distribution function 
due to oscillations caused by sound waves. It is apparent, 
that oscillations must affect distribution function in such 
way to decrease the absorption of waves (decrease interac-
tion with particles). According to this, by increasing wave 
amplitude it absorption must decrease and in Fermi liquid, 
where we neglect collisions, can be established such distri-
bution, where absorption does not happen. From linear theo-
ry we know that wave absorption is determined with the 
value of 0 /f p∂ ∂  (due to Landau damping). Hence, describ-
ed situation is possible, if due to impact of the wave on 
the Fermi liquid plateau (area where 0 / = 0f p∂ ∂ ) is created 
on the equilibrium distribution function and at this moment 
wave is still not absorbed. 

When we consider the collision processes, plateau can 
not be created on the distribution function, because particle 
collisions tend to establish equilibrium state in the system. 
We can clearly observe this from the Eq. (14), when 

=ω ⋅k v (particles which move in phase with the waves 
are involved in the plateau formation). We get 

 
2 2 2

0 0

0
=

3 4
Fp Q fk ni f
m m n

  ∂ δ
− νδ + ⋅   ∂ 

k
p

 . (24) 

It is clear that 0 / 0f p∂ ∂ ≠ , so plateau can not formed on the 
distribution function. 

In the absence of interaction between quasiparticles, 
i.e., 0 = 0Q , we see that 

2 22 2
0 0

2 2
0

2=
4 ( )

k
i j

i jk

f n fkk k
t p m n p

 ∂ δ ∂∂ ν
  ∂ ∂ ∂ω− ⋅ + ν 

∑
k v

 . (25) 

From this we can deduce, that de Broglie wave diffraction 
causes diffusion of distribution function in the momentum 
space, when interaction between quasiparticles is absent. 

To illustrate the solution of Eq. (22) for simple cases, 
we assume that diffusion coefficient (23) does not depend 
on velocity of the quasiparticles and propagating waves 
wave vectors are parallel to each other. This is possible if 
ω ≈ ⋅k v or 2 2( )ω− ⋅ νk v  . In this case 

 
2

0 0
2=

f f
D

t
∂ ∂
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, (26) 
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The solution of Eq. (26) has the form 

  
2

3
0 3/2

1 ( )( , ) = ( ) exp
48( )

f t F d p
DtDt

 ′−′ ′− 
π   

∫
p pp p  (28) 

where ( )F ′p  is the initial distribution function, i.e., 
0( ) = (0, )F fp p . 

In our case ( )F ′p  is distribution function which de-
scribes degenerate Fermi liquid at = 0 KT  temperature. 
Mathematically it is Heaviside step function. So 

 ,

.

1
( ) =

0 >
F

F

p p
F p

p p
≤




 (29) 

Solution of Eq. (26) in 1D is 

 0
1( , ) = erf erf
2 2 2

x F F x
x

p p p p
f t p

Dt Dt
 + −   

+    
    

 (30) 

where erf ( )x  is an error function, which is defined as 

 
2

0

2erf ( ) = e
x

tx dt−

π ∫ . (31) 

Corresponding plot of Eq. (30) for various moments of 
time illustrate Fig. 1. 

From this plot we can deduce that diffusion of distribu-
tion function in momentum space causes violation of the 
Fermi surface. 

Since the diffusion is happening in the momentum 
space, density of the particles must be constant and must 
equal to density of the degenerate Fermi liquid. We can 
check this by integrating Eq. (28). 

 
2

3 3
3 3/2

2 1 ( )= ( ) exp ,
4(2 ) 8( )

n F d p d p
DtDt

 ′−′ ′− 
π π   

∫∫
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

  

  (32) 

 
3

2 3=
3

Fpn
π 

. (33) 

As we expected solution (28) gives physical results and 
thus our theory is correct. 

In the similar way we calculated mean energy using the 
distribution function (28) 

2 2
3 3

3 3/2
2 1 ( )= ( ) exp ,

2 4(2 ) 8( )
pE F d p d p
m DtDt

 ′−′ ′− 
π π   

∫ ∫
p pp



 

  (34) 

 
23 6=

10 2
Fp n DtnE
m m

+ . (35) 

First term of this expression is the mean energy in absence 
of diffusion and corresponds to energy of degenerate Fermi 
liquid. Second term arises due to diffusion and increases 
linearly with time. 

To summarize, we have developed quasilinear theory of 
Fermi liquids by taking into account the diffraction of the 
de Broglie waves. To this end we used the quantum kinetic 
equation derived by N.L. Tsintsadze and L.N. Tsintsadze 
in recent paper [6]. It should be noted that our kinetic 
equation is considerably richer than the Landau’s kinetic 
equation. There is an additional physical feature included 
here, namely the Madelung term is incorporated due to the 
diffraction of the de Broglie waves. This term is responsi-
ble for the diffusion in the momentum space even in an 
ideal Fermi gas. Quasilinear theory can be also applied to 
electrons in most metals. The theory has found further ap-
plication in nuclear an neutron star matter, superfluid 3He 
and contemporary problems in superconductivity. 
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Fig. 1. (Color online) Plot of the distribution function, represent-
ed by Eq. (30) for various moments of time. 
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