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The previously derived equations for the components of the order parameter (OP) of dense superfluid neutron 
matter (SNM) with anisotropic spin-triplet p-wave pairing and with taking into account the effects of magnetic 
field and finite temperatures are reduced to the single equation for the one-component OP in the limit of zero 
magnetic field. Here this equation is solved analytically for arbitrary parametrization of the effective Skyrme in-
teraction in neutron matter and as the main results the energy gap (in the energy spectrum of neutrons in SNM) is 
obtained as nonlinear function of temperature T and density n in two limiting cases: for low temperatures near 
T = 0 and in the vicinity of phase transition temperature Tc0(n) for dense neutron matter from normal to superflu-
id state. These solutions for the energy gap are specified for generalized BSk21 and BSk24 parametrizations 
of the Skyrme forces (with additional terms dependent on density n) and figures are plotted on the interval 
0.1n0 < n <2.0n0, where n0 = 0.17 fm–3 is nuclear density. 

PACS: 21.65.Cd Asymmetric matter, neutron matter; 
26.60.Dd Neutron star core; 
67.10.Fj Quantum statistical theory; 
67.30.H– Superfluid phase of 3He . 
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1. Introduction 

This article is a continuation of our works [1,2] devoted 
to theoretical study of phase transitions in dense neutron 
matter with generalized Skyrme forces [3,4] and aniso-
tropic spin-triplet p-wave pairing of the 3He–A type [5,6] 
in strong magnetic field (see also [7]). Here we shall study 
the same dense superfluid neutron matter (SNM) in the 
limit of zero magnetic field ( = 0H ) and analytical so-
lutions will be found at finite temperatures of the single 
equation for the order parameter (OP) which is a conse-
quence (at = 0H ) from the set of equations (see (9) in [2]) 
for the components of OP (at 0H ≠ ) of dense SNM. 

Note that this study may be interesting in connection 
with investigation of thermodynamic properties of dense 
superfluid outer cores in a majority of ordinary isolated neu-
tron stars (non-accreting pulsars) which magnetic fields are 

much less in comparison with extremely strong fields of mag-
netars (see, e.g., [8–14] and also [15] and references therein). 

Moreover, recent discovery with the aid of the NASA’s 
Chandra X-Ray Observatory of unusually fast cooling of 
supernova remnant in Cassiopeia A (Cas A), which is the 
youngest known neutron star (NS) in the Milky Way Ga-
laxy, has attracted great attention (see, e.g., [16–30] and 
references therein). Several authors [18–23] explain such 
rapid cooling of NS in Cas A during last years (since Au-
gust 1999, when Chandra found point x-ray source in the 
Cas A, up to 2014) due to the existence of spin-triplet 
superfluidity of neutrons inside high-density liquid outer 
core of this NS. But alternative explanations for the ob-
served rapid cooling of Cas A have also been proposed (see, 
e.g., [24–29] and the discussion of [24] in [20,21]). This 
NS in Cas A is the first one whose cooling has been ob-
served in the real time. Note also that there is, to date, no 
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evidence for the presence of a significant magnetic field in 
the Cas A neutron star [20,21]. 

This discovery has revived interest in the problem of 
the correct theoretical description of neutron spin-triplet 
superfluidity in cores of NSs and, in particular, in dense 
neutron matter within different alternative theoretical me-
thods (see, e.g., [30–33] and reviews [21,34–37], refer-
ences therein and also the discussion at the end of [23]). 

In the present work we follow the so-called generaliz-
ed Fermi-liquid approach (see, e.g., review [38] and also 
[39–41] and references therein) which has been already 
used in [42] and [1,2] to describe dense SNM with aniso-
tropic spin-triplet p-wave pairing in steady and homogene-
ous strong magnetic field. Previously in [42] we applied 
conventional Skyrme forces (see, e.g., [43,44]) with only 
one term dependent on density n and then in [1,2] we used 
generalized BSk18 [3] and BSk20, BSk21 [4] Skyrme 
forces (with additional density dependent terms which bet-
ter take into account effects of three-body forces and other 
properties of nuclear matter important at high densities) as 
interaction in SNM at sub- ( 0<n n ) and supra-saturation 

0( >n n ) densities (where 3
0 = 0.17 fmn −  is nuclear density). 

Here we apply generalized BSk21 and BSk24 Skyrme 
forces [47,48] which lead to sufficiently stiff equations of 
state of dense pure neutron matter (NM) and are consistent 
(see [45–47] for details) with the recently measured values 

Sun(1.97 0.04)M±  and Sun(2.01 0.04)M±  for the masses of 
the heaviest yet observed pulsars PSR J1614–2230 [49] 
and PSR J0348–0432 [50]. Note that selected here BSk21 
and BSk24 are most likely the best parametrizations 
among other generalized parametrizations of the Skyrme 
forces (see Conclusions in [47]) which are sufficiently ac-
curate in calculation of neutron effective mass (which is 
strongly density dependent). It is particularly important 
because the magnitude of the energy gap in SNM (in the 
energy spectrum of neutrons in SNM) is very sensitive not 
only to the strength of attractive forces but also to the ef-
fective mass of a neutron (see, e.g., review [34] and refer-
ences therein). 

We write down below the equation for the OP which in 
the limit of zero magnetic field is a particular case of the 
set of equations for the components 0↓ ↑∆ ≠ ∆ ≠  (at 0;H ≠  
see Eqs. (9) from [2]). Then we shall solve this single 
equation (valid for arbitrary parametrization of the Skyrme 
forces) by analytical methods in two limiting cases: for low 
temperatures near = 0T  and in the vicinity of phase tran-
sition (PT) temperature 0 ( )cT n  for dense neutron matter 
from normal to superfluid state (with anisotropic spin-trip-
let p-wave pairing of the 3He–A type). These solutions are 
specified then for generalized BSk21 and BSk24 paramet-
rizations of the Skyrme forces and figures for the PT tem-
peratures and energy gap in SNM are plotted on the inter-
val 0 00.1 < < 2.0n n n . In conclusion we shall briefly dis-
cuss our main results. 

2. General equation for the OP for SNM with 
generalized Skyrme forces between neutrons and 

anisotropic spin-triplet pairing in zero magnetic field 

It is evident that in the absence of magnetic field 
( = 0H ) the effective magnetic field in SNM equals to ze-
ro, = 0ξ  (see notations in [2]). In this case the components 
of the OP ( ) ( , = 0)T↑ ↓∆ ξ  for SNM with spin-triplet aniso-
tropic p-wave pairing of the 3He–A type coincide to each 
other: 

 ( , = 0) = ( , = 0) = ( ).T T T↑ ↓∆ ξ ∆ ξ ∆  

For brevity, here and below we shall not write down densi-
ty n explicitly as the second argument of the function ( ).T∆  
It is obvious now that the set of two equations (see (9) 
from [2]) for the components of the OP is reduced to the 
following equation for determination of ( )T∆ : 

 3
2 3( ) = ( ) ( ).

8
c

T T J T∆ −∆
π 

 (1) 

Here 2
3 2 ( ) / < 0c t n′≡   is coupling constant leading to 

spin-triplet p-wave pairing of neutrons, which is expressed 
through the generalized parameters dependent on density: 

 2 2 2 5 5( ) = (1 ) (1 )t n t x t x nγ′ + + +  (2) 

(see (5) and details from [2] and also [3,4]) of the Skyrme 
interaction. Double integral ( )J T  is defined as follows: 

 
1max 2

4 2
2

0min

tanh( ( , ; ) / 2 )( ) = (1 ) .
( , ; )

p

p

E q x T TJ T dqq dx x
E q x T

−∫ ∫  (3) 

Here max = 1Fp p a+ , min = 1Fp p a−  with cutoff pa-
rameter 0 < < 1a , where = / ( )c Fa E nε ; cE  is the cutoff 
energy, 2( ) = /2F Fn p m∗ε  and Fp  are the Fermi energy and 
momentum; m∗ is the neutron effective mass dependent on 
density n of NM and on the generalized Skyrme para-
meters 1( )t n′  and 2 ( )t n′  according to general formula (10) 
from [2] (see also (29) and (30) here below). The function 

2( , ; )E q x T  is the energy of quasiparticles (neutrons) in 
SNM with anisotropic spin-triplet pairing of the 3He–A 
type and it has the form 

 2 2 2 2 2( , ; ) = ( )(1 ) ( ),E q x T q T x z q∆ − +  (4) 
where 

 2( , ) / 2 ( ) ( ) ( ) ( )Fz q T q m T q n z q∗= −µ ≈ ε − ε =   

( ( )Tµ  is the chemical potential which is substituted ap-
proximately by the Fermi energy at low temperatures in 
SNM, 00 ( ) ( )c FT T n n< < ε ). 

It will be more convenient to use another integral j 
which is related with ( )J T  by the following formula: 

 3( ) ( , ( ); ).FJ T m p j T T a∗≡ δ  (5) 
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Then Eq. (1) for the function ( )T∆  with account of (5) 
gets the following final form: 

 3
31 = ( ) ( , ( ); ),
8
nc m n j T T a∗− δ  (6) 

where 

 
2

F
2( ) = 1.

( )2 ( )
F

F
T

p Tm T∗

 ε ε
δ ≡ >> ∆∆  

 (7) 

Note that the function ( ) ( , )F Fp T G T n∆ ≡  is the maxi-
mal value of the anisotropic energy gap in the energy spec-
trum (4) of neutrons in SNM. In the next sections we shall 
solve this basic nonlinear integral Eq. (6) for determina-
tion of reduced energy gap ( , ) ( , ) / ( )F Fg T n G T n n≡ ε =

1/ ( , )T n= δ  by analytical methods in two limiting cases: 
near = 0T  and close to the PT temperature 0cT  without 
specifying of the parametrization of the generalized Skyrme 
forces. Then we shall select parametrization of the Skyrme 
forces in order to plot figures for obtained solutions. 

3. Solution of equation for the OP for SNM near T = 0 

Here we shall consider SNM at low temperatures, when 
00 < ( ) ( )c FT T n n<< << ε . In this case integral ( , ( ); )j T T aδ  

in (6) can be approximated as the difference: 

 0 1( , ( ); ) ( ( ); ) 2 ( , ( ); ),j T T a j T a j T T aδ ≈ δ − δ  (8) 

where integrals 0 ( ( ); )j T aδ  and 1( , ( ); )j T T aδ  have the 
following explicit form: 

1 2

0 2 2
0

1( ( ); ) ( ) (1 ) ,
( , ( ))

a

a

xj T a T dy y dx
b y T x−

−
δ ≡ δ +

δ −
∫ ∫  (9) 

 
1

2
1

0

( , ( ); ) ( ) (1 ) (1 )
a

a

j T T a T dy y dx x
−

δ ≡ δ + − ×∫ ∫   

 

2 2

2 2

exp ( , , ( )) ( , ( ))
.

( , ( ))

A y T T b y T x

b y T x

 − δ δ −  ×
δ −

 (10) 

Here functions ( , ( ))b y Tδ  and ( , , ( ))A y T Tδ  are defined as 
follows:  

 
2

2 ( , ( )) 1 ( ),
1

yb y T T
y

δ ≡ + δ
+

 (11) 

 
11( , , ( ) 1.

( ) ( )
F yyA y T T

T T T
+ε +

δ ≡ ≡ >>
δ η

 (12) 

As a result of analytical calculations we have obtained 
expressions for the integrals 0j  and 1j . Namely, for the 0j  
the following exact formula is valid: 

 
2

0
1( ; ) = 1 arcsin

2 2 3 ( , )
a a aj a

b a

   
δ δ + − δ +     δ   

  

2
211 arcsin ( 1 1 )

2 3 ( , ) 6
a a a a a

b a

    δ
+ − − δ + + + − +     − δ    

 

 1 5 5(11 ) 1 (11 ) 1 22
9 4 4

a a a a + + + + − − − +  
  

5 (2 1 1 )
12

a a+ − + − − +
δ

  

2

2
1 7 5 11 1
3 24 496 ln

1 11 1 1
4 4

  − + + − δ  δδ  + ×  − − − δ δ  

 

 

1 11 1 1 1 1 1
2 4 2 4

1 11 1 1 1 1 1
2 4 2 4

a aa a

a aa a

   
+ − + − − − − −    

δ δ    × +
   

+ + + − − + − −    δ δ   

  

 1 3 5 1 1arctan arctan .
4 24

a a
a a

    + − + − −         δδ δ δ       
  

  (13) 

The integral 1j  is closely approximated by the following 
formula which is valid at 00 < c FT T<< << ε : 

 1( , ( ); )j T T aδ ≈  
2

2 2
2 1 2 6 1( ) (1 )exp ( )

a

a

cT dy y Ac c c
A A AA A−

   δ + − + + + + ≈        
∫

 4 2 88 ( )[1 8 ( )] ( ),T T O≈ η + η + η  (14) 

where 

 2 | | ( )
( , ( )) ( , ( )) 1 = 0.

1
y T

c y T b y T
y

δ
δ ≡ δ − ≥

+
 (15) 

Thus, with account (8) and (14) we can write down now 
general Eq. (6) in the following approximate form valid at 
low temperatures, c00 < FT T<< << ε :  

4 20
3 0

3
1 ( ) ( ) ( ( ); ) 16 ( )(1 8 ( )) .

8
n

c y ym y j T a T T∗  ≈ − δ − η + η 
  (16) 

Here we have introduced reduced density 0/y n n≡  of 
SNM (where 3

0 = 0.17 fmn −  is nuclear density, which 
plays role of the density scale factor). Function 0 ( ( ); )j T aδ  
(see (13)) determines the solution of Eq. (16) in the limit of 
zero temperature (at = 0H ) for the required reduced ener-
gy gap ( , ; ) 1g T y a <<  (see after (7)). Thus, because 

(0) = 0η  (see definition (12)), we obtain at = 0T  from (16) 
the following expression for (0, ; ) (0, ; ) / ( )F Fg y a G y a y≡ ε  
(see also [42]): 

 ( )

3 0

2(0, ; ) = exp ( ) ,
( ) ( )

sg y a M a
c y n ym y∗

 
+ 

  
 (17) 
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where 3( ) < 0c y  (see note after (1) and also (2) for general-
ized parametrizations of the Skyrme forces in SNM). Func-
tion ( ) ( )sM a  which depends only on the cutoff parameter 

= / ( ) < 1c Fa E yε  is determined by the formula 

 ( ) 11 4 4( ) 2 ln 2 1 1
6 3 3

s a aM a a a+ −
≡ − + + + − +  

 1 ( 1 1)(1 1 )ln .
2 ( 1 1)(1 1 )

a a
a a

 + − − −
+  

+ + + − 
 (18) 

In view of Eq. (17), we get from (16) the transcendental 
equation for the function ( , ; ) 1g T y a <<  (at 00 < cT T<< ): 

 ( )

3 0

2( , ; ) = exp ( )
( ) ( )

sg T y a M a
c y n ym y∗


+ −


  

 
4 2

4 216 1 8 ,
( , ; ) ( , ; )g T y a g T y a

 τ τ
− +    

 (19) 

where / ( ) 1FT yτ ≡ ε << . Owing to the smallness of the 
temperature correction we get from (19) the following so-
lution in the main approximation on the small T : 

 
4

( , ; ) (0, ; ) 1 16
( , ; )F

Tg T y a g y a
G T y a

  ≈ − ×  
 

  

 
2

1 8
( , ; )F

T
G T y a

    × +      
  

 
4 2

(0, ; ) 1 16 1 8 .
(0, ; ) (0, ; )F F

T Tg y a
G y a G y a

       − +           
  

  (20) 

Note that obtained here in (20) leading power-law of tem-
perature dependence 4~ T  for the energy gap in SNM 
(with anisotropic spin-triplet p-wave pairing) near = 0T  is 
in qualitative accordance with the similar result obtained 
earlier for the superfluid 3 He–A (see, e.g., review [51]) but 
it is quite different from the exponential temperature de-
pendence of the isotropic energy gap near = 0T  in tradi-
tional superconductors with spin-singlet s-pairing [52,53]. 

4. Solution of equation for the OP for SNM near Tc0 

Let us consider SNM in the region of temperatures 
close to 0cT , when 0 0| |c cT T T− << . But at the beginning 
we shall study the limiting case, 0cT T→ . It can be shown 
that the Eq. (6) in this limit is reduced to the following 
transcendental equation: 

 0
3

0

( ) 2
1 ( ) ln

2
c

c

n ym y E
c y

T

∗   γ
≈ − +  π  

  

 
2 4

3 3 ,
16 ( ) 512 ( )

c c

F F

E E
y y

    + +   ε ε     
 (21) 

where = e 1.781072418Cγ ≈  ( = 0.5772156649...C  is Eu-
ler’s constant). Here in [...] we neglected by small terms 

2
0( / )c FO T ε . We get from (21) the following approximate 

solution for the PT temperature 0 ( ; )c cT y E  of SNM: 

 0
3 0

2 2( ; ) exp
( ) ( )

c c cT y E E
c y n ym y∗

γ
≈ +

π 
  

 
2 4

3 3 .
16 ( ) 512 ( )

c c

F F

E E
y y

    + +   ε ε     
 (22) 

Note that pre-exponential numerical factor here, 
2 / 1.134γ π ≈ , is somewhat more refined in comparison 
with analogous expressions [1,2] for PT temperature of 
SNM. 

Now we define reduced PT temperature 0 ( ; )ct y a  of 
SNM: 

 0
0

( ; )
( ; ) 1

( )
c

c
F

T y a
t y a

y
≡ <<

ε
  

and then using obtained expression (17) for the reduced 
energy gap (0, ; )g y a  we find as a result the following ratio 
for these functions: 

 
c0

(0, ; ) 5 5exp = exp .
( ; ) 2 6 2 6

g y a C
t y a

π π   ≈ −   γ    
 (23) 

This ratio is “universal” because it does not depend neither 
on the cutoff parameter < 1a  nor on the nature of inter-
action in the Fermi superfluid with anisotropic spin-triplet 
p-wave pairing (in particular (23) is valid for arbitrary 
parametrizations of the Skyrme forces in SNM) and it ex-
actly coincides with analogous ratio for the superfluid 
3 He–A phase (see, e.g., [5]). The ratio (23) depends only 
on the symmetry of the OP of superfluid system. 

Now in order to solve Eq. (6) for SNM at temperatures 
0 0| ( ) | ( )c cT T n T n− <<  we rewrite it as follows: 

 
1

20

0

3ln = ( ) (1 ) (1 )
4

a
c

a

T
T dy y dx x

T
−

  δ + − × 
  ∫ ∫  

 

2 2F

2 2

( )1 tanh tanh ( , ( ))
2 2 ,

( ) ( , ( ))

A yy y b y T x
T

T y b y T x

 ε    + δ −        × −
 δ δ −  

  

  (24) 

where we have used (21) and neglected by the small terms 
2

0( / )c FO T ε . Functions ( , , ( ))A y T Tδ , 2 ( , ( ))b y Tδ  and 
( ) 1Tδ >>  are defined by formulas (12), (11) and (7), re-

spectively. From (24) we obtain in the main approximation 
on small parameter 21/ ( ) ( ) 1T g Tδ ≡ <<  the following 
approximate equation: 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 3 225 



A.N. Tarasov 

 
5/2 5/2

0

0

1 (1 ) (1 )ln
5 ( )

a
cT y ydy
T T y

− + +  ≈ − ×  δ  ∫   

 tanh .
2

Fd y y
Tdy

 ε  ×   
  

 (25) 

Let us use the following expansion into a series [52,53]: 

 2 2 2
=0

1tanh = 4 .
2 [ (2 1) ]n

x x
n x

∞ 
 
  π + +

∑  (26) 

Substituting this in Eq. (25) we obtain as a result of calcu-
lations the final approximate equation (see also note after (7)) 
valid at 0 0| ( ) | ( )c cT T n T n− << : 

2 2
0

2 2
( ) ( , )1 7 (3) 7 (3)ln =

( ) 10 10
c F FT n G T n
T T T T

ε ζ ζ     ≈      δ      π π
 

  (27) 

( ( )xζ  is the Riemann zeta function). It is obvious from (27) 
that the energy gap has the form 

 
2

0 ( )10( , ) ln ,
7 (3)

c
F

T n
G T n T

T
π  ≈  ζ  

 (28) 

where 210 / [7 (3)] 3.4248π ζ ≈ . It is in accordance with 
analogous result [5] for 3 He–A but at the same time (28) is 
more accurate than in [5], where 0ln ( / )cT T T  is approx-
imated by 0 01 /c cT T T−  (note here that such temperature 
dependence of the energy gap in the vicinity of 0cT  is con-
sistent with Landau’s theory of second-order phase transi-
tions; see, e.g., Appendix II in [52]). Moreover, for SNM 
(with spin-triplet anisotropic p-wave pairing and with gen-
eralized parametrizations of the Skyrme forces) density 
profile of PT temperature c0 ( )T n  is essentially different 
than in 3 He–A and it will be evident in the next section. 

5. Solutions of equation for the OP for SNM with 
generalized Skyrme forces near T = 0 and close to Tc0 

and their density and temperature profiles 

Formulas (17), (19), (20), (22), (28) contain the effec-
tive mass of neutron nm∗, which depends on the density 

0n yn≡  of NM as in [2]: 

 0
1 22= 1 [ ( ) 3 ( )],

4n

mynm t n t n
m∗

′ ′+ +


 (29) 

where 2( ) / 2 938.91897 MeV / cp nm m m≈ + ≈  is mean 
value of free nucleon mass. Generalized parameters 

 1 1 1 4 4( ) = (1 ) (1 ) ,t n t x t x nβ′ − + −  (30) 

and 2 ( )t n′  (see (2)) have specific numerical values for each 
Skyrme parametrization. For NM with the best BSk21 and 
BSk24 generalized parametrizations [4,47] of the Skyrme 
forces we have from (29) that 

 , 21( )n BSkm y∗ ≈  

 
1/12 ,

1 (3.97930 0.0422618 3.89571)
m

y y y
≈

+ + −
 (31) 

 , 24 ( )n BSkm y∗ ≈   

 
1/12 ,

1 (3.97930 0.0422618 3.89025)
m

y y y
≈

+ + −
 (32) 

and the Fermi energies of NM for the BSk21 and BSk24 
Skyrme forces have the following forms (which are close 
to each other because the parameters of the two forces are 
very similar; see Fig. 1): 

 2/3 1/12
, 21( ) [1 (3.97930F BSk y y y yε ≈ + +  

 0.0422618 3.89571)]·60.902 (MeV),y+ −  (33) 

 2/3 1/12
, 24 ( ) [1 (3.97930F BSk y y y yε ≈ + +   

 0.0422618 3.89025)]·60.902 (MeV).y+ −  (34) 

In zero magnetic field = 0H  from general formula (22) 
(see also (29)–(34) and (2)) it follows as the particular re-
sults the expressions for PT temperatures of dense NM 
(with BSk21 and BSk24 Skyrme parametrizations) to SNM 
with anisotropic spin-triplet pairing of 3He–A type: 

 0, 21( ; )c BSk cT E y ≈  

 
2 4

, 21 , 21

2 3 3exp
16 ( ) 512 ( )

c c
c

F BSk F BSk

E E
E

y y

    γ  ≈ + ×       π ε ε    

 

 
1/12

1/12
1 (3.97930 0.0422618 3.89571)

exp ,
(2.65286 2.85028)

y y y

y y

 + + −
×  

−  
  

  (35) 

Fig. 1. Fermi energies for SNM (see (33) and (34)) with BSk21 
(line) and BSk24 (points) Skyrme forces as the functions of re-
duced density 0= /y n n  are close to each other. 
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2

0, 24
, 24

2 3( ; ) exp
16 ( )

c
c BSk c c

F BSk

E
T E y E

y

  γ
≈ +   π ε  

  

 
4

, 24

3
512 ( )

c

F BSk

E
y

  + ×   ε  

  

 
1/12

1/12
1 (3.97930 0.0422618 3.89025)

exp
(2.65286 2.84870)

y y y

y y

 + + −
×  

−  
  

  (36) 

(here cE  is the cutoff energy which is less than Fermi en-
ergies, , 24 ( )c F BSkE y< ε  and , 21( )c F BSkE y< ε ). Compare 
improved formula (35) (see note after (22)) with analogous 
formula (16) from [2] for 0, 21 c( ; )c BSkT E y . 

If for the definiteness, we select cutoff energy 
eV= 10 McE  (so that , 21( )c F BSkE y< ε  and , 24 ( )c F BSkE y< ε , 

see Fig. 1) it is easy to plot figures (see Figs. 2 and 3) for 
the PT temperatures (35), (36) of NM at sub- and supra-
saturation densities on the interval 0 00.1 < < 2.0n n n . 

6. Conclusion 

Thus, we can conclude that temperature dependence 
4

0(~ ( / ) 1cT T << , see (20)) of the energy gap in superfluid 
of the 3He–A type near = 0T  and close to 0 ( )cT n  (see (28)) 
is determined only by the symmetry of the OP and doesn’t 
depend on the nature of interactions which lead to the spin-
triplet Cooper pairing in the system. But as we can see 
from Figs. 2–7 the density dependences of the PT tempera-
ture 0, ( ; )c BSk cT E y  and the energy gap in SNM are signifi-
cantly different than in the superfluid 3 He–A [5]. 

Note also that obtained here general formula (22) for 
PT temperature 0, ( ; )c BSk cT E y  of dense NM (in zero mag-
netic field) to superfluid state with anisotropic p-wave 

pairing of 3 He–A type and with generalized Skyrme inter-
actions [4,47] depends on density in nonmonotone way 
((35) and (36) exhibit a bell-shaped density profile, see 
Fig. 2). Such behavior of these PT temperatures 

0, 21(10; )c BSkT y  and 0, 24 (10; )c BSkT y  and their maximal 
values are in qualitative agreement with results of recent 
articles [18,19,30] and are of the same order in magnitude 
at = 10cE  MeV (namely, 0, 21max ( (10; )) 0.063c BSkT y ≈  
MeV and 0, 24max( (10; )) 0.060c BSkT y ≈  MeV, see Fig. 3). 

Fig. 2. PT temperatures of SNM with generalized BSk21 and 
BSk24 Skyrme forces (see (35) and (36) at 10 MeVcE = ): 

0; 21(10; )c BSkT y  (upper curve); c0; 24(10; )BSkT y  (lower curve). 
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Fig. 3. The same PT temperatures of SNM as in Fig. 2 with 
BSk21 and BSk24 forces at 10 MeVcE =  near their maxima: 

0; 21(10; )c BSkT y  (upper curve); 0; 24(10; )c BSkT y  (lower curve). 
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Fig. 4. Energy gap of SNM ( , ;10)FG T y  (see (28)) with BSk21 
Skyrme force and with anisotropic spin-triplet p-wave pairing (in 
zero magnetic field, = 0H ) as a function of reduced density 

0= /y n n  at three temperatures near 0, 21(10; )c BSkT y  (see (35) 
with cutoff energy 10 MeVcE = ): at 0, 21= 0.91 (10; )c BSkT T y  
(upper curve), at 0, 21= 0.96 (10; )c BSkT T y  (middle curve) and at 

0, 21= 0.99 (10; )c BSkT T y  (bottom curve). 
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Note finally, that results (20), (28) for energy gap are ge-
neral and figures similar to Figs. 4–7 are valid also for 
SNM with BSk24 parametrization of the generalized 
Skyrme forces (proposed recently in [47,48]) and they are 
close with BSk21 (it is clear from (20), (28) and from 
Figs. 1, 2 for Fermi energies (33), (34) and PT tempera-
tures (35), (36) for BSk21 and BSk24 which are close to 
each other). 
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