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By the use of the Rayleigh method we have calculated the angular dependence of the reflectivity and the effi-
ciencies of several other diffracted orders when the periodically corrugated surface of an isotropic elastic medi-
um is illuminated by a volume acoustic wave of shear horizontal polarization. These dependencies display the 
signatures of Rayleigh and Wood anomalies, usually associated with the diffraction of light from a metallic grat-
ing. The Rayleigh anomalies occur at angles of incidence at which a diffracted order appears or disappears; the 
Wood anomalies here are caused by the excitation of the shear horizontal surface acoustic waves supported by 
the periodically corrugated surface of an isotropic elastic medium. The dispersion curves of these waves in both 
the nonradiative and radiative regions of the frequency-wavenumber plane are calculated, and used in predicting 
the angles of incidence at which the Wood anomalies are expected to occur. 

PACS: 62.30.+d Mechanical and elastic waves; vibrations; 
46.40.Cd Mechanical wave propagation (including diffraction, scattering, and dispersion); 
68.35.Iv Acoustical properties. 

Keywords: elastic medium, surface waves, Rayleigh and Wood anomalies. 

1. Introduction

It has been known for some time that while a planar, 
stress-free surface of a semi-infinite isotropic elastic medi-
um does not support a surface acoustic wave of shear hori-
zontal polarization, a periodically corrugated surface of 
such a medium does support a surface wave of this polari-
zation [1–3]. It has also been known for some time that 
while the planar surface of a semi-infinite perfect conduc-
tor does not support a surface electromagnetic wave, a pe-
riodically corrugated surface of a perfect conductor sup-
ports a p-polarized surface electromagnetic wave [4,5]. 

There is an isomorphism between these two wave prob-
lems. The isotropic elastic medium in the former problem 
is the analogue of the vacuum in the latter problem, while 
the vacuum in the former problem is the analogue of the 
perfect conductor in the latter problem. The equation of 
motion of the single nonzero component of the displace-

ment field of an acoustic wave of shear horizontal polariza-
tion, and the stress-free boundary condition it satisfies on 
the corrugated surface of the elastic medium, are the same 
as the Maxwell equation for the single nonzero component 
of the magnetic field in the vacuum, and the boundary 
condition on the corrugated surface of the perfect conduc-
tor. One needs only to replace the speed of bulk transverse 
waves tc  in the former set of equations by the speed of 
light in vacuums c, to obtain the latter set of equations [4]. 

There is, however, a significant difference between the-
se two systems. A perfect conductor is a hypothetical me-
dium that can be regarded as a metal in the limit as the real 
part of its dielectric function approaches −∞ . In practice 
such a medium is well approximated by a metal in the te-
rahertz and microwave frequency ranges, but it is still an 
idealization of a real metal. In contrast, an elastic medium 
is a real entity, not some hypothetical limit of a real medi-
um. Consequently, some interactions of electromagnetic 
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waves with a corrugated perfectly conducting surface can 
be studied rigorously experimentally by studying the inter-
action of bulk elastic waves with the stress-free corrugated 
surface of an elastic medium. 

We note here that although we have referred to iso-
tropic elastic media only until now, the discussion in this 
paper applies equally well to an elastic medium of cubic 
symmetry whose cube axes coincide with the coordinate 
axes. The speed of bulk transverse waves in this case is 

1/2
44= ( / )tc c ρ , where 44c  is a shear elastic modulus of the 

medium, and ρ is its mass density [6]. However, in what 
follows we will confine our attention to isotropic elastic 
media. 

It is the fact that the interaction of an acoustic wave 
with the corrugated surface of an isotropic elastic medium 
can mimic the interaction of an electromagnetic wave with 
the corrugated surface of a perfect conductor that prompts 
this paper. In a recent paper by the present authors and 
their colleagues [7] the diffraction of a p-polarized elec-
tromagnetic wave from a perfectly conducting lamellar 
grating was studied by a rigorous numerical approach. That 
work was motivated by the desire to demonstrate that the 
dependence of the reflectivity and other diffraction effi-
ciencies on the angle of incidence displays Rayleigh and 
Wood anomalies. These anomalies were first observed in 
1902 by R.W. Wood in measurements of the angular and 
wavelength dependencies of the reflectivities of light dif-
fracted from various metallic gratings [8,9]. These anoma-
lies occurred when the magnetic vector of the incident light 
was parallel to the grooves of the grating (p polarization) 
and were of two types. 

The first type of anomaly was a discontinuous change 
in the reflectivity at well-defined wavelengths for a fixed 
angle of incidence. These wavelengths were independent 
of the metal on which the grating was ruled, and were de-
termined by the period of the grating. It was shown by 
Lord Rayleigh [10,11] that these anomalies occur at the 
wavelengths at which a diffracted order appears or disap-
pears. For the nth diffracted order this occurs at the wave-
lengths given by 0= ( 1 sin ) /n a nλ ± − θ , where a is the pe-
riod of the grating, 0θ  is the angle of incidence, and n is 
an integer. These anomalies are now called Rayleigh ano-
malies. 

The second type of anomaly was diffuse, and extended 
in a wide range of wavelengths toward longer wavelengths 
from a Rayleigh anomaly. These anomalies generally con-
sisted of a maximum or minimum of the intensity, and oc-
curred only in p polarization when the plane of incidence 
was perpendicular to the grooves of the grating. The wave-
length at which they occurred changed when the metal on 
which the grating was fabricated was changed. The expla-
nation for these anomalies was provided by Fano [12], who 
showed that they are due to the excitation of the surface 
electromagnetic waves — surface plasmon polaritons — 
supported by a periodically corrugated vacuum–metal in-

terface. The wavenumber of the surface plasmon polariton 
of frequency ,ω  ( )sppk ω , is slightly larger than / cω  in 
the frequency range where the dielectric function of 
the metal (assumed to be real) is negative. The component 
of the wave vector of the incident light parallel to the sur-
face, 0= ( / )sink cω θ , is smaller than / cω . For momentum 
to be conserved in the interaction of the incident wave with 
the surface plasmon polariton the difference between these 
two wavenumbers must be made up. In the present case 
this is done by a wavenumber of the grating, 2 /n aπ , 
where n is an integer. Thus, the condition for the excitation 
of the surface plasmon polariton is = ( ) 2 /sppk k n aω + π  [13]. 

The results of Ref. 7 showed that the diffraction of light 
from a periodically corrugated surface, that in the absence 
of the corrugations does not support surface electromagnet-
ic waves, displays Rayleigh and Wood anomalies in the 
dependence of the scattering efficiencies on the angle of 
incidence. The mechanism responsible for the latter anom-
alies was the excitation by the incident field of the surface 
electromagnetic waves induced by the corrugations of the 
surface. 

In light of these results it seemed of some interest to 
study the diffraction of waves from the periodically corru-
gated surface of a different medium that also supports sur-
face waves only because of its corrugations, but unlike the 
surface of a perfect conductor can be accessed experimen-
tally without difficulty. The diffraction of volume acoustic 
waves from the periodically corrugated surface of an iso-
tropic elastic medium, when the plane of incidence is per-
pendicular to the grooves of the grating, is such a system. 

Thus, in this paper, on the basis of the Rayleigh hy-
pothesis [14], we study the diffraction of a volume acoustic 
wave of shear horizontal polarization from a sinusoidally 
corrugated surface of an isotropic elastic medium. The 
dependence of the reflectivity and other diffraction effi-
ciencies on the angle of incidence is determined, as well as 
the dispersion curve of the surface wave of shear horizon-
tal polarization supported by the corrugated surface in both 
the nonradiative and radiative regions of the frequency-
wavenumber plane. These dispersion curves are used to 
confirm features (maxima and minima) in the angular de-
pendencies of the efficiencies as Wood anomalies. Ray-
leigh anomalies are found at angles of incidence defined by 
the wavelength of the incident wave and the period of the 
grating. All of these anomalies should be observable exper-
imentally. 

2. The diffraction problem 

The physical system we study consists of an isotropic 
elastic medium in the region 3 1> ( )x xζ , and vacuum in the 
region 3 1< ( )x xζ  (Fig. 1). The surface profile function 

1( )xζ  is assumed to be a differentiable single-valued func-
tion of 1x  that is periodic with a period 1 1, ( ) = ( )a x a xζ + ζ . 
The surface 3 1= ( )x xζ  is illuminated from within the elas-
tic medium by a volume acoustic wave of shear horizontal 
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polarization of frequency ω, whose plane of incidence is 
the 1 3x x  plane. In this geometry the diffracted beams have 
the same, shear horizontal, polarization, and the plane of 
scattering is also the 1 3x x  plane. 

The elastic displacement field in the region 3 1> ( )x xζ  
thus has the form 

 2 1 3( ; ) = (0, ( , | ),0)exp( i ).t u x x tω − ωu x  (1) 

The displacement component 2 1 2( , | )u x x ω  satisfies the Helm-
holtz equation 

 
2 2 2

2 1 3 3 12 2 2
1 3

( , | ) = 0, > ( ),
t

u x x x x
x x c

 ∂ ∂ ω+ + ω ζ  ∂ ∂ 
 (2) 

where tc  is the speed of shear acoustic waves in the medi-
um. The solution of Eq. (2) that satisfies the boundary 
conditions at infinity of an incoming incident wave and 
outgoing diffracted waves, and also satisfies the Bloch 
condition 2 1 3 2 1 3( , | ) = ( , | ) exp ( )u x a x u x x ika+ ω ω , where 

0= ( / )sintk cω θ , with 0θ  the angle of incidence measured 
counterclockwise from the 3x  axis, required by the perio-
dicity of the surface, can be written 

 [ ]2 1 3 1 3( , | ) = exp ( , )u x x ikx i k xω − α ω +   

 [ ]1 3
=

( , ) exp ( , ) .n n n
n

A k ik x i k x
∞

−∞
+ ω + α ω∑  (3) 

Here = 2 /nk k n a+ π , and 

 

1/22
2( , ) = .

t
k k

c

  ω α ω −    
 (4) 

The manner in which the branch cut defining the square 
root in Eq. (4) is determined will be described below. 

The stress-free boundary condition satisfied by 
2 1 3( , | )u x x ω  on the surface 3 1= ( )x xζ  is 

 1 2 1 3
1 3 = ( )3 1

( ) ( , | ) = 0,
x x

x u x x
x x ζ

  ∂ ∂ ′−ζ + ω  ∂ ∂   
 (5) 

that is, the normal derivative of 2 1 3( , | )u x x ω  is required to 
vanish at the surface. When we substitute Eq. (3) into 

Eq. (5), we obtain the equation satisfied by the amplitudes 
{ }( , )nA k ω : 

 [ ] [ ]1 1 1( ) ( , ) exp ( , ) ( )i x k k ikx i k x′− ζ + α ω − α ω ζ −  

 [ ]1
=

( , ) ( ) ( , )n n n
n

i A k x k k
∞

−∞
′− ω ζ − α ω ×∑   

 [ ]1 1exp ( , ) ( ) = 0.n nik x i k x× + α ω ζ  (6) 

The validity of using the expansion given by the second 
term on the right hand side of Eq. (3) for the diffracted 
field, which strictly speaking is valid only outside the sel-
vedge region, in satisfying the boundary condition (5) con-
stitutes the Rayleigh hypothesis [14]. 

To solve this equation we introduce the representation 

 [ ]1 1
=

2exp ( ) = ( )exp ,p
p

pi x i x
a

∞

−∞

π γζ γ   ∑   (7) 

so that 

 
/2

1 1 1
/2

1 2( ) = exp ( )) .
a

p
a

pdx i x i x
a a

−

π γ − + γζ  ∫  (8) 

By differentiating Eq. (7) with respect to 1x  we obtain a 
second useful result: 

[ ]1 1 1
=

( )2 2( )exp ( ) = exp .p

p

p px i x i x
a a

∞

−∞

γπ π ′ζ γζ  γ  ∑


 (9) 

When Eqs. (7) and (9) are used in Eq. (6), the equation for 
the { }( , )jA k ω  becomes 

( ) 2

=

( , )
( , )

( , )
m n n

m n n
n tn

k
k k A k

k c

∞
−

−∞

 α ω  ω − ω = α ω    
∑ 

  

 
( ) 2( , )

= , = 0, 1, 2,
( , )

m
m

t

k
kk m

k c

 −α ω  ω − ± ± α ω    



 (10) 

The diffraction efficiency of the mth diffracted beam is 
given by 

 2( , )
( , ) = ( , ) .

( , )
m

m m
k

e k A k
k

α ω
ω ω

α ω
 (11) 

As there is no absorption in the system we are studying, 
the conservation of energy in the diffraction process is ex-
pressed by 

 2( , )
( , ) = | ( , ) | = 1,

( , )
m

m m
m m

k
'e k ' A k

k
α ω

ω ω
α ω∑ ∑  (12) 

where the prime on the sum denotes that it extends over 
only the open channels, i.e., the ones for which ( , )mkα ω  is 
real. Finally, the reflectivity is given by 

 2
0 0( , ) = ( , ) = ( , ) .R k e k A kω ω ω  (13) 

Fig. 1. A definition of the grating considered in this work, 
the parameters that define it, and the geometry of the diffraction 
of shear horizontal acoustic waves from it. 

x1

θ0 θs

x3
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2ζ0

x x3 1 = ( )ζ
Solid: ct
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3. The dispersion relation for surface acoustic waves 

To obtain the dispersion relation for the surface acous-
tic waves of shear horizontal polarization supported by the 
periodically corrugated surface of an isotropic elastic me-
dium, we have only to remove the incident field from the 
right-hand side of Eq. (3). This is equivalent to deleting the 
inhomogeneous term from Eq. (10). In this way we obtain 
the homogeneous system of equations for the amplitudes 
{ }( , )nA k ω  [3] 

 
=

( , ) ( , ) = 0, = 0, 1, 2,mn n
n

M k A k m
∞

−∞
ω ω ± ±∑ ,  (14) 

where the matrix element ( , )mnM k ω  is defined by 

 
( ) 2( , )

( , ) = .
( , )

m n n
mn m n

n t

k
M k k k

k c
−

 α ω  ω ω −  α ω    


 (15) 

The solvability condition for this system of equations, 
namely the vanishing of the determinant of the matrix 

( , )k ωM , 

 ( , ) = det [ ( , )] = 0,mnD k M kω ω  (16) 

is the dispersion relation we seek. 
The displacement field of the surface wave is then giv-

en by the second term on the right-hand side of Eq. (3), 

[ ]2 1 3 1 3( , | ) ( , ) exp ( , ) .n n n
n

u x x A k ik x i k x
∞

=−∞
ω = ω + α ω∑  (17) 

The solutions ( )kω  of Eq. (16) are even functions of k , 
( ) = ( )k kω − ω . They are also periodic functions of k  with 

period 2 /aπ , ( 2 / ) = ( )k a kω + π ω . Therefore, all of the 
solutions of Eq. (16) can be obtained if we restrict the 
wavenumber k  to the interval 0 /k a≤ ≤ π . This is called 
the reduced zone scheme, and we adopt it here. The result-
ing dispersion curve consists of an infinite number of 
branches of increasing frequency, of which we have de-
termined only the three with the lowest frequencies. 

In the absence of the periodic corrugations of the elastic 
medium the resulting planar surface does not support a true 
surface acoustic wave of shear horizontal polarization, 
only a surface skimming bulk wave whose dispersion rela-
tion is = .tc kω  In the reduced zone scheme the portions 
of this curve in the second, third, , one-dimensional 
Brillouin zones are folded into the first Brillouin zone 

/ < /a k a−π ≤ π , by translations to the left and to the right 
by suitable multiples of 2 / aπ . The result is a zig-zag dis-
persion curve with a second, third,  branch in addition to 
the lowest frequency branch. This is called the empty lat-
tice dispersion curve. 

In the nonradiative region of the ( , )k ω  plane, which is 
defined by | | > / tk cω , the { ( , )}nkα ω  are purely imagi-

nary, with a positive imaginary part, for all n. From Eq. 
(17) we see that this result corresponds to a surface wave 
whose amplitude decays exponentially into the medium 
with increasing 3x . The solutions ( )kω  of Eq. (16) in this 
region are real and correspond to true surface waves. 

For k  and ω outside the nonradiative region, i.e., inside 
the radiative region, some of the ( , )nkα ω  become complex 
with a positive real part, and thus produce components in 
the sum (17) that radiate into the elastic medium. As the 
resulting wave radiates into the medium it must decrease in 
amplitude. To describe this conversion of surface waves 
into bulk acoustic waves in the medium we will consider ω 
to be complex and k  to be real. The imaginary part of ω 
gives the inverse lifetime of the amplitude of the leaky 
surface wave. 

To obtain solutions of Eq. (16) that possess these prop-
erties, the branch cut that defines the square root in the 
definition of ( , )nkα ω , Eq. (4), must be chosen properly. 
We begin by writing 

 ( ) ( ) ( ),R Ik k i kω = ω − ω  (18) 

where ( )R kω  and ( )I kω  both are real, positive functions of 
k . A negative imaginary part of ( )kω  is needed in order to 
have a wave whose amplitude decays in time as it propa-
gates, due to its leakage. With Eqs. (4) and (18) we have 

 
2 2

2 2
2 2

2
( , ) .R I R I

n n
t t

k k i
c c

 ω − ω ω ω
α ω = − − 

  
 (19) 

It has been shown [7] that if the branch cut is taken along 
the negative imaginary axis, ( , )nkα ω  has the desired prop-
erties in both the nonradiative and radiative regions of the 
( , )kω  plane. For, if 2 2 2 2> ( ) /n R I tk cω − ω , the nonradiative 
region, 2 ( , )nkα ω  is in the third quadrant. This means that 

( , )nkα ω  will be in the second quadrant, with a negative 
real part and a positive imaginary part. The positive imagi-
nary part of ( , )nkα ω  means that the nth term in Eq. (17) 
decreases exponentially with increasing 3x , as is required 
of a surface wave. When 2 2 2 2< ( ) /n R I tk cω − ω , the radiative 
region, 2 ( , )nkα ω  is in the fourth quadrant. Therefore 

( , )nkα ω  is also in the fourth quadrant, with a positive real 
part and a negative imaginary part. The positive real part of 

( , )nkα ω  corresponds to a wave that is radiating from the 
surface into the elastic medium, as we wish for a radiative 
or leaky surface wave. The negative imaginary part of 

( , )nkα ω  in this case corresponds to a wave whose ampli-
tude increases exponentially with increasing 3x . This ex-
ponential increase of the amplitude of a leaky surface 
acoustic wave with increasing distance from the surface is 
physically correct. It has been discussed in detail by Lim 
and Farnell [15], by Ingebrigtsen and Tonning [16], and by 
Glass and Maradudin [17], and the reader is referred to 
these papers for an explanation of this counterintuitive 
result. 
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4. Numerical solution of Eq. (16) 

To obtain the dispersion curves for the surface acoustic 
waves, we followed closely the procedure described in 
Ref. 7 for solving Eq. (16) numerically. This method begins 
by approximating the infinite-dimensional matrix entering it 
by a finite one. To this end, one restricts the indices m and n 
in Eq. (16) to the values , = , 1, , 1,m n − − + −   , 
where  is a positive integer. We thus seek the values of 
ω for a given value of k  at which the determinant of the 
resulting (2 1)+ -dimensional square matrix vanishes. 
Instead of using ( , )D k ω  directly in a search for its zeros, it 
was argued in Ref. 7 that it is more convenient in numeri-
cal calculations to work with the function 

 { } =
( , ) = min ( , ) ,m mk k

−
Λ ω λ ω 


 (20) 

as it is a smoother function of its arguments and of smaller 
range than ( , )D k ω . In Eq. (20), mλ  denotes an eigenvalue 
of the (2 1) (2 1)+ × +   matrix whose determinant is 

( , )D k ω . Since =( , ) = ( , )m mD k k−ω Π λ ω
 , it follows that 

the condition ( , ) = 0D k ω  is equivalent to ( , ) = 0kΛ ω  
which, therefore, represents an alternative definition of the 
dispersion relation for surface waves on which the numeri-
cal calculations presented in this work are based. 

To obtain the dispersion curve for the surface waves 
a mesh of 1+  equally spaced points =k k∆



 , with 
= 0,1,2 ,    and = ( / ) /k a∆ π   is created in the inter-

val (0, / )aπ  of the k  axis, where   is typically 100. For 
each value k



 an independent numerical minimization of 
the function ( , )kΛ ω



 is performed with respect to the 
complex frequency ( ) = ( ) ( ).R Ik k i kω ω − ω

  

 The mini-
mization is performed using the Nelder–Mead optimization 
algorithm [18–20] by considering Λ  to be a function of 
two real variables, ( )R kω



 and ( )I kω


 ( > 0, > 0)R Iω ω , 
with k



 treated as a known parameter. 
To obtain the first (fundamental) branch of the disper-

sion curve, corresponding to a true surface wave, the min-
imization was started at 0 = 0k  with the initial values 

0 0( ) = ( ) = 0;R Ik kω ω  as  was increased, the initial values 
for Rω  and Iω  when performing the minimization at k



 
were 1( )R k −ω



 and 1( )I k −ω


, respectively. In this way the 
first branch of the dispersion curve was determined. It is 
worth noting that these calculations produced a vanishing 
imaginary part for the frequency, as is expected for a 
branch that lies in the nonradiative region of the ( , )k ω  
plane. To be certain that the value of ( )kω



 obtained this 
way is on the dispersion curve for surface acoustic waves 
we recorded both the eigenvalue of the matrix ( , )k ωM



 
with the smallest modulus, and its reciprocal condition 
number. When the calculations were performed in double 
precision, these quantities were found to be at least as 
small as 1510−  and 1610− , respectively. 

In obtaining the numerical results for the higher fre-
quency branches presented in the next section, the initial 

values / = 1R ta c nω π −  and / = 0I ta cω π  were used suc-
cessfully for the first k  point of the nth branch of the dis-
persion curve situated on the left (odd branches) or right 
(even branches) boundary of the first Brillouin zone. For 
the remaining k



 values ( > 0 ) on a higher frequency 
branch we again used 1( )R k −ω



 and 1( )I k −ω


 as the initial 
values for the complex frequency in the minimization rou-
tine. In this manner the second and third branches of the 
dispersion curve were determined. 

5. Results 

We illustrate the preceding results by presenting results 
for the dependence of the reflectivity and several other dif-
fraction efficiencies on the angle of incidence 0θ , when 
the sinusoidal grating defined by the surface profile function 

 1
1 0

2
( ) = cos

xx
a
π ζ ζ   

 (21) 

is illuminated by a bulk wave of shear horizontal polariza-
tion of frequency ω. For this profile function, the function 

( )p γ  defined by Eq. (8) is given by 

 ( )0( ) = ( ) ,p
p pi Jγ γζ  (22) 

where ( )pJ z  is a Bessel function of the first kind and order p. 
To help in interpreting the results for the diffraction ef-

ficiencies we note that the values of 0θ  at which the Ray-
leigh anomalies are expected to occur are obtained from 
the equation 

 ( )
0sin = 1 ,m m

a
λθ ± +  (23) 

where m is an integer, λ is the wavelength of the incident 
wave, and a is the period of the grating. 

The values of 0θ  at which Wood anomalies are ex-
pected to occur are obtained from the equation 

 0
2sin = ( ) ,sk n

c a
ω πθ ω +  (24) 

where ( )sk ω  is the wavenumber of the shear horizontal 
surface acoustic wave the real part of whose frequency is 
that of the incident acoustic wave. It is convenient to re-
write Eq. (24) as 

 0
( )1sin = .

2
sk a

n
a

ωλ  θ + π 
 (25) 

The value of ( )sk ω  is confined to the interval 0 ( ) / .sk a≤ ω ≤ π  
The grating we consider in our examples is defined by 

Eq. (21) with 0 / = 0.40aζ . The dispersion curve for the 
surface acoustic wave supported by this grating, plotted in 
the reduced zone scheme, is depicted in the left-hand panel 
of Fig. 2, where ( )R kω  is plotted as a function of k . It con-
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sists an infinite number of branches, of which we present 
only the three with the lowest frequencies. The right-hand 
panel presents plots of ( )I kω  as a function of k  for each 
branch of the dispersion curve plotted in the left-hand pan-
el. The magnitude of ( )I kω  gives an indication of the 
width of the Wood anomaly. We also present in the left-
hand panel the dispersion curve of the “surface” wave in 
the absence of the periodic corrugations of the surface, 

= tc kω , when it is folded back into the first Brillouin zone. 
In Fig. 3 we present the dependencies of the first several 

diffraction efficiencies of this grating on the angle of inci-
dence 0θ . The wavelength of the incident shear horizontal 
acoustic waves assumed in obtaining these results was 

/ = 0.9653aλ  [ / = 2.0718ta cω π ]. This corresponds to a 
point on the third branch of the dispersion curve plotted in 
Fig. 2 defined by ( ) / = 0.2041sk aω π  [symbol ×  in Fig. 2]. 
For these values of the grating and experimental parame-
ters Eq. (23) predicts that Rayleigh anomalies should occur 
at 0 = 1.99θ ±  and 68.54± , while Eq. (25) predicts that 
Wood anomalies should occur at 0 = 5.65θ ±   and 60.09± . 
The predicted angular positions of the Rayleigh and Wood 
anomalies are indicated by dash-dotted and dashed vertical 
lines, respectively, in this and the next figure. In the results 
presented in Fig. 3 the Rayleigh and Wood anomalies ap-
pear at the angles of incidence predicted for them by 
Eqs. (23) and (25), respectively. In the case of 0 0( )e θ  (the 
reflectivity) the Rayleigh anomalies at 0 = 1.99θ ±  and 

68.54±  are vertical slopes, while the Wood anomalies at 
0 = 5.65θ ±   and 60.09±  are peaks. In the results presented 

for 1 0( )e− θ  the Rayleigh anomalies at 0 = 1.99θ  and 
68.54 are sharp peaks, while the one at 0 = 1.99θ −  is 
a vertical slope. The Wood anomalies at 0 = 5.65θ  and 

60.09 are now dips. In the result for 1 0( )e θ  the Rayleigh 
anomaly at 0 = 1.99θ −  becomes a sharp peak, while the one 
at 0 = 1.99θ  is now a vertical slope. There are no Wood 
anomalies in the angular dependence of this diffraction 

Fig. 2. (Color online) The dispersion curves for the shear horizontal surface acoustic waves supported by a sinusoidal grating on an iso-
tropic elastic medium in contact with vacuum defined by 0 / = 0.40aζ . Both the real, ( )R kω , and imaginary, ( )I kω , parts of the fre-
quencies of the waves are presented in the reduced zone scheme. The first branch of the dispersion curve (line 1) lies in the nonradiative 
region of the ( , )k ω  plane, and corresponds to a true surface wave, the imaginary part of whose frequency vanishes identically. The se-
cond and third branches of the dispersion curve (lines 2 and 3, respectively) are both situated in the radiative region (| |< / )tk cω . They 
correspond to leaky surface waves, whose frequencies have negative imaginary parts. The dashed lines denote the dispersion curve 

= tc kω  in the absence of the surface corrugations in the reduced zone scheme. Also indicated are the wavelengths / = 0.9653aλ  
[ / = 2.0718ta cω π ; symbol ×] and / = 0.9421aλ  [ / = 2.1228ta cω π ; symbol ∗] of the incident acoustic wave that will be assumed in 
the calculations of the diffraction efficiencies plotted in Figs. 3 and 4, respectively. 

Fig. 3. (Color online) The diffraction efficiencies 0( )me θ , Eq. (11), 
as functions of the angle of incidence for a sinusoidal grating 
defined by 0 / = 0.40aζ . The angular positions of the Rayleigh 
and Wood anomalies, determined from Eqs. (23) and (25), re-
spectively, are indicated by vertical dash-dotted and dashed lines, 
respectively. Only diffracted orders m  for which 0( ) 0me θ ≠  in 
the range of 0θ  considered are presented. The wavelength of the 
incident acoustic wave assumed in obtaining these results was 

/ = 0.9653aλ  [ / = 2.0718ta cω π ; symbol × in Fig. 2]. 
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efficiency. In the result for 2 0( )e− θ  the Rayleigh anomaly 
at 0 = 68.54θ  is represented by the appearance of a new 
diffracted order as 0θ  is increased, while no Wood anoma-
lies are present. 

In the numerical calculations that produced Figs. 2 and 3, 
a value of = 10  was used, because increasing it beyond 
this value did not produce any detectable changes in the 
results obtained for the grating parameters assumed. In 
addition, the energy conservation condition Eq. (12) was 
checked explicitly and, for all angles of incidence consid-
ered the left-hand side of this equation was found to depart 
from unity by an amount no larger than 1210−  in magnitude 
when the calculations were carried out in double precision. 

As a second example to illustrate our results, we again 
consider the sinusoidal grating defined by Eq. (21) with 

0 / = 0.40aζ . The dispersion curve of the surface acoustic 
waves of shear horizontal polarization supported by this 
grating is depicted in Fig. 2. The surface is now illuminat-
ed by a shear horizontal polarized volume acoustic wave 
whose wavelength is / = 0.9421aλ  [ / = 2.1228ta cω π ]. 
This corresponds to the point on the third branch of the 
dispersion curve defined by ( ) / = 0.3061sk aω π  [symbol ∗ 
in Fig. 2]. Under these conditions Eq. (23) predicts Ray-
leigh anomalies to occur at 0 = 3.31θ ±  and 62.17± , while 
Eq. (25) predicts Wood anomalies to occur at 0 = 8.29θ ±  
and 52.93±  . In the results for the dependencies of several 
of the lowest order diffraction efficiencies on the angle of 
incidence 0θ  presented in Fig. 4, the Rayleigh and Wood 
anomalies are seen to occur at these angles. When the re-
sults presented in Fig. 4 are compared with those presented 
in Fig. 3, it is seen that although the angular positions of 
the anomalies have changed with the change of the wave-

length of the incident waves, their natures have not: verti-
cal slopes remain vertical slopes, peaks remain peaks, and 
dips remain dips. 

The results presented in Fig. 4 were calculated using 
double precision with = 10 . The satisfaction of unitarity 
by the results was as good as for those depicted in Fig. 3. 

6. Conclusions 

We have shown that when the periodically corrugated 
surface of an isotropic elastic medium is illuminated by 
a shear horizontal volume acoustic wave, the dependencies 
of the diffraction efficiencies on the angle of incidence dis-
play features that can be identified as Rayleigh and Wood 
anomalies. Unlike the surface plasmon polaritons that play 
the central role in the formation of Wood anomalies, which 
exist even in the case of a planar metal surface, the shear 
horizontal surface acoustic waves responsible for the Wood 
anomalies studied in this work cannot exist on a planar 
surface of an isotropic elastic medium. Thus, the periodic 
corrugations of the surface play different roles in the for-
mation of these anomalies. In the case of a weakly corru-
gated metal surface, the dispersion curve for surface plas-
mon polaritons is well represented by the dispersion curve 
of surface plasmon polaritons on a planar surface, except 
in the vicinities of the boundaries of the Brillouin zones 
introduced by the periodicity of its corrugations. The prin-
ciple role of the corrugations in the formation of Wood 
anomalies is the formation of these Brillouin zones. If the di-
electric function of the metal is denoted by ( )ε ω , the wave-
number of the surface plasmon polariton of frequency ω on 
a planar surface is ( ) = ( / )sppk cω ω 1/2[ ( ) / ( ( ) 1)]ε ω ε ω + . 
Thus, a good approximation to the angles of incidence at 
which Wood anomalies will appear is obtained from 

 
1/2

0
( ) 2sin =

( ) 1
n

c c a
 ω ω ε ω πθ + ε ω + 

. (26) 

The function ( )sppk ω  can deviate significantly from the 
wavenumber of the vacuum light line, ( ) = /k cω ω . This is 
an important feature of this ( )sppk ω , because if it were to 
coincide with ( )k ω , the angular positions of the Wood ano-
malies would coincide with those of the Rayleigh anoma-
lies, and would be indistinguishable from them. 

This is just the situation encountered in the problem 
studied here. The dispersion relation for shear horizontal 
surface acoustic waves on a planar surface of an isotropic 
solid coincides with the acoustic sound line ( ) = / tk cω ω . 
Therefore any attempt to use it in estimating the angles of 
incidence at which Wood anomalies occur would yield 
only the angles at which Rayleigh anomalies occur. The 
role of the corrugations is crucial here. They not only pro-
duce a Brillouin zone structure but, more important, pro-
duce a dispersion curve whose branches depart sufficiently 
far from the acoustical sound line that the Wood anomalies 

Fig. 4. (Color online) The same as Fig. 3, but for a wavelength of 
the incident acoustic wave / = 0.9421aλ  [ / = 2.1228ta cω π ; 
symbol ∗ in Fig. 2]. 
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that are created in the angular dependence of the diffrac-
tion efficiencies occur at angles of incidence sufficiently 
far from those at which the Rayleigh anomalies occur, that 
they are clearly visible. 

In the course of this work we have had to calculate the 
complex dispersion curves of the shear horizontal surface 
acoustic waves supported by the periodically corrugated 
surface in the nonradiative region of the frequency-wave-
number plane. To our knowledge such calculations have 
not been carried out until now. The results of such calcula-
tions could be useful in studies of the attenuation of shear 
horizontal surface acoustic waves on a periodically corru-
gated surface, as proved to be the case in the study of the 
attenuation of sagittal, Rayleigh, surface acoustic waves on 
such surfaces [17]. 

Finally, we see from the figures presented here that the 
Rayleigh and Wood anomalies are strong enough to be 
observable experimentally. It is our hope that such experi-
ments will be undertaken. 

Acknowledgments 

We dedicate this paper to the memory of Professor 
K.B. Tolpygo, on the occasion of his 100-year anniversary. 
He was a fine scholar and a fine person, whom it was 
a pleasure to know. The research of I.S. was supported 
in part by the Research Council of Norway Contract 
No. 216699. 

 

1. B.A. Auld, J.J. Gagnepain, and M. Tan, Electron. Lett. 12, 
650 (1976). 

2. Yu.V. Gulyaev and V.P. Plesskii, Sov. Phys. Tech. Phys. 23, 
266 (1978). 

3. N.E. Glass and A.A. Maradudin, Electron. Lett. 17, 773 
(1981). 

4. D.L. Mills and A.A. Maradudin, Phys. Rev. B 39, 1569 (1989). 
5. J.B. Pendry, L. Martn-Moreno, and F.J. Garca-Vidal, 

Science 305, 847 (2004). 
6. A.R. Baghai-Wadji and A.A. Maradudin, Appl. Phys. Lett. 

59, 1841 (1991). 
7. A.A. Maradudin, I. Simonsen, J. Polanco, and R.M. Fitzgerald, 

J. Optics 18, 024004 (2016). 
8. R.W. Wood, Philos. Mag. 4, 396 (1902). 
9. R.W. Wood, Proc. Phys. Soc. (London) 18, 269 (1902). 

10. Lord Rayleigh, Proc. Roy. Soc. (London) A 79, 399 (1907). 
11. Lord Rayleigh, Philos. Mag. 14, 60 (1907). 
12. U. Fano, J. Opt. Soc. Am. 3, 213 (1941). 
13. S.A. Maier, Plasmonics: Fundamentals and Applications, 

Springer US, New York (2007). 
14. Lord Rayleigh, The Theory of Sound, Vol. II, 2nd ed., Maс-

millan, London (1897), pp. 89, 297. 
15. T.C. Lim and G.W. Farnell, J. Acoust. Soc. Am. 45, 845 (1969). 
16. K.A. Ingebrigtsen and A. Tonning, Phys. Rev. 184, 942 (1969). 
17. N.E. Glass and A.A. Maradudin, J. Appl. Phys. 54, 796 (1983). 
18. J.A. Nelder and R. Mead, Computer J. 7, 308 (1965). 
19. R. O’Neill, Appl. Stat. 20, 338 (1971). 
20. J.C. Lagarias, J.A. Reeds, M.H. Wright, and P.E. Wright, 

SIAM J. Optim. 9, 112 (1998).

 

462 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 5 


	1. Introduction
	2. The diffraction problem
	3. The dispersion relation for surface acoustic waves
	4. Numerical solution of Eq. (16)
	5. Results
	6. Conclusions
	Acknowledgments

