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A periodically corrugated interface between vacuum and a high-index dielectric medium supports a p-polar-
ized leaky surface electromagnetic wave whose sagittal plane is perpendicular to the generators of the interface. 
This wave is bound to the surface in the vacuum region, but radiates into the high-index dielectric medium. 
We study the excitation of this wave by p-polarized light incident from a prism on whose planar base the high-
index dielectric medium in the form of a film is bonded. The unilluminated surface of the film is periodically 
corrugated, and is in contact with vacuum. Peaks and dips in the dependence of several low-order diffraction ef-
ficiencies on the angle of incidence (Wood anomalies) are the signatures of the excitation of the surface wave. 

PACS: 42.25.–p Wave optics; 
41.20.–q Applied classical electromagnetism. 
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1. Introduction 

In recent work [1] the present authors have shown theo-
retically that a periodically corrugated interface between 
a high index dielectric medium and vacuum supports a p-po-
larized leaky surface electromagnetic wave. This wave is 
bound to the surface in the vacuum and radiates into the 
high-index dielectric medium. In this study [1] it was also 
shown that this wave can be excited by a plane wave inci-
dent on the periodic vacuum-dielectric interface from the 
high-index medium, and observed through the Wood ano-
malies observed in the dependence of the reflectivity and 
other low-order diffraction efficiencies on the polar angle 
of incidence. 

Although the calculation of the diffraction efficiencies 
with the assumption of incidence from a high-index dielec-
tric medium sufficed for establishing a proof of concept for 
the existence of the leaky surface wave, it seemed that a 
more conventional approach to its observation would be 
useful to have. In this paper we provide such an approach. 

We will study the excitation of the leaky surface elec-
tromagnetic wave by the use of a prism-coupler geometry, 
known as the Kretschmann–Raether geometry [2]. In this 
geometry a film of the high-index dielectric material is 
bonded to its planar interface with the prism through which 
it is illuminated. The periodically corrugated surface of this 
film is in contact with vacuum. The excitation of the leaky 
surface wave propagating along the corrugated film-
vacuum interface is revealed by the presence of peaks and 
dips in the dependence of the reflectivity and other low-
order diffraction efficiencies on the angle of incidence. The 
calculation of the amplitudes of the diffracted and refracted 
beams will be carried out through the solution of the re-
duced Rayleigh equations they satisfy. Because the disper-
sion curve for the surface wave supported by this structure 
differs slightly from what it is for a wave propagating 
along a high-index grating in contact with vacuum, we also 
calculate this dispersion curve by the solution of the ho-
mogeneous version of the reduced Rayleigh equation for 
this geometry to help in interpreting the diffraction results. 
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2. Theoretical formulation 

The system we study consists of a dielectric material 
whose dielectric constant is 1ε  in the region 3 > 0x ; a die-
lectric medium whose dielectric constant is 2ε  in the re-
gion 1 3( ) < < 0H x x− + ζ ; and a dielectric material whose 
dielectric constant is 3ε  in the region 3 1< ( )x H x− + ζ  (Fig. 1). 
We assume that 1,ε  2ε  and 3ε  are all real, positive, and 
frequency independent. In the numerical calculations that 
will be carried out in this paper, 1ε  will be assumed to be 
the dielectric constant of the prism, 2ε  will be the dielec-
tric constant of the high-index dielectric medium, and 3ε  
will be the dielectric constant of vacuum. The interface 
profile function 1( )xζ  is assumed to be a single-valued, 
differentiable, and periodic function of 1x  with period 

1 1, ( ) = ( )a x a xζ + ζ . We consider the case of a p-polarized 
electromagnetic field in this system, whose plane of inci-
dence, and scattering, is the 1 3x x  plane. 

We consider both the diffraction in reflection and 
transmission of a plane wave of frequency ω incident from 
the region 3 > 0x  on the interface 3 = 0x . The dispersion 
relation for the surface electromagnetic wave supported by 
this structure can be extracted from the equation for the 
diffraction amplitudes, while the degree to which the dif-
fracted and refracted fields satisfy unitarity is an indication 
of the accuracy of our numerical work. 

The single nonzero component of the magnetic field in 
each of the three regions of our system can be written as 

 (1)
1 3 1 1 32 ( , | ) = exp [ ( , ) ]H x x ikx i k xω − α ω +   

 1 1 3
=

( , ) exp [ ( , ) ]n n n
n

R k ik x i k x
∞

−∞
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in the region 3 > 0x , as 

 (2)
1 3 12

=
( , | ) = exp ( )n

n
H x x ik x

∞

−∞
ω ×∑   

{ }2 3 2 3( , ) exp [ ( , ) ] ( , ) exp [ ( , ) ]n n n nA k i k x B k i k x× ω α ω + ω − α ω
  (1b) 

in the region 1 3( ) < < 0H x x− + ζ , and as 
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∞
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in the region 3 1< ( )x H x− + ζ . A harmonic time dependence 
exp( )i t− ω  has been assumed in writing these equations, but 
it has not been indicated explicitly. In Eqs. (1) = 2 /nk k n a+ π , 
and 

1/22 2( , ) = [ ( / ) ]j jk c kα ω ε ω −  ( = 1,2,3).j  The way in 
which the branch cut defining the square roots in these ex-
pressions will be described below. The reduced Rayleigh 
equation for the diffraction amplitudes { ( , )}nR k ω  is [3] 
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In writing Eq. (2) we have introduced the function 

 
2

1 1 1

2

1 2( ) = exp exp ( ( )).

a

m
a

mI dx i x i x
a a
−

π γ − − γζ 
 ∫  (4) 

The diffraction efficiency of the mth scattered beam is 
the fraction of the total time-averaged incident flux that is 
diffracted into this beam. It is given by 

 2( ) 1

1

( , )
= ( , ) .

( , )
s m

m m
k

e R k
k

α ω
ω

α ω
 (5) 

The reflectivity is given by ( )
0
se . 

The reduced Rayleigh equation for the transmission 
amplitudes { ( , )}nT k ω  is [4] 
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 { }2 3exp [ ( , ) ( , )] .m ni k k H× ±α ω +α ω  (7) Fig. 1. A depiction of the system studied in this paper. 
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The transmission efficiency of the mth transmitted 
beam is 

 2( ) 31

3 1

( , )
= ( , ) .

( , )
t m

m m
k

e T k
k

α ωε
ω

ε α ω
 (8) 

For the lossless system we are studying the conservation of 
energy in the scattering/transmission processes (unitarity) 
is expressed by 

 ( ) ( ) = 1,s t
m m

m m
e e′ ′+∑ ∑  (9) 

where the prime on each sum indicates that it is taken over 
only the open channels, i.e., those for which 1( , )mkα ω  and 

3( , )mkα ω  are real. 

3. The dispersion relation for leaky surface 
electromagnetic waves 

We obtain the dispersion relation for the surface elec-
tromagnetic wave supported by this structure by removing 
the incident field from the right-hand side of Eq. (1a). This 
is equivalent to deleting the inhomogeneous term from 
Eq. (2). In this way we obtain the homogeneous system of 
equations for the amplitudes { ( , )}nR k ω  of the diffracted 
beams, 

 
=

( , ) ( , ) = 0, = 0, 1, 2,mn n
n

M k R k m
∞

−∞
ω ω ± ±∑ (10a) 

where 
 ( )

3 2( , ) = ( | ) ( ( , ) ( , ))mn m n m n m nM k M k k I k k+
−ω α ω −α ω +  

 ( )
3 2( | ) ( ( , ) ( , ))m n m n m nM k k I k k−

−+ α ω +α ω . (10b) 

The solvability condition for this system of equations, name-
ly the vanishing of the determinant of the matrix of coeffi-
cients in Eq. (10), 

 [ ]( , ) = det ( , ) = 0,D k kω ωM  (11) 

is the dispersion relation we seek. 
The solutions ( )kω  of Eq. (11) are even functions of k , 

( ) = ( )k kω − ω , and are periodic functions of k  with a peri-
od 2 / aπ , ( 2 / ) = ( )k a kω + π ω . Therefore, all of the solu-
tions of Eq. (11) are obtained if we restrict k  to the interval 
0 /k a≤ ≤ π . This is called the reduced zone scheme, and 
we adopt it here. The resulting dispersion curve consists of 
an infinite number of branches of increasing frequency. 

There are three light lines in the system we consider, de-
fined by the dispersion curves = / jkcω ε , with = 1, 2, 3.j  
In the geometry we are assuming, where 2 1 3> >ε ε ε , we 
must have 1< ( / )k cε ω  for propagating incident and dif-
fracted fields in the prism; 2< ( / )k cε ω  to have a radia-
tive field in the high-index dielectric film; and 3> ( / )k cε ω  
to have a field decaying exponentially into the vacuum 
with increasing distance from the corrugated surface of the 
high-index dielectric. Therefore, it is in the region of the 
( , )kω -plane defined by 3 1( / ) < < ( / )c k cε ω ε ω  that 

solutions of Eq. (11) will be sought, with 0 /k a≤ ≤ π . In 
this region the frequency of the surface wave is complex, 

( ) = ( ) ( )R Ik k i kω ω − ω , where ( )R kω  and ( )I kω  are real 
and positive. The negative sign of the imaginary part of the 
frequency reflects the decrease of the amplitude of the 
wave in time as it propagates due to its radiation into the 
high-index film. 

To obtain solutions of Eq. (11) that possess these prop-
erties the branch cut that defines the square root in the def-
inition of ( , )j mkα ω  must be chosen properly. It has been 
shown in Ref. 6 that if the branch cut is taken along the 
negative imaginary axis the leaky surface wave will have 
the desired properties. 

The method by which Eq. (11) is solved numerically is 
described in detail in Ref. 6, to which we refer the reader. 

4. Results and discussions 

To illustrate the preceding results we present plots of 
the dispersion curve for the leaky surface electromagnetic 
wave, and of the dependence of the reflectivi-
ty/transmissivity and other diffraction efficiencies on the 
angle of incidence 0θ , when the surface profile function 
has the cosine form 

 1
1 0

2
( ) = cos ,

xx
a
π ζ ζ  

 
 (12) 

with 0 0ζ ≥  and > 0a . For this profile function the func-
tion ( )mI γ , defined by Eq. (4), is given by 

 0( ) = ( ) ( ),m
m mI i Jγ − γζ  (13) 

where ( )mJ z  is a Bessel function of the first kind of order m. 

4.1. Dispersion curves 

In Fig. 2(a) we present the plot of ( )R kω  as a function 
of k  for the case where 1 = 2.25ε , 2 = 15ε , and 3 = 1ε . The 
surface profile function is given by Eq. (12) with 

0 / = 0.10aζ  and the mean width of the high-index film 
/ = 0.20H a . These parameter values will be used in all of 

the calculations reported in this paper. In obtaining this 
result, the infinite-dimensional matrix ( , )k ωM  in Eq. (11) 
was replaced by a (2 1) (2 1)N N+ × +  matrix by restricting 
the indices m and n that appear in Eq. (10b) to the values 

, 1, , 1,N N N N− − + − . In the present calculations N  
was given the value 15; increasing N  above this value was 
found to produce results that were essentially indistin-
guishable from those obtained using = 15N  but at the cost 
of longer calculation times. 

We see from Fig. 2(a) that in the region of wavenumbers 
3 1( / ) < < ( / )c k cε ω ε ω  in which the leaky surface wave 

is expected to exist, ( )R kω  has two branches, a low fre-
quency branch that approaches the vacuum light line as k  
decreases, and a high frequency branch separated from it 
by a gap at the Brillouin zone boundary = /k aπ , that ends 
where it intersects the vacuum light line. 
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In Fig. 2(b) we present the ( )I kω  corresponding to each 
of the two branches of ( )R kω  plotted in Fig. 2(a). We see 
from this figure that the ratio /I Rω ω  is of the order –0.03 
for the lower frequency branch, while it is of the order –0.10 
for the high frequency branch. This difference will mani-
fest itself in the diffraction results to which we now turn. 

4.2. Rayleigh and Wood anomalies 

A way to excite an electromagnetic surface wave sup-
ported by a periodically corrugated surface is to diffract 
light from it and examine the dependence of the diffraction 
efficiencies on the angle of incidence for signatures of this 
excitation in the form of anomalies in these dependencies. 
Two types of anomalies are observed in these dependen-
cies. The first kind of anomaly occurs at angles of inci-
dence for a fixed wavelength of the incident light at which 
a diffraction order appears or disappears (in reflection or 
transmission). The values of these angles depend only on 
the wavelength of the incident light and the period a of the 
corrugated surface. They are called Rayleigh anomalies 
after the scientist who explained their origin [6]. The se-
cond type of anomaly occurs at angles of incidence at 
which the tangential component of the wave vector of the 
incident light, supplemented by a positive or negative mul-
tiple of 2 / aπ , matches the wavenumber of the surface 
wave supported at the frequency of the incident light. Alt-
hough this explanation of the origin of these anomalies was 
first given by Fano [7], they are called Wood anomalies 
after R.W. Wood [8,9] who discovered them and the Ray-

leigh anomalies. Thus, it is the Wood anomalies that are 
the signature of the excitation of surface waves. 

For the system we study the values of 0θ  at which the 
Rayleigh anomalies are expected to occur are given by 

 
1

( )
0

1

2sin = 1m m a
c

−ω θ ± −  πε  
 (14a) 

in reflection, and 

 
1

( ) 3
0

1 1

2sin =m m a
c

−ε ω θ ± −  ε πε  
 (14b) 

in transmission. In both of these expressions m is a posi-
tive or negative integer (m∈ ), ω is the frequency of the 
incident light, and a is the period of the grating. 

The values of 0θ  at which Wood anomalies are ex-
pected to occur are given by 

 
1

( )
0

1

1sin = ( ) 2 ,m
sw

a ak m
c

−ω   θ ± ω −   π πε    
 (15) 

where ( )swk ω  is the wavenumber of the leaky surface elec-
tromagnetic wave, the real part of whose frequency equals 
that of the incident light. The value of ( )swk ω  is restricted 
to the interval 0 ( ) /swk a≤ ω ≤ π . In obtaining Eqs. (14) 
and (15) we have used the relation between k  and 0θ  given 
by 1 0= ( / )sink cε ω θ . 

4.3. Diffraction efficiencies 

In Fig. 3(a) we plot the diffraction efficiencies in reflec-
tion ( )s

me , while in Fig. 3(b) we plot them in transmission 
( )t
me , as functions of the angle of incidence in the prism 0θ . 

These results were obtained under the assumption that the 
frequency of the incident light is / = 0.9252a cω π  which is 
indicated by the circle on the dispersion curve in Fig. 2(a). 
Only results for positive values of 0θ  are presented, be-
cause a feature presented at a positive value of 0θ  with 
a given sign of m will occur at 0−θ  with the opposite sign 
of m. For the parameters assumed in obtaining the results 
presented in Fig. 3 only three non-zero (open) diffraction 
channels ( = 0, 1m ± ) exist in both reflection and transmis-
sion, and three Rayleigh anomalies are predicted. The first 
of these anomalies is due to reflection and is, according 
to Eq. (14a), expected to occur at an angle of incidence 

0 = 26.18θ ± °. The two remaining Rayleigh anomalies are 
due to transmission and are predicted by Eq. (14b) to occur 
at 0 = 41.81θ ± °  and 50.76± °. It is interesting to note that 
the angular position of the first of these Rayleigh anoma-
lies for transmission is identical to the critical angle for to-
tal internal reflection for the corresponding planar interface 
system ( 0 = 0ζ ), 3 1= arcsin( / )cθ ± ε ε ; this is readily seen 
from Eq. (14b) with = 0m  from which it also follows that 
the position of this Rayleigh anomaly should be independ-
ent of the frequency of the incident light (see Figs. 3–6). 
Moreover, for the system studied in Fig. 1 two Wood ano-
malies are expected to occur at the angular positions 

Fig. 2. (Color online) The (a) real part ( )R kω  and (b) the imagi-
nary part ( )I kω  of the complex frequency ( ) = ( ) ( )R Ik k i kω ω − ω  
of the leaky surface electromagnetic wave supported by the struc-
ture depicted in Fig. 1. The values of the parameters defining this 
structure are 1 = 2.25ε , 2 = 15ε , and 1 = 1ε . The surface profile 
function is ( )1 0 1( ) = cos 2 /x x aζ ζ π  [Eq. (12)], with 0 / = 0.10aζ  
and / = 0.20H a . A 31 31×  matrix system (i.e. = 15N ) was used 
to obtain these results. The vacuum light line is indicated by a 
dashed line in panel (a). The open symbols in panel (a) indicate 
some frequencies that are discussed in the main text. 
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0 = 43.17θ ± °  and 46.23± °  predicted by Eq. (15). In Fig. 3, 
and in the remaining figures, the angular positions of the 
Rayleigh anomalies are indicated by vertical dash-dotted 
lines, while the positions of the Wood anomalies are indi-
cated by vertical dashed lines. 

We now turn to the dependencies of the diffraction effi-
ciencies on 0θ , and our main focus will be on their behav-
ior around the Rayleigh and Wood anomalies. From the 
results presented in Fig. 3 we observe an excellent agree-
ment between the positions of the Rayleigh anomalies seen 
in the simulated diffracted efficiency curves for reflection 
and transmission and the angles of incidence predicted by 
Eq. (14). The results in Fig. 3(a) show that the Rayleigh 
anomalies express themselves as vertical tangents in the 
reflectivity and as a cutoff and as sharp peaks in the dif-
fraction efficiency ( )

1
se− . The Wood anomalies appear in the 

reflected efficiencies and their angular positions are well 
predicted by Eq. (15). These anomalies express themselves 
as peaks in the reflectivity and dips in the diffraction effi-
ciency ( )

1
se−  [Fig. 3(a)]. 

In transmission [Fig. 3(b)] the vertical tangent in the re-
flectivity at 0 = 26.18θ °, indicating a Rayleigh anomaly, is 
transformed into a sharp peak at the same angle. The two 
sharp peaks in the reflectivity at 0 = 41.81θ ° and 50.76° 
mark the disappearance of the transmissivity and the ap-
pearance of the ( )

1
te−  efficiency, respectively. No Wood ano-

malies occur in transmission. One observes from Fig. 3(b) 
that there is actually no transmitted intensity for angles of 
incidence in the interval 041.81 < | | < 50.76° θ °, and, there-
fore, the transmitted intensity is also zero at the angular 
positions where Wood anomalies are expected. The reason 
for this behavior is that no diffraction channels in transmis-
sion are open over this range of angles of incidence, as can 
be readily demonstrated. 

In the calculations of the diffraction efficiencies that 
appear in Fig. 3 as well as in the remaining figures of this 
paper, the branch cut defining the square root in ( , )j kα ω  
( = 1,2,3j ) was taken along the negative real axis, and ω 
and k  were real. 

It should be remarked that for the calculations that pro-
duced the results presented in Fig. 3, the energy conserva-
tion condition (9) was found to be satisfied within an error 
no greater than 2·10–4 for any angle of incidence 0θ  in the 
interval from –90° to 90°. This testifies to the accuracy of 
the simulation approach that we use. The energy conserva-
tion was also checked explicitly for all the remaining dif-
fraction calculations that we will present in this paper, 
even if no further results for diffraction efficiencies in 
transmission will be given. In all the calculations of dif-

Fig. 3. (Color online) The diffraction efficiencies in (a) reflection 
( )s
me  and (b) transmission ( )t

me  as functions of the angle of inci-
dence 0θ . The vacuum wavelength of the incident light is 

/ = 2.1617aλ  [ / = 0.9252Ra cω π ], and is indicated by the circle 
on the dispersion curve in Fig. 2(a) at / = 0.9495ka π . Rayleigh 
anomalies are expected at angles of incidence 0 = 26.18Rθ ± °, 

41.81± °  and 50.76± °  (dash-dotted lines) [Eq. (14)]. Wood anom-
alies are predicted from Eq. (15) to occur at angles of incidence 

0 = 43.17Wθ ± °  and 46.23± °  (dashed lines). The value = 15N  was 
assumed in solving the reduced Rayleigh equations for reflection 
and transmission [Eqs. (2) and (6)]. 

Fig. 4. The diffraction efficiencies in reflection ( )s
me  as functions 

of the angle of incidence 0θ . The vacuum wavelength of the inci-
dent light is / = 2.1236aλ  [ / = 0.9418Ra cω π ], and is indicated 
by the square on the dispersion curve in Fig. 2(a) at / = 0.9798ka π . 
Rayleigh anomalies are expected at angles of incidence 

0 = 24.57Rθ ± °, 41.81± °  and 48.51± °  (dash-dotted lines). Wood 
anomalies are predicted from Eq. (15) to occur at angles of inci-
dence 0 = 43.91Wθ ± °  and 46.23± °  (dashed lines). 
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fraction efficiencies that we report in this paper the error in 
the satisfaction of the energy conservation, Eq. (9), was of 
the order 10–4, or less. 

In Fig. 4 we present the diffraction efficiencies in re-
flection ( ( )s

me ) as functions of 0θ , corresponding to the 
point indicated by the square on the dispersion curve plot-
ted in Fig. 2(a). The Rayleigh anomalies appear as vertical 
tangents in the reflectivity, at precisely the angles predicted 
by Eq. (14), while the Wood anomalies appear as a pair 
of closely spaced peaks at the angles predicted by Eq. (15). 
In results for ( )

1
se−  the Rayleigh anomalies appear as an angle 

at which the = 1m −  diffraction order appears, 0 = 24.57θ °, 
and as sharp peaks (arrising from transmission) at 

0 = 41.81θ ° and 45.51°. The Wood anomalies occur as two 
closely spaced minima in this diffractive order. 

In our next example, the frequency of the incident light 
is / = 0.8858a cω π , and it is indicated by the diamond in 
Fig. 2(a). Figure 5 presents the angle of incidence depend-
ence of the diffraction efficiencies in reflection for this 
frequency. The Rayleigh and Wood anomalies in this case 
have the same forms as they do in Figs. 3 and 4, except 
that the angular positions of each type of anomaly are now 
widely separated, while the separations between the Ray-
leigh and Wood anomalies are smaller. 

The results displayed in Figs. 3–5 have all assumed that 
the frequency of the incident light corresponds to points on 
the lower branch of dispersion curve in Fig. 2(a). As our 
final result we present in Fig. 6 the diffraction efficiencies 
in reflection as functions of the angle of incidence 0θ , as-
suming a frequency of the incident light that corresponds 
to the point indicated by the triangle in Fig. 2(a). The forms 

of the Rayleigh anomalies in the angular dependencies of 
the reflectivity and ( )

1
se−  are the same as in Figs. 3–5, and 

appear where predicted by Eq. (14). However, the Wood 
anomalies in the reflectivity and ( )

1
se−  are now no longer 

visible as peaks and dips, respectively. This is because they 
are now closely separated and each peak is broad, because 
from Fig. 2(b) we see that the corresponding mode is 
strongly damped. 

Of the cases considered in this paper, the two that offers 
the best opportunities for exciting and detecting the leaky 
surface electromagnetic wave on a high-index dielectric 
grating are the those whose results are presented in Figs. 3 
and 5. 

5. Conclusions 

In this paper we have shown that a leaky surface elec-
tromagnetic wave on a periodically corrugated high-index 
dielectric surface of the kind predicted in Ref. 1, can be 
excited and observed in a prism-coupler geometry 
(Kretschmann–Raether geometry). As is usual in the theo-
retical and experimental determination of the dispersion 
curve by this method, the dispersion curve obtained differs 
slightly from the curve predicted theoretically for a single-
interface structure [10], but it is the curve that is actually 
measured. We hope that these results will encourage exper-
imental efforts to detect this mode. 
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