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Motivated by new experimental observations we generalize the Landau-like approach to include the direct 
phase transition between isotropic liquid (I) and heliconical nematic liquid crystal (NTB) structure. We show that 
depending on the Landau expansion coefficients, our model allows either direct I–NTB transition, or the sequence 
of the phases I–N–NTB with the classical nematic liquid crystal (N) sandwiched between the isotropic liquid and 
heliconical nematic liquid crystal. Which of these two situations is realized depends on how strong is the first 
order phase transition from the isotropic liquid. If it is strong enough the system undergoes I–N–NTB sequence, 
and for the very weak first order phase transition I–NTB transformation occurs. Furthermore in the latter case 
the NTB structure can be biaxial heliconical nematic liquid crystal. 

PACS: 61.30.Cz Molecular and microscopic models and theories of liquid crystal structure; 
61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects on order; 
84.37.+q Measurements in electric variables (including voltage, current, resistance, capacitance, in-
ductance, impedance, and admittance, etc.). 
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Introduction 

Liquid crystals are fluid-like systems made of aniso-
tropic shape molecules. As the temperature is decreased 
the liquid crystals undergo a series of phase transitions 
where the symmetry of the state is spontaneously broken. 
The standard, described in all textbooks (see e.g., [1–6]), 
road starts from a high temperature isotropic fluid, and 
transforms first into a nematic state, where orientational 
full three-dimensional rotational symmetry group (3)O  is 
broken, and then to a smectic phase, where positional 
(translational) order is broken in one direction. It is worth 
to note to this point, that long ago Ya.B. Zeldovich [7] 
proposed a theoretical model of “the minimal” liquid crys-
tal with the minimal symmetry breaking (only space inver-
sion, i.e., chiral symmetry is broken). Unfortunately for the 
apparently general and easily realized needed ingredients 
of the Zeldovich’s model, such kind of the minimal liquid 
crystal has been never observed. However long after the 
publication of this work [7] the spontaneous chiral sym-
metry breaking has been observed and identified in the 
kingdom of the nematic liquid crystals [8–12]. Such a phase, 
termed as twist-bend nematic liquid crystal, TBN , has short 
pitch ( 10 nm≤ ) heliconical structure with a doubly degen-
erate (left–right) spiral. The fact is especially surprising, 
because the conical spiral ordering is chiral, whereas 

the material is formed of non-chiral molecules. The TBN  
phase should be distinguished from the both known for 
ages liquid crystals: conventional nematics (also formed in 
achiral materials) with the uniform in the ground state 
orientational order characterized by the unit headless vec-
tor-director n, and from the cholesteric liquid crystals 
formed in chiral materials, where the spiral axis is orthog-
onal to the director. Usually [8–12] the TBN  phase is ob-
served in materials formed by bent-shaped or dimer molec-
ular building blocks. In such materials the TBN  structure is 
observed upon cooling from a classical nematic liquid crystal 
(N ). Thus, the N – TBN  transformation is the phase transi-
tion between two orientationally ordered phases, achiral N 
and chiral TBN . 

Although the microscopical mechanisms leading to long-
range nematic-like but heliconical (and therefore chiral) 
order in the TBN  phase are to a large extent unknown, a 
number of phenomenological theoretical models have been 
proposed in the literature [13–22]. Aiming to contribute into 
the special issue of the Low Temperature Physics Journal 
devoted to I.M. Lifshitz (who was always very close to the 
Landau school of the theoretical physics), we develop and 
discuss in this work Landau phase transition theory for the 

TBN  liquid crystals. 
In a recent work [23] V.V. Lebedev with the author of 

this paper, have derived the Landau free energy functional 
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describing the N – TBN  transition. Since then (a few years 
after this work has been published) the new experiments 
[24,25] show that for some compounds a direct transition 
between TBN  liquid crystals and isotropic liquid ( I ) takes 
place. Motivated by these new observations in what fol-
lows we generalize the Landau-like approach [23] to in-
clude the direct phase transition I – TBN . In the next Sec. 2 
we formulate the free energy model in terms of the tensor 
order parameter ikQ . Then in the Sec. 3 we show that de-
pending on the Landau expansion coefficients, our model 
allows either direct I – TBN  transition, or the sequence of 
the phases I –N – TBN  with the classical nematic liquid 
crystal sandwiched between the isotropic liquid and heli-
conical nematic liquid crystal. Which of these two situa-
tions is realized depends on how strong is the first order 
phase transition from the isotropic liquid. If it is strong 
enough the system undergoes I –N – TBN  sequence, and for 
the very weak first order phase transition I – TBN  transfor-
mation occurs. Furthermore in the latter case the TBN  
structure can be biaxial heliconical nematic liquid crystal. 
We summarize our main findings and shortly discuss fur-
ther directions of investigations and perspectives in the 
conclusion Sec. 4. 

Landau model of the NTB phase 

In a spirit of the Landau theory approach to describe se-
cond order (or weak first order) phase transition, first of all 
one has to introduce the order parameter suitable for the 
phase transition under consideration. For the transition bet-
ween N  and TBN  liquid crystals, the natural choice of the 
order parameter is short-scale (since the heliconical spiral 
pitch is about 10 nm) vector (φ) orthogonal to the nematic 
director n. The minimal model, (including all relevant con-
tributions and describing all essential features of the both 
phases, N  and TBN , and phase transition between them) 
has been formulated in [23]. The Landau free energy ex-
pansion for this model reads as 
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where =ij ij i jn n⊥δ δ − . As usual, ca T T∝ − , where cT  is the 
mean field transition temperature. All other coefficients in 
(1) are assumed to be temperature independent in the vicin-
ity of the N – TBN  transition temperature. The coefficients 
1b , b⊥, and 3b  are analogs of the Frank orientational elastic 

moduli for the order parameter φ, and 0q  determines the 
pitch of the heliconical spiral. If 1 > 0λ , one can easily 
conclude, minimizing of the last term in (1) that for < cT T  

 0 0= cos( ), = sin( ),x yA q z A q zφ + ξ φ ± + ξ  (2) 

where A  is the module of the order parameter φ, ξ  is its 
phase and signs ±  correspond to clock-wise or anti-clock-
wise rotation of the conical spiral. 

However the free energy expansion (1) assumes that the 
nematic director n is fixed along a specific direction and 
weakly fluctuates quantity, i.e., 0 = (0,0,1)n n . Therefore 
it can not describe the direct I – TBN  transition, where the 
order parameter is 3 3×  symmetric traceless tensor ikQ , [2], 
which is characterized by 5 independent parameters and 
not reduced to the two-component nematic director n. 
Therefore to include into consideration the direct I – TBN  
transition, and to catch all observable features of the phase 
diagrams, the free energy expansion (1) should be general-
ized and rewritten in terms of the tensor order parameter. 

The needed free energy functional (which allows to de-
scribe I , N , and TBN  phases) contains the conventional 
nematic energy part 
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where *( )a T T∝ −  and other coefficients in (3) are tem-
perature independent. Since (at 0µ ≠ ) we are dealing with 
the first order phase transition, *T  is the mean-field 
spinodal point (i.e., for *<T T  the state with = 0ikQ  be-
comes unstable). The functional (3) leads to the equilibri-
um isotropic I  and classical nematic N  phases. To account 
for the TBN  state, the functional (3) has to be supplement-
ed by the non-uniform gradient terms favoring and stabiliz-
ing (in a certain range of parameters) the heliconical state 

TBN . The terms (similar to those in (1)) read as 

( ) ( )
2 22 23 1

02 2
0 0

= ,
8 16

hc ik ijk kl j il
b

F dV q Q Q Q
q q

 λ  ∇ + − ε ∇     
∫

  (4) 
where for the sake of brevity we use the same as in (1) 
notations for the coefficients, ijkε  is Levi–Civita 3d order 
antisymmetric tensor. Since 0q  (inversely proportional to 
the heliconical spiral pitch) is not a small wave vector, one 
can add to the nF  and hcF  energies many other terms with 
the gradients Q̂(∇ ), e.g., 2( )i k ikQ∇ ∇ , 2( )n m ikQ∇ ∇ , and so 
on. The terms could change some symmetry features of the 
emerging TBN  structure. Aiming in this work to describe 
only the very possibility to get the both experimentally 
observed sequences of phase transitions ( TBI N−  and 

TBI N N− − ) and not interesting in detail symmetry of the 
TBN  structure we neglect all higher order over Q̂∇  terms. 

With all said above in mind, the minimization of the 
free energy functional = n hcF F F+  is a simple straightfor-
ward procedure. We can present the order parameter ikQ  as 
the sum of the uniaxial (classical nematic) part 0

ikQ , and the 
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heliconical (fluctuational in the isotropic liquid and in the 
vicinity of the phase transition) part ikQδ : 

 0= ,ik ik ikQ Q Q+ δ  (5) 
where 

 0 1= ,
3ik i k ikQ s n n − δ 

 
 (6) 

and 
 1 2= ( ) ( )ik i k k i i k k iQ n e n e n g n gδ ξ + + ξ + +   
 3 4( ) ( ),i k k i i k i ke g g e e e g g+ ξ + + ξ −  (7) 

where four functions iξ  ( = 1,....4i ) determine the helicon-
ical order parameter, and e and g are two unit vectors 
forming together with the classical director n the right-
hand triad. Note that if 3,4 0ξ ≠ , the TBN  structure has a 
biaxial symmetry, and for the vanishing values of the pa-
rameters 3 4= = 0ξ ξ , the TBN  structure has an uniaxial 
symmetry. Note to the point that this simple conclusion is 
in the agreement with recent numeric simulations of the 
twist-bend nematics [26]. 

Mean field results 

Replacing in Eqs. (3), (4) the order parameter ikQ  by its 
explicit form (5)–(7) we end up with the free energy func-
tional in terms of the 5 parameters 1 2 3 4, , , ,s ξ ξ ξ ξ  corre-
sponding to the 5 independent components of the symmet-
ric traceless tensor order parameter ikQ . The results of the 
minimization crucially depends on the magnitudes of the 
coefficients µ and 2

3 0/b q . We omit the simple calculations 
and present only the results: 

— If 2
3 0> / (8 )b qµ , upon cooling from the isotropic 

liquid state, the first transition is the 1st order phase transi-
tion into the uniaxial classical nematic liquid crystal. Then 
decreasing further the temperature, the second order (in the 
mean-field approximation) between N  and the uniaxial 

TBN  structure takes place. 
— In the opposite case 2

3 0< / (8 )b qµ  upon cooling 
from the isotropic fluid the first transformation occurs into 
the TBN  structure. Depending on the higher order terms 
(neglected in (3), (4)), the TBN  phase can acquire a certain 
degree of the biaxiality. 

It is worth to noting that as it was shown almost 40 years 
ago [27], the smaller is the coefficient in front of the 3d or-
der over the order parameter term in the Landau free ener-
gy expansion (µ in our notation), the smaller is the energy 
difference between the uniaxial and biaxial states. This con-
clusion is also confirmed by the numeric simulations [26]. 

Conclusion 

In this paper we considered theoretically the possible 
phase diagrams for twist-bend nematic liquid crystals. In 
the framework of the Landau theory, including the least 
number of terms which allow to catch essential features of 
the short-scale heliconical structures, we found that there 
are possible two types of the equilibrium phase sequences: 

TBI N N− −  and TBI N− . Moreover for the first sequence, 
the phase transition I N−  is more strong first order phase 
transition than the TBI N−  transition in the second se-
quence. Besides for the latter case (with the small 3d order 
over the order parameter term in the Landau free energy 
expansion) the biaxial TBN  competes with the uniaxial 
heliconical nematic liquid crystal. Our results are in the 
qualitative agreement with experimental data [24,25] and 
numeric simulations [26]. 

Finally we note that the study of heliconical nematics is 
in its early stages. Many fundamental and applied chal-
lenges remain in the both, theory and experiment sides. To 
mention a few, for example, in our work we did not consi-
der thermal fluctuational effects, which can be essential, es-
pecially for the almost continuous phase transitions TBN N−  
or TBI N− . Such (and many related) theoretical investiga-
tions and systematic measurements would be highly desir-
able. 
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