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It is shown that usually used theoretical model for double-layer heterostructures as a pseudospin ferromagnet 
does not explain the observed two-dimensional spectrum. Its existence is possible when neglecting Coulomb in-
teraction destroying two-dimensional structures and can be realized only in a strong magnetic field. That is con-
nected also with the plain vortex lattices forming in strong magnetic fields due to thermodynamic instability. 
This model gives reasonable explanations of various observed effects depending on the filling of the correspond-
ing bands. In particular in this work we show that in double-layer heterostructures a large interlayer conductance 
really observed can exist. 
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nanoscale systems; 
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The experiments with double-layer heterostructures have 

a long history beginning from the late eighties of the pre-
vious century. The main number of theoretical works [1,2] 
used the layer index as an additional quasi-spin index. 
However the experimental work [3] showed that the theo-
retical results based on this assumption contradict to the 
performed experiment and require some other description 
close to the used for one-layer systems [4]. 

We take the coordinate z  perpendicular to the plain of 
the layers and the coordinates = ( , )x yr  describe a two-
dimensional space with a constant electron potential ener-
gy ( ) = ( )U z U z−  (see Fig. 1). We assume the existence of 
a constant magnetic field B  directed along z  large enough 
to make the energy of electron Coulomb interaction pro-
portional to B  small compared to the magnetic energy 
proportional to B . That is very important because Cou-
lomb interaction tends to destroy two-dimensional effects. 
Further we shall neglect Coulomb electron interaction as-
suming large enough magnetic field. 

It was shown in the theoretical work [5] for this case the 
situation is unstable and the creation of plain vortex lattices 
gives the thermodynamic gain. That is the case of the sepa-
rate action of the variables z  and r, therefore electron 
wave functions are the products of two functions ( ) ( ).Z z Φ r  
Various types of the vortex lattices are possible. The elec-
tron filling of the proper bands defines the physical proper-

ties. The separation of the variables gives two Shrödinger 
equations 
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where ( )U z  is the two-well potential (see Fig. 1). 
The functions ( )Φ r  are defined by two-dimensional 

equation 
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Here the effective vector potential effA  includes not on-
ly the vector potential of the external magnetic field 
(1/ 2)[ ]Br  but also the contribution of vortices (with the 

Fig. 1. Interwell potential. 
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lowest energy) with the minimal circulation 2π in each unit 
cell. The solutions of the Eq. (2) have simple band energy 
spectrum only at the rational values of the total magnetic 
flux through the unit cell area of the vortex lattice (see, 
e.g., [6]). Having in mind the experiments [7] where the 
electron density was close to that at the half filling of Lan-
dau level, we assume two vortices in each unit cell. Therefore 
the total magnetic flux through the area of the unit cell σ  will 
be 0 02 = ( / )B l nσ− Φ Φ , where 0 = 2 / | |c eΦ π  is the flux 
quantum and l, n are coprime integers. We see that the half 
filling of Landau level is achieved at = 0l , and the steady-
state solutions correspond to the representation of Abelian 
group of the periodic translations with the unit cell area 

 02 4= = .
| |

c
B e B
Φ π

σ
  (3) 

The situation is similar to that of graphene. It was 
shown in the paper [5] that the lattice have the hexagonal 
symmetry which is determined by the vortex lattices with 
the periodic vector potential in the plain r. Having in mind 
the experiments [7] we assume that the vortex lattice has 
the hexagonal symmetry with two vortices of the minimal 
circulation 2π in each elementary zone. It was shown in [5] 
that in this case there are two nonequivalent points 0k  and 

0′k  on the boundary of the two-dimensional Brillouin cell 
where the representation of the space group for the vortex 
lattice is two-fold and the full filling of the lowest band 
corresponds to the density of the half filled Landau level. 
We assume that the maximal energy in the lowest band 
corresponds to the energy 0( ) = ( )′ε ε0k k  at the critical 
points. We have to add to this energy the lowest energy of 
the size quantization 1E , corresponding to the symmetric 
wave function 1 1( ) = ( )Z z Z z−  and the chemical potential µ 
is assumed to satisfy inequality 

 1( ) < .Eε + µp  (4) 

We have defined the filling only for the lowest level of size 
quantization. For the next level 2E  of size quantization 
with the antisymmetric wave function 2 2( ) = ( )Z z Z z− −  
we will also assume that 

 2( ) < .E′ε + µp  (5) 

Therefore we have two hole Fermi circles with 
1 2( ) =Fp E Eε −  around the critical points 0k , 0′k . In what 

further we shall consider only the case of zero temperature. 
Let us consider the stationary problem without the exter-

nal electric field (details can be found in [8]). Both energies 
1E  and 2E  are close to the oscillation energy 0E  in one well 

without tunneling. The symmetry consideration of the tun-
neling process gives (in semiclassical approximation) two 
different states with the energies 1E  and 2E , where 
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where a−  and a are the positions of the turning points, 
the integral is in the classically forbidden region, 

0| | = = 2 ( )e ep m m U E−v . Therefore 2E  and 1E  are ex-
ponentially close. 

In the presence of the external electric field there is an 
additional term in the Hamiltonian 

 2ˆ ˆ= | |H e z dzd rδ − γ ρ∫  (7) 

where ρ̂ is the operator of the electron density. We choose 
the electric field > 0γ . Therefore we will have the current 
from the left well to the right one. There is no possibility to 
avoid the classically forbidden region. Thus we have to 
consider the subbarrier current. The oscillations in the left 
well with the energy 0E  give the ingoing wave at the be-
ginning of the classically forbidden region 

 0
in = exp .
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At the point =z a  we get the outgoing wave in the right 
well out in= ( )t Eψ ψ  where ( )t E  is the transmission ampli-
tude, 2| ( ) | =t E D , 
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a

a

D p dz
−
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The electron flux to the right well (see Fig. 1) at the turn-
ing point =z a  is (see [8]) 
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When obtaining this formula we use only ( )Z z  compo-
nent of the electron wave function. For a more complete 
expression it is necessary to perform the second quantiza-
tion, using the two-dimensional representation of the space 
group for the vortex crystal ( ) exp( / ),iΦ p pr   

( ) exp( / ),i+Φ −p pr   where ( )Φ p  is the column of two 
functions, ( )+Φ p  is the line, mutually orthogonal and nor-
malized (see also [5]). Therefore the full electron operators 
of the second quantization are 

 ( , , ) = ( ) exp ( ) ( , )i i i
it z Z z a t ψ Φ 

 
∑
p

prr p p

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and 

 ( , , ) = ( ) exp ( ) ( , )i i i
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here = 1,2i  and ( , ), ( , )i ia t a t+p p  are the usual Fermi opera-
tors in Heisenberg representation with the energy 

1 2( ) <p E Eε − +µ , here µ is the chemical potential equal 
to the total energy in Dirac points. 

The quantities ( ),iZ z  ( )iZ z+  do not depend on the func-
tions ( )Φ p , ( )+Φ p , but their number is essential for the 
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counting of the different filled states. The number of the 
various states in the crystal band coincides with the num-
ber of the elementary cells. For the two-dimensional case it 
gives = /N S σ , where S  is the sample area, and σ  is the 
area of the elementary cell. Generally speaking, we should 
count only the filled states and exclude the states in the 
hole Fermi circles near Dirac points. Their quantity is ex-
ponentially small according to Eq. (6) and we neglect them. 

Using Eq. (9) we get for the electron transition rates 
from the left well to the right well 
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However besides this channel of the electron transitions 
there is also a channel of the electron transitions from the 
right well to the left well with the opposite direction of the 
current 
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The full change of the electron number in the right well is 
given by a sum / = / /t l rdN dt dN dt dN dt+ . In the ab-
sence of the external electric field and ( ) = ( )U z U z−  there 
is no current between the wells / = 0tdN dt . In the pres-
ence of the electric field the direction of the current coin-
cides with the direction of the electric field and therefore 

 =t ldN dN
dt dt

  

and we have to calculate the subbarrier current for a small 
value of the electric field γ . The effective potential energy 
is eff ( ) = ( ) | |U z U z e z− γ  (see Fig. 2). The subbarrier im-
agine momentum at > 0z  is given by the expression 

0| |= 2 [ ( ) | | ]ep m U z e z E− γ −  and we see that the elec-
tric field results in the decrease of the barrier height. Sup-
posing the symmetry at ( )z z→ −  one can replace | |z z→  
resulting in the decrease of the barrier height in the whole 
domain of integration. At small electric field γ  we obtain 
in the linear approximation  

 0
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The appearance of | |z  instead of z  indicates only one 
direction of the subbarrier current. 

Substituting this expression in the Eq. (12) in linear on 
γ  approximation one gets 
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The term without γ  does not contribute to the current and 
can be omitted. The turning points in the linear approxima-
tion coincide with a and a−  in the absence of electric field. 
Thus we get for the net current to the right well 
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According to definition the coefficient in front of a 
small electric field γ  gives the conductance of the two-
layer heterostructure. As it is usual in linear response, we 
do not calculate the nonlinear entropy production in the right 
well. Let us analyze our final expression (14). Proportion-
ality to the sample area is confirmed by the experiment [9]. 
The important factor / = | | / (4 )S S e B cσ π   which is large 
in a strong magnetic field and may result in a large value 
of the product 

0
2exp 2 [ ( ) ] ,
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e
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 σ  

∫
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thus explaining the high currents observed in the experi-
ment [7]. The other factors are strongly dependent on the 
semiclassical approximation used in our calculations. The 
considered physical problem gives an example of the con-
ductance due to subbarrier currents. 

The vortex model is the inevitable consequence of the 
thermodynamic instability in our system and it is connect-
ed with the magnetization in a strong magnetic field. The 
electric field arises due to the change of the magnetic field 
and it induces electric current because the static magnetic 
field itself can not produce the work on the electrons. Us-
ing of the vortex lattice model makes unnecessary the addi-
tional constructions like Chern–Simons field or the compo-
site fermions. In the recent works [10,11] authors use more 
complicate models assuming exact electron-hole sym-
metry. Another difficulty is connected with the observed Fig. 2. The interwell potential modified by the electric. 
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electron spectrum which is far from the standard Landau 
levels. In the vortex model the spectrum is closely con-
nected with the separation of the variables like in the case 
of one-layer structures. 
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