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In this work the propagation of sound waves in a degenerate quantum gas is considered. We modify the Wang 
Chang and Uhlenbeck method for description of the sounds in a Maxwell gas for the case of a degenerate quan-
tum gas. Using this approach, we constructed a dispersion relation for sound waves in a condensed Bose gas at 
finite temperatures, and calculate the velocities of first and second sounds in the first approximation. The possi-
bility of the theoretical investigation for sound damping is discussed. 

PACS: 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow; 
67.40.Pm Transport processes, second and other sounds, and thermal counterflow; Kapitza resistance; 
67.57.Jj Collective modes. 
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1. Introduction

One of the most interesting problems in statistical me-
chanics is the description of the dynamics of collective 
modes. In the case of liquids and gases the collective 
modes are manifested mainly as sound waves (pressure or 
density oscillation). 

More exotic hydrodynamic modes occur in the degen-
erate quantum liquids and gases. The behavior of the de-
generate systems is determined by not only the effects of 
quantum mechanics but also by the statistical properties of 
the system [1]. The most popular ones are the superfluid 
4He, the condensed alkali Bose gases, superconductors,
etc. One of the most spectacular features exhibited by su-
perfluid 4He is the existence of two hydrodynamic modes,
so-called the first and second sounds. Theoretical descrip-
tion of the sounds in superfluid Bose liquid is based on the 
Landau two-fluid model. According to this model, super-
fluid liquid is a mixture of two independent, interpenetrat-
ing “fluids” or components, the “superfluid” and “normal” 
components, each associated with its own current and flow 
energy. When the normal and superfluid components are in 
local equilibrium, the two sound modes can be distin-
guished: the first sound consists of an in-phase oscillation 
of the superfluid and the normal fluid component, while 
the second sound consists of an out-of-phase oscillation of 
the superfluid and normal fluid components. Unfortunate-

ly, a strong interaction between helium atoms disguises 
clear distinction between the two components. 

The experimental discovery in 1995 of Bose–Einstein 
condensation in dilute low-temperature trapped atomic 
clouds revealed the quantum phenomena in a qualitatively 
new regime. One of the most interesting features, exhibited 
by cold gas clouds of weakly interacting atoms, is that in the 
Bose–Einstein condensate (BEC). When essentially all atoms 
occupy the same quantum state, and the condensate may be 
described very well in terms of a mean-field theory. This is in 
significant contrast to liquid 4He, for which a mean-field
approach is inapplicable due to the strong correlations in-
duced by the interaction between the atoms. Because the 
interatomic interaction is much weaker than in liquid 4He, the
superfluid in the gaseous BEC corresponds directly to the 
Bose-condensed atoms, and the normal component is the 
thermal system of noncondensed atoms [2]. 

The first and second sounds in the weakly interacting 
condensed Bose gas exhibit different properties than those 
in a Bose liquid [3]. In superfluid helium the first sound is 
mainly a density wave, while the second sound is almost a 
pure temperature wave. In contrast, in a condensed Bose 
gas, the first sound mode is mainly an oscillation of the 
density of the thermal cloud (the normal component) and 
the second sound is essentially an oscillation of the density 
of the condensate (the superfluid component). Thus, in a 

© I. Dmytruk, A. Svidzynskiy, and P. Shygorin, 2017 

mailto:pashyh@gmail.com


First and second sound in a degenerate Bose gas 

condensed Bose gas the both modes, first and second 
sounds, can be excited by a density perturbation. 

There are some approaches to the theoretical investiga-
tion of the sound waves in gases and fluids in literature. 
The most commonly used ones are based on the solution of 
corresponding linearized hydrodynamic equations [4]. 
Theoretical investigation of the sound modes in a uniform 
condensed Bose gas in the framework of two-fluid hydro-
dynamics was proposed by Griffin and Zaremba [5]. In this 
paper, using a linearized equations of two-fluid hydrody-
namics, the expressions for the velocities of first and se-
cond sounds have been obtained for the model of a uni-
form weakly interacting condensed Bose gas. This 
approach does not describe the sound damping processes, 
since has been used the equations of an ideal hydrodynam-
ics. To describe the damping effects in sound waves we 
may use the Navier–Stokes hydrodynamics. In this respect, 
the more consistent and convenient is the approach that has 
been developed by Wang Chang and Uhlenbeck (WCU) 
[6] for the Maxwell gas. In the work of WCU the propaga-
tion of sound in monatomic gases has been studied using 
the method of collision integral eigenfunctions. In such 
approach a calculation has been provided at the level of 
linearized Boltzmann kinetic equation. 

In the present paper, we develop a theoretical descrip-
tion of the propagation of sound waves in a degenerate 
quantum gas using a WCU approach. For this purpose, the 
WCU method has been modified for the case of weakly 
interacting condensed Bose gas. At very low temperatures, 
when almost all atoms are in the condensate, the dynamics 
of a condensed Bose gas can be described by the time-
dependent Gross–Pitaevskii equation for the macroscopic 
wave function ( , )tΦ r , associated with the Bose conden-
sate. At higher temperatures, when an appreciable fraction 
of atoms is excited out of the condensate, the dynamics of 
the trapped gas involves the condensate and the non-
condensate degrees of freedom. The theoretical description 
of the trapped degenerated Bose gas at nonzero tempera-
tures is based on the coupled equations of motion for both 
the condensate and noncondensate. The first one is the gen-
eralized Gross–Pitaevskii equation, and the second one is the 
corresponding quantum Boltzmann kinetic equation for the 
Wigner distribution function of noncondensate atoms 

( , , )f tp r  [7,8]. 
Using WCU technique, we described the weakly non-

equilibrium processes in a Bose gas at the presence of a 
condensate. In particular, we constructed a coupled sys-
tems of equations for dynamics of the condensate and non-
condensate degrees of freedom, derived the dispersion re-
lation for sound waves in the form of determinant for the 
corresponding system of algebraic equations. This deter-
minant can be evaluated using the method of successive 
approximations. This approach can be quite convenient 
and fruitful tool for the theoretical description of weakly 
nonequilibrium processes [9]. 

2. Linearized dynamics for the condensed Bose gas 

2.1. Dynamics of the trapped Bose gas at finite 
temperatures 

The coupled dynamics of condensate and noncon-
densate in the trapped Bose gas at finite temperatures can 
be described by generalized Gross–Pitaevskii equation for 
condensate density 2( , ) = | ( , ) |cn t tΦr r  and velocity ( , ),c tv r  
as well as the quantum Boltzmann kinetic equation for 
Wigner distribution function of the thermal cloud atoms 

( , , )f tp r  (see for details [7,8]): 

 ( ) = [ ],c
c c

n
n R f

t
∂

+ ∇
∂

v   

 = ,c c cm
t

∂ + ∇ −∇µ  ∂
v v  (1) 

 eff
( , , ) ( , , ) ( , ) ( , , )f t f t V t f t

t m
∂

+ ⋅∇ − ∇ ⋅∇ =
∂ p
p r P p r r p r   

 22 12= [ ] [ , ],C f C f+ Φ   

where total effective potential eff ext= ( ) 2 ( , )V V gn t+r r . 
Here extV  is the parabolic trap potential (the axial trap 
spring constant is so small that the condensate along the 
z axis can be treated as effectively uniform in such propaga-
tion studies). For simplicity, we consider the space homoge-
neous case ext = 0V . 

The total density ( , )n tr  of the gas can be written down 
as the sum of the condensate and noncondensate densities  

 ( , ) = ( , ) ( , ),cn t n t n t+r r r   

where the density of particles out of condensate is deter-
mined in the form 

 
3( , ) = ( , , ).

(2 )
dn t f t
π∫
pr p r



  

The chemical potential of condensate cµ  is defined in the 
following way [7,8]: 

 
22

= 2 .
2

c
c c

c

n
gn gn

m n
∇

µ − + +


   

22C  and 12C  are the terms of the collision integral (propor-
tional to second order of the weak interaction constant g) 

 ( )
2

12 1 2 3 1 2 32 4
2

[ , ] =
(2 )

c
c

g n
C f d d d mΦ δ + − − ×

π ∫ ∫ ∫p p p v p p p


 

 1 2 31 2 3
( )[ ( ) ( ) ( )]c p p p×δ ε + ε − ε − ε δ − − δ − − δ − ×p p p p p p     

 1 2 3 1 2 3[(1 ) (1 )(1 )],f f f f f f× + − + +  (2) 
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and 

( )
2

22 2 3 4 2 3 45 7
2[ ] =

(2 )
gC f d d d δ + − − ×

π ∫ ∫ ∫p p p p p p p


  

 ( ) 2 3 42 3 4
[(1 )(1 )p p p p f f f f× δ ε + ε − ε − ε + + −      

 2 3 4(1 )(1 )]ff f f− + + . (3) 

Here = ( , , ),f f tp r  and = ( , , )i if f tp r  is the distribu-
tion function for ith particle, 

 
2 2

eff= , = ,
2 2

c i
c c pi

m p
V

m
ε µ + ε + 

v
  

where ip  is the moment for ith particle. 
The source term [ ]R f  associated with 12C  collisions is 

defined to be = | |,c cvv  

 123[ ] = [ ].
(2 )

dR f C f−
π∫
p


  

We note, that for the case of absence of a trap the simi-
lar equations was derived much earlier by authors [10–12]. 

At the local equilibrium state 22 0 12 0 0[ ] [ , ] = 0C f C f+ Φ . 
The local equilibrium distribution function is 

 ( )0 2 0/2 eff

1( , , ) = .

e 1
m V

f t
β + −µ

−
p

p r


  

2.2. Linearizing procedure 

Let us consider a small deviation from local equilibrium 
state with the nonperturbed density 0cn : 

 0( , ) = ( , ), ( , ) = ( , ),c c c c cn t n n t t t+ δ δr r v r v r  (4) 

where cnδ  is perturbation of the particle density. Inserting 
(4) into first two equations of the system of equations (1), 
we find linearized Gross–Pitaevskii equation taking into 
account the presence of a thermal cloud 

 0 = [ ],c
c c

n
n R f

t
∂δ

+ ∇δ δ
∂

v   

 = ,c
cm

t
∂δ

−∇δµ
∂
v

 (5) 

where 

 123[ ] = [ ],
(2 )

dR f C fδ − δ
π∫
p


     = 2 .c cg n g nδµ δ + δ    

Excluding the superfluid velocity from the system (5), 
we obtain that  

 
2

2 2
0 02

[ ]= 2c c c
R fm gn n gn n

tt

 ∂ ∂δ
− ∇ δ ∇ δ −  ∂∂ 

 .  

In the case of the diffusion equilibrium between a con-
densate and the corresponding “noncondensate cloud” in 

the Bose gas, the value of [ ]R fδ  becomes zero [8]. Inas-
much as a sound propagation is much slower process than 
the establishment of the local and diffusion equilibria, we 
can neglect the item, containing [ ]R fδ , in the linearized 
equation for the condensate. 

Therefore, the linearized equation for the condensate 
has the following form: 

 
2

2 2
0 02 = 2 .c c cm gn n gn n

t

 ∂
− ∇ δ ∇ δ 

∂ 
  (6) 

If atoms, that are out of the condensate, are neglected 
here, than the above equation becomes well known Stringari 
wave equation [13] for spatially uniform condensate. 

Next we consider the deviation from the local equilibri-
um distribution function 0f . Let us write the first correc-
tion term to 0f  in the form  

 0 0= (1 )f f f hδ + . (7) 

Using the third equation of the system (1) and (7) we ob-
tain linearized Boltzmann kinetic equation (on details see 
Appendix 5) 

 ( )0 0(1 ) 2 ( ) = [ ].c
hf f h g n n L h
t m

∂ + + ⋅∇ − β δ + δ  ∂
p

  (8) 

Here 

 ( )
2

2 3 4 2 3 45 7
2[ ] =

(2 )
gL h d d d δ + − − ×

π ∫ ∫ ∫p p p p p p p


  

 ( ) 0 022 3 4p p p p f f× δ ε + ε − ε − ε ×      

 03 04 4 3 2(1 )(1 )[ ].f f h h h h× + + + − −   

Let us introduce the dimensionless variables 

 0
0 eff

2= , = , = ( ),
2 ct V

m m
β

τ α β µ −
β

c p   

then 

 
3 3/2 3

1= . . .
(2 )

d d
π π Λ∫ ∫
p c



,  

where 2= 2 / mΛ π β  is the thermal de Broglie wave-
length. Local equilibrium distribution function has the 
following form. Then the 

 0 2
1= .

e 1c
f

−α −
  

In the new variables equations (6) and (8) have such 
form: 

 
2

2 20
02 = ,

2
c

c c
gn

n gn n
 β∂

− ∇ δ β ∇ δ 
∂τ 

  (9) 
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 0(1 ) ( 2 ( )) = [ ]c
hf h g n n L h∂ + + ⋅∇ − β δ + δ  ∂τ

c 

  (10) 

with the linearized collision integral 

 ( )
3/22 2

2 3 4 2 3 45 7
8[ ] = g m mL h d d d

 
δ + − − ×  β π ∫ ∫ ∫c c c c c c c



  

 ( )2 2 2 2
2 3 4 02 03 04(1 )(1 )c c c c f f f× δ + − − + + ×   

            4 3 2[ ].h h h h× + − −    

Removing cnδ  from (9) and (10), after some algebra 
we obtain a closed equation like below 

2
0 0

ˆ ˆ ˆ ˆ(1 ) [ 2 ( )] = [ ],cf Ah Ah g gn n A n L Ah∂ + + ⋅∇ − β β ∇ δ + δ  ∂τ
c 

   

  (11) 

where 
2

20
2

ˆ .
2

cgn
A

 β∂
≡ − ∇ 

∂τ 
 

Equation (11) describes small deviation from a local 
equilibrium of the distribution function for atoms in a 
thermal cloud at the presence of condensate. It generalizes 
a linearized Boltzmann kinetic equation for Maxwell gas to 
the case of weakly interacting condensed Bose gas. 

3. Propagation of the sound waves in trapped Bose gas 

3.1. Dispersion relation 

Here we consider the solution of the Eq. (11) in the 
form of plane wave, that propagates along the z axis with 
frequency 0ω  and wave number 0k . Thus, 

 ( )00( , , ) = ( )e ,i kzh h −ω ττc r c   

 ( )00( , , ) = ( )e .i kzn n −ω τδ τ δc r c    

Inserting these formulas into (11), we obtain algebraical 
equation for the coefficient 0 ( )h c   

 1 2
0 0 0 0(1 )( [ ( ) 2 (1 ) ( )]z ci f c k h g gn A k n−+ + β − β δ −c c   

 0 0 0( )) = [ ( )],h L h−ω c c  (12) 

where 
2

2 0
0= .

2
cgn k

A
β

−ω +  

Following to the Wang Chang–Uhlenbeck method [6], 
we express the 0 ( )h c  in the terms of the eigenfunctions 

( )lψ c  for the linearized collision integral [ ( )]L ψ c  

 0 ( ) = ( ).l l
l

h a ψ∑c c  (13) 

Some standard mathematical manipulations yields with 
(12) and (13) the system algebraic equations for the expan-
sion coefficients la : 

 1 2
0[ ( 2 (1 ) )l ml c ml

l
a ik M g gn A k N−+ β − β +∑   

 0 ] = 0,l ml mlQ i+ λ − ω δ  (14) 

where the matrix elements are given by 

 0 0= ( )(1 ( )) ( ) ( ),ml m z lM d f f c+ ψ ψ∫ c c c c c   

 0 03/2 3
1= ( )(1 ( )) ( )ml m zN d f f c+ ψ ×

π Λ ∫ c c c c   

 0 0( )(1 ( ) ( ),ld f f× + ψ′ ′ ′ ′∫ c c c c   

 0= ( ) ( ) ( ),ml m lQ d f ψ ψ∫ c c c c   

and λ  are eigenvalues. 
Nontrivial solution of (14) corresponds to zero value of 

the determinant 

1 2
0 0det ( 2 (1 ) ) = 0.ml c ml ml l mlik M g gn A k N i Q−+ β − β − ω δ + λ  

  (15) 

This equation defines a sound wave dispersion relation. 
In the first approximation (without dissipation), keeping 

in the determinant (15) only first three columns and three 
rows that correspond to = 0λ  1 2 2( 1, , ,z zc cψ ψ ψ    

2
3 ),ψ c  we find 

 2 2 2 2 1 2
0 0 12 23 0 12 12[ ( 2 (1 ) )] = 0.ck M M g gn A k N M−ω ω − + + β − β  

  (16) 

The trivial solution of this equation 0 = 0ω  describes the 
heat relaxation mode. 

Using expressions for the matrix elements (see Eq. (B.4)) 
in the Eq. (16), we obtain 

 ( )2 2 2 1 2
0 0 0 0(1 ) = 0,ck g gn A k n−ω − + β − β v  (17) 

where 0 0= ,2/ (5/3) /m Pβ ρv  and 0v  is a dimensionless 
sound velocity for ideal gas. P  and 0ρ  are pressure and 
mass distribution of the thermal cloud, respectively. 

3.2. First and second sounds 

In this subsection we find sound velocities. In terms of 
Eq. (17) for the dimensionless sound velocity 0 0= / ,u kω  
we obtain 

 ( )4 2 2 20 0
0 0 0 0 0 0 = 0

2 2
c cgn gn

u u gn gn
β β − + β + + − β  

 v v .  

This biquadratic equation has the next solutions indexed by 
“ ± ” sign: 

 2 2 0
0 0 0

1=
2 2

cgn
u gn±

β + β + ±
v   
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 ( )
2

2 20
0 0 0 02

2
cgn

gn g gn
β  ± + β + − β − β   

 v v .  

The power series expansion for the square root with re-
spect to g gives 

 2 2 20 0 0
0 0 0 0= , = ,

2 2 2
c c cgn gn gn

u gn u+ −
β β β

+ β + ζ − ζv   

where 0
2
0

2
= .

gnβ
ζ



v
 

Turning back to dimensional quantities, finds  

 2 2 0 0
1 0

0

22 5= = ,
3

cgn gnPu u
m mn m m+ + + ζ

β




 (18) 

 2 2 0 0
2 0

2= = .c cgn gn
u u

m m m− − ζ
β

 (19) 

Thus, in the dilute condensed Bose gas two sound 
modes can propagate with velocities u1 and u2. In the case 
when condensate is absent 0( = 0)cn , the velocity u2 is 
equal to zero, and u1 reduces to the velocity of sound for 
weakly interacting gas. Acoustic modes u1 and u2 corre-
spond to the first and second sounds. Expressions for u1 
and u2 coincide with accordingly velocities that were ob-
tained by Griffin and Zaremba [5], using the method of 
linearized hydrodynamic equations, and are in good 
agreement with experimental data in [14]. 

4. Conclusion 

Thus, in this work it was conducted the theoretical in-
vestigation of the acoustic modes in trapped condensed 
Bose gas at the nonzero temperatures, when a thermal 
cloud of excited atoms is present along with the conden-
sate. The calculation is based on the system of the linear-
ized Gross–Pitaevskii and the kinetic Boltzmann equations. 

The use of the system of eigenfunctions for the introduced 
linearized collision integral (13) allowed to obtain the dis-
persion relation for the acoustic waves in the form of infi-
nite determinant. Such structure of the dispersion relation 
permits the application of the successive approximations 
method. Confining the approximations to three rows and 
columns in the determinant, that correspond to zero eigen-
values, we derive the dispersion relation for “sounds” in 
the ideal case, that is without damping effects. The ob-
tained cubic equation has three solutions. Two of them are 
nontrivial, corresponding the first and second sounds, and 
the trivial one, that describes the heat relaxation mode. 
These results are in agreement with the corresponding ex-
pressions, generated by other theoretical methods, and with 
experimental data. 

The application of the method of successive approxima-
tions for the dispersive relation in the form of the infinite 
determinant also allows to describe damping effects, that 
can prove the effectiveness and flexibility of the proposed 
here approach. To perform the latter it is necessary to take 
into account more items (rows and columns) in the expan-
sion of the determinant in series with the wave vector as a 
parameter. Then the main problem consists in computing 
the nontrivial eigenvalues and the corresponding eigen-
functions for the linearized collision integral. 

Appendix A: Derivation of the linearized Boltzmann 
quantum kinetic equation 

We proceed to the linearized Boltzmann quantum kinet-
ic equation. Let 0=f f f+ δ , here 0f  is definable from 
the constraint 22 0 12 0[ ] [ ] = 0C f C f+ . Such condition can 
be satisfied by the Bose–Einstein distribution function 

 0 2 0( /2 )eff

1( , , ) = .
e 1p m V

f t
β + −µ −

p r


 (A.1) 

Notice, that the distribution function (A.1) satisfies the 
condition 22 0[ ] = 0C f  for any value of chemical potential 
and the condition 12 0[ ] = 0C f  in case of = cµ µ , by other 
words, when a diffusion equilibrium occurs between the 
condensate and thermal cloud. 

Linearizing the collision integrals 22C  and 12C , we use 
the following expressions: 

 0 0 0[ , ] = [ ] [ ]C f f C f f C fδ δ + δ − =   

 
4

= 0
=1

[ ]= ( , , ) | .i i f fi iii

C fd f t
f

δ
δ

δ∑∫ p p r  (A.2) 

Since the collision integrals 22C  and 12C , defined by 
the expressions (3) and (2), have such structure like the 
following: 

 1 2 3 4 1 2 3 4[ ] = ( , , , ) [{ ( , , )}],kC f d d d P F f t∫ ∫ ∫p p p p p p p p r  

Fig. 1. First (I) and second (II) sounds velocities (normalized by 

0 0= / )u gn m  plotted as a function of the reduced temperature 
T/Tc for a sample of 23Na atoms. Scattering length a = 2.75 nm, 
total number of 23Na atoms N = 109 [3]. In this situation, one has 
a high density cloud of n0 ∼ 1020 m–3. 

864 Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 6 



First and second sound in a degenerate Bose gas 

then 

 
4

1 0 2 3 4 1 2 3 4
=1

[ , ] = ( , , , )
i

C f f d d d Pδ δ ×∑∫ ∫ ∫p p p p p p p   

 
= 0

[{ ( , , )}]
( , , ) .k

i
f fi i i

F f t
f t

f
∂

× δ
∂
p r

p r  (A.3) 

For the collision integral 22C  the introduced function 
[{ ( , , )}]kF f tp r  can be expressed in the following manner: 

 1 2 3 4 1 2 3 4[{ ( , , )}] = (1 )(1 ) (1 )(1 ).kF f t f f f f f f f f+ + − + +p r  

After a rather simple calculation, it can be derived that 

 
4

==1 0

[{ ( , , )}]
( , , ) k

i
i f fi i i

F f t
f t

f
∂

δ =
∂∑ p r

p r   

 
4

01 02 03 04
0 0=1

( , , )
= (1 )(1 ) ,

(1 )
i

i
i ii

f t
f f f f s

f f
δ

+ +
+∑ p r

 (A.4) 

where 1 2 3 4= = 1, = = 1s s s s− . 
Setting 0 0( , , ) = (1 )i i i if t f f hδ +p r , where h  is a small 

correlation to the distribution function, we obtain the line-
arized collision integral 22C , as it is below 

 ( )
2

22 2 3 4 2 3 45 7
2[ ] =

(2 )
gL h d d d δ + − − ×

π ∫ ∫ ∫p p p p p p p


  

           ( ) 0 02 03 042 3 4
(1 )(1 )p p p p f f f f× δ ε + ε − ε − ε + + ×      

            4 3 2[ ].h h h h× + − −   (A.5) 

One similarly derives the linearized collision integral 
12C : 

   ( )
2

0
12 1 2 3 1 2 32 4

2
[ ] =

(2 )
cg n

L h d d d δ − − ×
π ∫ ∫ ∫p p p p p p


  

            0 1 21 2 3
( )[ ( ) ( )c p p p× δ µ + ε − ε − ε δ − − δ − −p p p p    

            3 01 02 03 3 2 1( )] (1 )(1 )[ ].f f f h h h− δ − + + + −p p   
  (A.6) 

As it was shown in [8], when a diffusion equilibrium 
takes place, the quantity 12L  can be neglected. Consider-
ing the case of diffusion balance during sound-wave prop-
agation, we disregard the value of 12L . 

Now we linearize the left part of kinetic equation. We 
have 

 eff
( , , ) ( , , ) ( , ) ( , , )f t f t V t f t

t m
∂

+ ⋅∇ − ∇ ⋅∇ =
∂ p
p r p p r r p r   

 eff 0= ( , ) ( , , )V t f t
t m

∂ + ⋅∇ − ∇ ⋅∇ +  ∂ p
p r p r   

 0( , , ) 2 ( ) ( , , )cf t g n n f t
t m

∂ + + ⋅∇ δ − ∇ δ + δ ⋅∇ =  ∂ p
p p r p r   

 0 0= (1 ) ( 2 ( )) .c
hf f h g n n
t m

∂ + + ⋅∇ − β δ + δ  ∂
p

  (A.7) 

Here, it is taken into account that, in accordance with the 
definition of 0f , the following expression is true 

 eff 0( , ) ( , , ) = 0,V t f t
t m

∂ + ⋅∇ − ∇ ⋅∇  ∂ p
p r p r   

 0 0 0= (1 ) .f f f
m

∇ + βp
p   

Therefore, the linearized Boltzmann kinetic equation 
obtains the final form: 

 0 0 22(1 ) ( 2 ( )) = [ ].c
hf f h g n n L h
t m

∂ + + ⋅∇ − β δ + δ  ∂
p

   

  (A.8) 

Appendix B: Eigensystems of [ ]L h  

Because of the structure of the collision integral, the 
three eigenvalues, corresponding to the eigenfunctions 1 , 

zc , c2, equal zero. This is due to conservation laws for 
particle number, momentum, and energy, that are fulfilled 
during particle collisions. Farther discussion here will be 
restricted to the case of eigenfunctions with zero eigenval-
ues. Because the three eigenfunctions correspond to the 
same eigenvalue = 0,λ  their linear combination also is an 
eigenfunction with the eigenvalue = 0.λ  Below, we build 
linear combinations of the eigenfunctions, constructing an 
orthonormal basis with the weight 0 0(1 )f f+ . 

Let φ1 = 1, φ2 = cz, φ3 = c2. Normalized eigenfunctions 
are denoted as lψ  and defined by the ratio 

 = ,
|| ||

l
l

l

φ
ψ

φ
  

where 

 2 2
0 03/2 3

1|| || = (1 ) | | .l ld f fφ + φ
π Λ ∫ c   

Then we have that 

 2 2
1 0 0 1 0 03/2 3 3/2 3

1 1|| || = (1 ) | | (1 ).d f f d f fφ + φ = +
π Λ π Λ∫ ∫c c   

Because of 

 0
0 0 2

1(1 ) = = ,
e 1c

df df f
d d −α

+
α α −

  

then 

 
2

2
1 3/2 3 2

0

1|| || = 4
e 1c

d cdc
d

∞

−α
φ π =

απ Λ −
∫   
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1/2

1/2 3
0

2=
e 1x

d xdx
d

∞

−α =
απ Λ −∫   

 
1/2

3/2 1/2
1/2 3 3

( ) ( )2= = .
2

dg g
d

α απ
απ Λ Λ

  

Here we used the following definition of the Bose–Einstein 
g function in the derivation of the above expression: 

 
(2 1)/2

(2 1)/2
0

2(e ) = ,
(2 1)!! e 1

n n

n x
xg dx

n

∞ −
α

+ −α− π −∫   

and the apparent ratio 

 1
(e )

= (e ),n
n

dg
g

d

α
α

−α
  

that follows from the presentation of g function as a sum 

 
=1

( ) = .
l

n n
l

xg x
l

∞

∑   

Hence, 

 
3

1
1/2

= .
( )g

Λ
ψ

α
 (B.1) 

Similarly, it can be found that  

 
3

2
3/2

2= .
( ) zc

g
Λ

ψ
α

 (B.2) 

Next, we check up the orthogonality of 1ψ  and 2ψ : 

 1 2 0 0 1 23/2 3
1| = (1 )d f f〈ψ ψ 〉 + ψ ψ =

π Λ ∫ c   

3

3/2 2
1/2 3/2 0 0

0

2= sin cos = 0.
( ) ( ) e 1c

d cd dc
dg g

π ∞

−α
θ θ θ

απ α α −
∫ ∫


 

To orthogonalize the third “base-function” to the first 
and the second one, it is necessary to make choice of the 
following: 

 2 3/2
3 3 3 1 1

1/2

( )3= | = .
2 ( )

g
c

g
α

φ φ − 〈φ ψ 〉ψ −
α

   

Then the third orthonormal eigenfunction gets the shape 

 
3

21/2 3/2
3 2

1/25/2 1/2 3/2

4 ( ) ( )3= .
2 ( )3(5 ( ) ( ) 3 ( ))

g g
c

gg g g

 Λ α α
ψ − α α α − α

  

  (B.3) 

Using explicit expressions (B.1)–(B.3) for the 
eigenfunctions, we calculate matrix elements (15). As it 
can be shown, 

 3/2
12 21

1/2

( )
= 0, = = ,

2 ( )mm
g

M M M
g

α
α

  

 5/2 3/2
23 32

3/2 1/2

5 ( ) ( )= = ,
6 ( ) 2 ( )

g gM M
g g

α α
−

α α
  

 13 31 12 1 2= = 0, = ,ml m lM M N N δ δ   

 1/2 3/2
12 3

1 ( ) ( )= .
2

g gN α α
Λ

 (B.4) 
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