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Single-particle emission at finite temperatures 
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The state of particles injected onto the surface of the Fermi sea depends essentially on the temperature. The pure 
state injected at zero temperature becomes a mixed state if injected at finite temperature. Moreover the electron 
source injecting a single-particle state at zero temperature may excite a multi-particle state if the Fermi sea is 
at finite temperature. Here I unveil a symmetry of the scattering amplitude of a source, which is sufficient to pre-
serve a single-particle emission regime at finite temperatures if such a regime is achieved at zero temperature. 
I give an example and analyze the effect of temperature on time-dependent electrical and heat currents carried 
by a single-particle excitation. 

PACS: 73.22.Dj Single particle states; 
73.23.–b Electronic transport in mesoscopic systems; 
73.63.–b Electronic transport in nanoscale materials and structures. 
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1. Introduction 

Often the theoretical models are formulated at zero 
temperature while the experiment is always carried out at 
finite temperatures. Nevertheless sometimes a zero-tempe-
rature model can be used successfully to explain what is 
going on in experiment. Here I bring an example of how 
the symmetry of a system promotes a zero-temperature 
model to work at finite temperatures. Namely, I show that 
a certain symmetry of an electron source protects a single-
particle emission regime against a possible disruptive im-
pact of increasing temperature. 

Implementation of high-frequency on-demand single-
electron sources is a major step towards solid-state quan-
tum information processing with fermions [1–3]. It has 
also a more practical impact, for example, it is promising 
for realization of the SI unit ampere [4–6]. 

One approach to achieve a single-electron emission is 
to use a very small dot with a quantized electron spectrum. 
The examples are a quantum capacitor [7,8] used in Ref. 9, 
a dynamical quantum dot used in Refs. 10, 11, or even a 
single donor atom used in Ref. 12. 

Alternative approach is to use a voltage pulse of a defi-
nite shape to excite a single-charge quantum directly from 
a metallic contact, as it was suggested in Refs. 13, 14 and 
first experimentally realized in Ref. 15. The corresponding 
excitations were named levitons. 

The single-particle nature of electrons injected on-de-
mand was demonstrated by using several ways. First, the re-
gime with a minimal high frequency noise was identified as 
a single-particle emission regime [16]. Such an identifica-
tion was supported by the simple quasi-classical model [17] 
as well as by the full quantum-mechanical calculations 
based on the Floquet scattering matrix approach [18]. Fur-
ther, the electronic analogue of the famous Hanbury Brown 
and Twiss (HBT) effect in optics [19] was used to count 
particles emitted by the source. It was demonstrated that no 
spurious electron-hole pairs were excited during injection 
of single electrons [15,20]. In addition, the electronic coun-
terpart of the Hong–Ou–Mandel (HOM) effect for pho-
tons [21] demonstrated an anti-bunching expected for fer-
mionic single-particle excitations [15,22]. 

Here I am interested in the sources, that inject single 
electrons close to the surface of the Fermi sea. The examp-
les are the source based on a quantum capacitor driven by 
a harmonic potential, the source of levitons, to name a few. 
In this case one could expect that the ambient temperature 
would affect significantly the properties of the state emit-
ted by a single-particle source, since the energy of injected 
particles is comparable with the energy of thermal excita-
tions of the Fermi sea. 

Indeed, for a quantum capacitor the experiment demon-
strates that the HBT shot noise depends on temperature, it 
deceases with increasing temperature [20]. This effect was 
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attributed to fermionic antibunching of injected particles 
and thermal excitations present in the Fermi sea at finite 
temperatures [20,23,24]. The same effect also takes place 
for levitons [25]. 

An alternative explanation was put forward in Ref. 26, 
where the HBT shot noise reduction was related to the fact 
that the state emitted by the source of levitons at finite 
temperatures is a mixed state while the one emitted at zero 
temperature is a pure state. The mixed state is less noisy 
compared to a pure state. 

The outcome of Ref. 26 is that the state emitted by a 
single-particle source remains quantum coherent but it is 
modified by a finite ambient temperature. For instance, two 
fermionic states emitted at finite temperatures preserve 
their ability for perfect antibunching during collision (the 
electronic analogue of the HOM effect in optics). A non-
damaging role of temperature (from the point of view of 
a quantum coherence) is also demonstrated by the fact that 
for single-charged levitons the entire shape of the electron-
ic HOM-like signal as a function of the time delay between 
two colliding particles is not modified by temperature any-
more (though the magnitude decreases with increasing 
temperature) [25,27,28] even for a random injection [29]. 

In the present paper I generalize the analysis carried out 
in Ref. 26 to a wider class of electron sources, namely to 
those whose scattering amplitudes possess the time-energy 
translation symmetry. I show that such a source emitting 
single particles at zero ambient temperature works as a 
single-particle source at finite temperatures as well. The ef-
fect of finite temperatures is reduced to the fact that a pure 
state emitted at zero temperature is turned into a mixed 
state emitted at finite temperatures. 

Note that electrons injected from a dynamical quantum 
dot [30] have energy far above the Fermi energy [31]. 
Therefore, one can expect that finite temperatures have no 
direct effect on the wave function [32,33] of injected elec-
trons. 

The paper is organized as follows. In Sec. 2 the excess 
correlation function of particles emitted by a single-elec-
tron source is introduced. Then using the Floquet scattering 
matrix approach [34] I show how a correlation function at 
finite temperature can be related to a correlation function at 
zero temperature. Given such a relation one can see that 
a pure single-particle state emitted at zero temperature be-
comes a mixed state if emitted at finite temperature. The 
time-energy translation symmetry of a scattering amplitude 
of a source is discussed in Sec. 3. A few examples of a 
source, that preserves a single-particle emission at finite 
temperatures, are presented in Sec. 4. The effect of tem-
perature on time-resolved electrical and heat currents is 
discussed in Sec. 5. I conclude in Sec. 6. The Appendix A 
contains some auxiliary calculations. In particular, the scat-
tering amplitude of a quantum level raising at a constant 
rapidity calculated in Ref. 36 is derived from the scattering 
amplitude of a quantum capacitor calculated in Ref. 36. 

2. Excess correlation function 

The state of a system of non-interacting electrons is ful-
ly characterized by the first-order correlation function 

(1) †ˆ ˆ(1;2) = (1) (2)Ψ Ψ , where ˆ ( )jΨ  is a single-particle 
electron field operator in second quantization evaluated at 
space-time point = 1j , 2. In a one-dimensional case of in-
terest here the point j  is characterized by its coordinate jx  
and time jt , so ˆ ˆ( ) ( )j jj x tΨ ≡ Ψ . The system I have in mind 
consists of a periodically driven quantum system, a single-
electron source, which is connected to a chiral electron 
waveguide. The waveguide in turn is connected to an elec-
tron reservoir, a metallic contact. The examples of chiral 
electron waveguides are the edge states in quantum Hall 
conductors or in topological insulators [37]. The electrons 
in a metallic contact are supposed to be in equilibrium. The 
quantum statistical average   is performed over the equi-
librium state of electrons in the contact they are coming 
from. 

A working source disturbs an electron system in a wave-
guide. To characterize this disturbance it is convenient to 
introduce the excess first-order correlation function [38–40], 
which is defined as the difference of the correlation func-
tions evaluated with the source on and off, 

 (1)(1) (1)
1 2 on 1 2 1 2off( ; ) = ( ; ) ( ; ),G t t t t t t−   (1) 

where the subscript denotes the status of the source. Since 
all the correlation functions are evaluated at the position of 
the source (just behind it down the electron stream), we 
keep only time arguments. 

It is convenient to consider the excess correlation func-
tion for electrons in the waveguide as the correlation func-
tion for particles injected by the source into the otherwise 
unperturbed waveguide. Below I will adopt this terminology. 

The excess correlation function (1)G  can be expressed 
in terms of the scattering amplitude of the source in ( , )S t E , 
which is a quantum mechanical amplitude for an electron with 
energy E in a waveguide to pass by the source at time t [41]. 
While passing by the source an electron can enter the 
source, stay there during some time, and then come back to 
the waveguide. During its stay within the source an electron 
is subject to a time-dependent force driving the source. This 
is a reason why the scattering amplitude inS  depends on time. 

The relation between the excess correlation function 
and the scattering amplitude is the following [26]: 

( )
( ) { }1 2(1) *

1 2 in 1 in 2
1( ; ) = e ( , ) ( , ) 1 .

i E t t
G t t dEf E S t E S t E

h
−

µ
−∫ 

v
  (2) 
Here 

1

( ) = 1 e

E
kBf E

−−µ
θ

 
 + 
 
 
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is the Fermi distribution function with µ and θ being the 
Fermi energy and the temperature, respectively, for elec-
trons in a reservoir the waveguide is connected to; Bk  is 
the Boltzmann constant. Note that an asterisk in *

in ( , )S t E  
denotes the complex conjugation. 

2.1. Zero temperature 

At zero temperature the Fermi distribution function is 
the step function, ( )( ) =f E Eθ −µ , which is zero at >E µ 
and one at <E µ. For convenience I introduce a new vari-
able = Eε −µ and denote the correlation function at zero 
temperature by the subscript 0. With this notation we have 

{ }
( ) 01 2 ( )1 2(1) *

1 2 in 1 in 20
e( ; ) = e ( , ) ( , ) 1 ,

i t t i t t
G t t d S t S t

h

µ −
ε −

µ −∞

ε ε ε −∫




v

  (3) 

where I introduced a short notation in in( , ) ( , )S t S tε ≡ ε +µ =

in ( , )S t E= . 
The equation above can be used as the starting point for 

the analysis of the state of particles injected by an electron 
source on the top of the Fermi sea at zero temperature. 

For instance, if the excess correlation function can be 
represented as the product of two factors dependent on a 
single time each, 

 ( ) ( ) ( )(1) *
1 2 1 20 ; = ,G t t t tΨ Ψ     ( ) ( )= e

i t
t t

− µ
Ψ ψ , (4) 

then the disturbance of the Fermi sea produced by a work-
ing source looks very like as if an electron source would 
emit a single particle state with wave function ( )tΨ  and no 
a multi-particle state is excited [42,43]. 

This interpretation goes in line with expectation based 
on a picture, where an occupied quantum level of the 
source raises above the Fermi level of electrons in a wave-
guide, see, e.g., Ref. 9. 

The specific form of Eq. (4), when it is factorized, is 
dictated by the symmezry of the correlation function, 

( ) ( )
*(1) (1)

1 2 2 10 0; = ;G t t G t t 
  . 

2.2. Finite temperatures 

At non-zero temperature the Fermi function is not a step 
function anymore. Therefore, the energy integral in Eq. (2) 
runs not to zero as in Eq. (3) but to +∞ . Nevertheless one 
can bring (1)G , Eq. (2), into the form resembling (1)

0G . 
For this purpose let us use the following identity: 

 ( ) = ,ff d '
'

∞

ε

∂ ε ε − ∂ε ∫  (5) 

change the order of integration in the double integral, 
which occurs in Eq. (2), 

 ,
'

d d ' d ' d
∞ ∞ ∞ ε

−∞ ε −∞ −∞

ε ε → ε ε∫ ∫ ∫ ∫  (6) 

and finally make a shift 'ε → ε + ε . As a result, Eq. (2) be-
comes 

 
( ) ( )1 2

1 2(1)
1 2

e( ; ) = e

i t t i ' t tfG t t d '
hv '

µ − ∞ ε −

µ −∞

∂ ε − × ∂ε ∫


   

 
( ) { }

0
1 2 *

in 1 in 2e ( , ) ( , ) 1 .
i t t

d S t ' S t '
ε −

−∞

× ε ε + ε ε + ε −∫   (7) 

Now we make a crucial step. Let us suppose that the 
scattering amplitude of the source possesses the following 
time-energy translation symmetry: 

 ( ) ( )in in, = / , ,S t S t cε + δε − δε ε  (8) 

where c is a constant. Using this equation and Eqs. (7) and (3) 
we can express the correlation function at finite tempera-
ture, (1)G , in terms of the correlation function at zero tem-
perature, (1)

0G , as follows: 

( )1 2 (1)(1)
1 2 1 20( ; ) = e ; .

i ' t tf ' 'G t t d ' G t t
' c c

∞ ε −

−∞

∂ ε ε   ε − − −   ∂ε   ∫   

  (9) 
This is the central result of the present work. 

The relation above admits an intuitive interpretation in 
the case if a single-electron emission takes place at zero 
temperature. Substituting Eq. (4) into Eq. (9) we obtain 

 
( )

( )

(1) *
1 2 1 2( ; ) = ( ) ( ),

( ) = e / .

' '

i ' t
'

fG t t d ' t t
'

t t ' c

∞

ε ε
−∞

− µ+ε
ε

∂ ε − Ψ Ψ ∂ε 

Ψ ψ − ε

∫



 (10) 

The correlation function above describes a mixture of sin-
gle-particle states with component wave functions ( )' tεΨ  
appearing with probability density /f '−∂ ∂ε , which is ap-

parently properly normalized, ( / ) = 1d ' f '
∞

−∞
ε −∂ ∂ε∫ . Note, 

the different components, ( )' tεΨ  have the envelope func-
tion of the same shape, ψ , but shifted in time. An emitted 
particle looks like it is blurred in time. 

At zero temperature ( )/ =f ' '−∂ ∂ε δ ε , where ( )'δ ε  is 
the Dirac delta function. As a result only the component 

( )0 ( ) = e
i t

t t
− µ

Ψ ψ , i.e. the one with = 0'ε , survives. 

At non-zero temperature there are many components 'εΨ  
of a mixed state. They can be interpreted as follows. Let 
the wave function 0 ( )tΨ  describes a particle emitted at 
time 0=t t  on the top of the Fermi sea filled up to the ener-
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gy µ (i.e., the Fermi sea is at zero temperature). Then the 
wave function ( )' tεΨ  can be interpreted as the one, which 
describes the same particle (the same envelope function) 
but emitted at another time, 0 0= /t ' t ' c+ ε , and on the top 
of the Fermi sea filled up to another energy, =' 'µ µ + ε . 
In fact, we do not need to think 'µ  as the Fermi energy 
of some effective (or fictitious) Fermi sea. Better to say, 
that 'µ  defines the lower bound of energy for an emitted 
electron. This energy enters the corresponding phase factor 
in Eq. (10). Note that the state of an emitted particle is a 
superposition of states with different energies [44–46], 
which can deviate from the lower band 'µ . This deviation 
is encoded into a time dependence of the envelope function 

( )tψ  [47]. 
The shift of the emission time for different components, 

0 0= /t ' t ' c+ ε , is consistent with the interpretation of 
=' 'µ µ + ε  as the minimal energy. To illustrate it let us con-

sider a source consisting of a single occupied quantum le-
vel ( )t , which is elevated up in energy. An electron can 
leave the source when unoccupied states in the Fermi sea 
outside become available. 

At zero temperature, the edge of the Fermi distribution 
function is sharp and the unoccupied states become availa-
ble only when the energy of a quantum level will exceed 
the Fermi energy µ. Thus, at zero temperature the time of 
emission 0t  is defined by the following equation 0( ) =t µ . 

In contrast, at non-zero temperature the edge of the 
Fermi distribution function is smeared out. Therefore, an 
electron can escape from the source even when < µ . In 
addition, an electron can stay in the dot even when > µ , 
since the partially occupied levels outside hamper its es-
cape. Therefore, there are many possibilities to escape, that 
results in many contributions in Eq. (10). Each component 
describes an emission process, which starts when the ener-
gy of a level becomes larger than some definite energy 'µ . 
If an electron escapes at 'µ ≠ µ, then the time of emission 
is defined as follows: 0( ) =t '′ µ , where 0 0t t′ ≠ . The differ-
ence 0 0t t′ −  is exactly the time necessary to change the 
energy of a level ( )t  from µ to 'µ . Note, that all the com-
ponents in question are mutually incoherent — hence they 
constitute a mixture state — since they are well distin-
guishable by their time of emission. 

Note that in Eq. (10) the difference 0 0t t′ −  is linear in 
=' 'ε µ −µ . This property is a direct consequence of the 

symmetry of the scattering amplitude given in Eq. (8). 
Now we discuss the conditions, which can lead to such 

a symmetry of the scattering amplitude. 

3. Time-energy translation symmetry of the scattering 
amplitude 

Simple analysis shows that Eq. (8) is satisfied if the 
scattering amplitude depends on a single argument, ctε − , 
rather than on time t  and energy ε separately, 

 ( ) ( )in in, .S t S ctε ≡ ε −  (11) 

In this case the scattering amplitude is invariant under the 
simultaneous translation in energy by an amount of δε and 
in time by an amount of / cδε  in full agreement with Eq. (8). 

To clarify conditions for such invariance to hold let us 
proceed as follows. For the source side-attached to a one-
dimensional electron waveguide, the scattering amplitude 
is expressed in terms of a phase ( , )tϕ ε  accumulated by an 
electron during its stay within the source, ( , )

in ( , ) ei tS t ϕ εε  . 
The source is driven by the time-dependent potential ( )U t . 

To relate ( )U t  and ( , )tϕ ε  let us consider a simple model: 
The source is a one-dimensional ballistic loop of length L . 
For a ballistic motion inside the source, the phase ϕ  can be 
effectively represented as follows: 

( , ) ( ) ( / ) ( )
t

t D

t k L e dt'U t'
−τ

ϕ ε ε − ∫ ,  

where k  is an electron wavenumber and Dτ  is the dwell 
time — an effective time, during which an electron stays 
within the source. 

The next step, we linearize the dispersion relation. If the 
Fermi energy is the largest energy scale in the problem, we 
can write ( ) (0) / ( )k k vµε ≈ + ε  , where vµ  is a velocity of 
an electron with Fermi energy. 

And finally, we suppose that the potential ( )U t  changes 
not too fast, such that it can be linearized within the rele-
vant time interval (the time interval of duration Dτ ), 

0( )eU t eU ct≈ + , where = /c dU dt  is the rapidity. 
Within these approximations the phase becomes, 

( )0( , ) ( / )Dt ctϕ ε ≈ ϕ + ε − τ  , where 0ϕ  is independent of 
both ε and t . It is clear that the phase ϕ  — hence the scat-
tering amplitude inS  — is of the form required by Eq. (11). 
Recall that we used both a linearized energy spectrum and 
a linearized in time driving potential. 

Below I analyze some models of a single-electron source 
known from the literature and discuss the temperature effect. 

4. Examples 

4.1. Single quantum level raising at a constant rapidity 

In Ref. 35 an electron transfer between a localized state 
and the Fermi sea at zero temperature was analyzed. It was 
shown that if the energy of a localized state increases line-
arly in time, = ct , then such a transfer is noiseless. That 
is, when a localized state raises at a constant rapidity above 
the Fermi level, an electron is emitted into the Fermi sea 
while no additional electron-hole pairs are excited. The 
scattering amplitude, describing such a process, is [35] 

 
( ) 2

( ) 2 4
in

0

( , ) = 1 e e e ,
i ct iDcS t d

ξ ζ∞ − ξτ ε− ξ
ε − ξ∫   (12) 

where a parameter 2= 2 /Dcζ τ . 
Obviously the amplitude ( )

in
cS  is of the form given in 

Eq. (11). Therefore, one can conclude that, according to 
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Eq. (10), such a source remains a single-electron source 
even if the temperature of the Fermi sea is non zero. 

At zero temperature an electron emitted is in a pure 
state with wave function [35] 

 ( )

2

22( ) 00
00

e= e e e ,
2

i t i itc dt
v

 εε− µ ∞ ζ − − ε  εε  

τ µ

ε
Ψ

επΓ ∫


  (13) 

where 0 = / (2 )τε Γ  is the expectation value of energy of 
an emitted electron whose extent in time is 2 = / ( )DcτΓ τ . 

At finite temperatures an electron emitted is in a mixed 
state, see Eq. (10), with component wave functions 

( )
( )

2

22( ) 00
00

e= e e e .
2

i i '' t it
c c
'

dt
v

 εε ε− µ+ε  ∞ ζ − − ε −   εε    
ε

τ µ

ε
Ψ

επΓ ∫


  (14) 

4.2. Quantum capacitor as a single-electron source 

An on-demand single-electron source based on a quan-
tum capacitor [7,8] was realized experimentally in Ref. 9. 
The quantum capacitor was made of a short circular edge 
state of a two-dimensional electron gas being in the integer 
quantum Hall effect regime. The nearby metallic gate — 
which is used to change position of quantum levels — 
screens effectively electron-electron Coulomb interactions. 
This is a reason why the theory of non-interacting electrons 
has proved useful to describe this source and properties of 
an emitted electron quantum state [36,48]. 

Note that the effect of electron-electron interactions on 
the properties of a quantum capacitor is also discussed in 
the literature, see, e.g., Refs. 49, 50. In particular, the effect 
of finite temperatures in presence of interactions is ad-
dressed in Refs. 51, 52. 

Here a quantum capacitor is modeled as a one-dimen-
sional ballistic quantum dot, which is connected to the Fermi 
sea via a quantum point contact with reflection/trans-
mission amplitude /r t [8]. The circumference of a dot is 
L . A periodic in time electrical potential ( ) = ( )U t U t T+ , 
applied to a nearby gate, is used to change energy of quan-
tum levels in the dot. The corresponding scattering ampli-
tude reads [36] 

 { }( ) ( )(cap) 2 1
in

=1
( , ) = e ,

i qk E L tqq

q
S t E r t r

∞ −Φ−+ ∑  (15) 

where ( )k E  is a wavenumber of an electron in the Fermi 
sea, which enters a dot and, after q revolutions along the 
circumference of a dot, accumulates a time-dependent phase 

 
( )

( ) = ( )
t

q
t q E

et dt'U t'
− τ

Φ ∫


. (16) 

Here ( ) = / ( )E L v Eτ  is the time of a single revolution, 
( )v E  is an electron velocity. 

Notice, each term in Eq. (15) describes a partial pro-
cess, when an electron with energy E  enters a dot, makes 
q revolutions, and leaves a dot at time t  [41]. The first 
term corresponds to an electron reflected back to the 
waveguide without entering the dot. Note that the dwell 
time for this model is defined as = /D Tτ τ , where 2=T t  
is the transmission probability of a quantum point contact 
connecting the dot and the waveguide. 

Below we discuss several protocols of drive ( )U t , that 
guarantees a single-particle emission. 

4.2.1. A harmonic potential 

In Appendix A we show that in the case of a harmonic 
drive, ( )0( ) = cosU t U tΩ , and under the following condi-
tions: 
 0 ,eUµ ∆ Ω δ    (17) 

(µ is the Fermi energy, ∆ is the level spacing, δ  is the level 
width), the scattering amplitude (cap)

inS , Eq. (15), can be cast 
into the form of amplitude ( )

in
cS , Eq. (12). This fact allows us 

to use the results of Sec. 4.1 to describe the state emitted 
by a harmonically driven quantum capacitor. In particular, 
the state emitted by a quantum capacitor at zero tempera-
ture is a pure single-particle state with wave function ( )cΨ , 
Eq. (13). At not very high temperatures, Bk θ ∆ , the emitt-
ed state remains a single-particle state but becomes a mix-
ed state with correlation function given in Eq. (10) and 
component wave functions given in Eq. (14). 

Let us briefly comment on the inequalities given above. 
The inequality 0eUµ ∆  , guaranties that we can line-
arize the dispersion relation for electrons injected from 
the source into the waveguide. The next inequality, 

, Bk∆ δ θ , ensures that only a single level is involved 
into the process of emission. In addition, since 0eU δ  
then throughout the emission process the rapidity of a 
quantum level, = /c edU dt , can be regarded as constant. 
Note that the time characteristic for emission is the cross-
ing time, during which the quantum level of width 2δ 
crosses the Fermi level. 

The rapidity c is useful to define working regimes of a 
source, adiabatic and non-adiabatic. Roughly speaking, the 
adiabatic regime is realized at vanishingly small rapidity, 

0c → , while the non-adiabatic regime is realized at finite 
rapidity. To be more specific, with increasing rapidity the 
crossover from adiabatic to non-adiabatic regime occurs 
when the dwell time = / (2 )Dτ δ  becomes of the order of 
the crossing time 2 = 2 / cτΓ δ  [53]. 

A harmonically driven quantum capacitor in the adia-
batic emission regime at zero temperature was analyzed in 
Refs. 40, 48. It was found there that the wave function of 
an electron emitted adiabatically is 

 ( )(ad) e 1= .
/

i t

t
t i

− µ

ττ µ
Ψ

Γ −πΓ



v
 (18) 

1084 Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 7 



Single-particle emission at finite temperatures 

This wave function (up to an irrelevant phase factor) is a 
limit of ( )cΨ , Eq. (13), at = / 0D τζ τ Γ → . Therefore, the 
parameter 2 2= 2 / = / (2 )Dc cζ τ δ   in Eq. (13) can be con-
sidered as the adiabaticity parameter. 

Importantly, the inequalities (17) do not put any re-
strictions on the adiabaticity parameter ζ . Moreover, if these 
inequalities are satisfied then even at arbitrary, not neces-
sarily harmonic, drive a quantum capacitor can work as a 
single-particle source. Note that at arbitrary drive the fre-
quency related to a periodicity, = 2 /Ω π  , should be re-
placed by the frequency 'Ω , which characterizes how fast a 
driving potential changes during the crossing stage. 

4.3. The source of levitons 

Not only the energy-time symmetry of a scattering am-
plitude, which is expressed in Eq. (8), enables to relate 
finite-temperature and zero-temperature correlation func-
tions of the state emitted by an electron source. Another 
possibility arises in the case of energy-independent scatter-
ing amplitude. 

For example, a metallic contact with electrical potential 
different from that of the other contacts can be effectively 
described by an energy-independent scattering amplitude. 
Let us denote the corresponding potential as ( )V t  (in the 
case of a dc bias, V  is independent of time t ). The effec-
tive scattering amplitude reads 

( )
in ( ) = exp ( )

t
V ieS t dt'V t'

 
 −
 
 

∫


.  

Using this amplitude we can easily relate a finite-temper-
ature correlation function (1)G , Eq. (7), and the correlation 
function at zero temperature (1)

0G , Eq. (3), as follows [26]: 

 
( )1 2 (1)(1)

1 2 1 20( ; ) = e ( ; ).
i ' t tfG t t d ' G t t

'

∞ ε −

−∞

∂ ε − ∂ε ∫   (19) 

This relation is of the form of Eq. (9), where we formally 
set c →∞ . 

With some specific choice of a time-dependent poten-
tial ( )V t  the metallic contact can serve as a single-electron 
source. As it was predicted theoretically long ago [13,14] 
and recently was confirmed experimentally [15,54], at zero 
temperature the Lorentzian in shape voltage pulse 

2 2( ) = (2 ) / ( )eV t n tτ τΓ + Γ

  (with integer = 1, 2,n 

 ) 
excites a particle carrying an integer charge =q en  with 
the Fermi sea remaining intact (no electron-hole pairs are 
excited). An excitation with = 1n  was named a leviton [15]. 
The wave function of a leviton, ( ) ( )L tΨ , is the one given 
in Eq. (18) [25,44]. 

As it is clear from Eq. (19), the source of levitons re-
mans a single-particle source even at finite temperatures. 
The only new ingredient arising at finite temperatures is 

that the state of a leviton becomes a mixed state with the 
following component wave functions [26]: 

 
( )( ) ( )( ) = e ( ).

i ' tL L
' t t

− µ+ε

εΨ ψ  (20) 

Here 
( ) 1 1( ) =

/
L t

t iττ µ
ψ

Γ −πΓ v
 

is the envelope wave function. Notice the absence of a time 
shift in the argument of the envelope function in Eq. (20). 
This is in contrast with Eq. (10), where the shift in time in 
the envelope function for a particular component 'εΨ  is 
inversely proportional to the rapidity, /' cε . 

5. Temperature effect on single-electron transport 
characteristics 

As we showed above, the finite temperatures (in many 
cases) does not ruin a single-particle emission regime. 
Therefore, the fact, that in real experiment the temperature 
is not zero, does not compromise a single-particle source 
emitting particle even close to the surface of the Fermi sea. 
A remarkable property of such sources is that they put an 
electron onto the surface of the Fermi sea in a very gentle 
way, in a way, which allows to create states, which can 
demonstrate subtle quantum effects. 

An example is a state emitted by a harmonically driven 
quantum capacitor. As we already mentioned, a corre-
sponding scattering amplitude (cap)

inS , Eq. (15), is the sum 
of partial amplitudes corresponding to different time inter-
vals (of duration qτ). Interference of these amplitudes, can 
cause oscillations of physical quantities, such as, for ex-
ample, single-particle electrical and heat currents [55]. 
Therefore, one can say that these oscillations are manifes-
tation of the interference in time. Close related phenome-
non is the diffraction in time [56,57]. 

Below we investigate how finite temperatures — un-
avoidably present in experiment — modify these oscillations. 

5.1. Time-dependent electrical current 

An electrical current is expressed in terms of the corre-
lation function as follows (see, e.g., Ref. 55): 

 (1)( ) = ( ; ).I t e G t tµv  (21) 

Equation (9) allows us to relate a current at finite tempera-
tures, Iθ, to a zero-temperature current (1)

0 0( ) = ( ; )I t e G t tµv  
as follows: 

 0
( )( ) = .f ' 'I t d ' I t

' c

∞

θ
−∞

∂ ε ε   ε − −   ∂ε   ∫  (22) 

Note that in the case of a leviton — the corresponding 
correlation function is given in Eq. (19) — the current is 
not affected by finite temperatures at all, ( ) ( )

0( ) = ( )L LI t I tθ . 
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This fact emphasizes an essential difference between a 
leviton and an electron emitted by a quantum capacitor 
working in the adiabatic regime [though the envelope func-
tion looks the same, please, compare Eqs. (18) and (20)]. 
Such a difference also manifests itself in a high-frequency 
noise, present in the case of a quantum capacitor [58] but 
absent in the case of the source of levitons. 

5.1.1. Single quantum level raising at a constant rapidity 

Let us analyze a current carrying by an electron emitted 
onto the surface of the Fermi sea from a quantum level, 
whose energy increases at a constant rapidity, = ct . 

At zero temperature an electron state is described by the 
wave function ( ) ( )c tΨ , Eq. (13) [35]. Using Eq. (4) for a 
zero-temperature correlation function we find a corre-
sponding current [55], 

 
2 2( ) 00 2

00

( ) = ( ) = e
4

'
c e d d 'I t e t

ε+ε∞ −
ε

µ
τ

ε ε
Ψ ×

πΓ ε∫ ∫v   

 ( ) ( )22

2
0

cos .
4

' t ' ε − ε ε − ε
 × + ζ
 ε 

 (23) 

This current is shown in Fig. 1, the left panel for several 
values of the adiabaticity parameter ζ . 

In the adiabatic emission regime, = 0ζ , when the ener-
gy of a level changes very slow, 0c → , an electrical cur-
rent 0 ( )I t  is a smooth function of time. With increasing 
rapidity (and, therefore, with increasing the non-adiaba-
ticity parameter, since cζ  ) some oscillations develop. 
These oscillations demonstrate redistribution of an electron 
density probability in time due to interference of ampli-
tudes describing the emission process. 

To understand why oscillations vanish in the adiabatic 
emission regime and are present in the non-adiabatic emis-
sion regime we need to recall two time scales important to 
our problem. 

The first one is the dwell time Dτ , which characterizes 
the duration of escape of a quantum state with given ener-
gy [59,60]. The initial state of an electron in the dot is a su-
perposition of states with energies within the interval 2δ. 
As we already mentioned, the time, after which the unoc-
cupied states become available outside, is different for dif-
ferent components of this superposition. Therefore, the dif-
ferent components of the initial superposition start to 
escape at different times and their escape leasts Dτ . 

The second important time is the crossing time 
2 = 2 / cτΓ δ  — a time during which the quantum level of 
width 2δ  crosses the Fermi level. Let us emphasize the 
difference between the dwell time Dτ  and the crossing 
time τΓ : The crossing time characterizes an extent in time 
of the entire emitted state, which is a superposition of 
states with different energies. In contrast, the dwell time 
characterizes how fast a component of the initial wave 
function with definite energy escapes the dot. 

The adiabatic emission regime is realized when 
DτΓ τ  [48,53]. In this case the energy of a level almost 

does not change on the scale of the dwell time. Therefore, 
the components of the wave function, which have different 
energies before escape, so to say, leave the dot at different 
times and, therefore, do not overlap after the escape. No 
interference in time pattern arises. In the adiabatic emis-
sion regime the time profile of an electrical current 0 ( )I t  
(see Fig. 1, the left panel, a black dashed line) reflects 
merely the Breit–Wigner density of states profile of a quan-
tum dot level (the rapidity c plays a role of the transform-
ation factor). 

With increasing rapidity c the crossing time 2 = 2 / cτΓ δ  
decreases. When τΓ  becomes of the order of the dwell time, 

DτΓ τ , a non-adiabatic regime of emission is established. 
The main feature of this regime is that the escape dynamics 
on the time-scale of the dwell time, Dτ , becomes essential. 

To clarify the escape dynamics in a non-adiabatic re-
gime, let us take a component of initial wave function with 

Fig. 1. (Color online) Left panel: A time-dependent electrical current at zero ambient temperature 0( )I t , Eq. (23), is shown for the 
adiabaticity parameter = 0ζ , = 0.5ζ , and = 1ζ  (in the order of decreasing maximum). Right panel: A time-dependent electrical current 

( )I tθ , Eqs. (22) and (23), is shown for different temperatures, = 0θ , *= 0.1θ θ , *= 0.15θ θ , and *= 0.2θ θ  in the order of decreasing 
oscillations. The effective temperature * = / ( )Bk τθ Γ . The adiabaticity parameter = 1.0ζ . 
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some energy  . It starts to escape at time 0t  (when 
0( ) =t µ ) and (almost) finishes to escape at 0 Dt + τ . How-

ever, after time Dτ , the energy of a quantum level increas-
es by a noticeable amount of Dc c ττ Γ δ  . As a result, 
many components of the initial wave function — namely 
those with energy 0 0< <Dc− τ    — are already started 
to escape. So, since the escape process takes a finite time, 

Dτ , there are many components of the wave function that 
are in the process of escaping and that are overlapping at the 
exit of an electron source. This overlap causes interference. 

Let us repeat, the partial states interfering at a given time 
at the exit of a source started to escape at different times. 
While the spatial places, where the escape starts and ends, 
are the same for all partial states. Therefore, the interfering 
states differ by the paths in time they took to escape the 
source. This is why I use a term interference in time. 

Interference in time results in time-oscillations of phys-
ical quantities. For instance, a time-dependent current ( )I t  
shows such oscillations, see Fig. 1. These oscillations are 
noticeable at later times — positive times on Fig. 1, when 
the intensity of what remains to escape (from the states, 
which started to escape earlier) is of the order of the inten-
sity of states that are starting to escape. 

The scenario outlined above remains valid for finite 
temperatures as well. Therefore, the oscillations caused by 
interference in time can be also observed at non-zero tem-
peratures, see Fig. 1, the right panel. However the ampli-
tude of oscillations decreases with temperature. The explan-
ation is the following. At finite temperatures, as we already 
mentioned, the pure state becomes a mixed state, whose 
components are more spread in energy. This enhanced 
spread in energy is accompanied by an enhanced spread in 
time that diminishes oscillations. 

Naturally the energy of an emitted electron sets a scale 
for temperature. In the case of a quantum level raising at a 
constant rapidity, see Eq. (13), we define the characteristic 
temperature as * *

0= 2 = / ( )B Bk k τθ ε ⇒ θ Γ . From Fig. 1, 
the right panel we find that the oscillations are noticeable if 

*< 0.1θ θ . Therefore, to observe oscillations of a time-de-
pendent electrical current due to interference in time for 
electronic temperature = 30θ  mK the width of a wave-
packet should be not larger than 2 < 0.2 / ( )BkτΓ θ ≈

115·10 s = 50 ps−≈ . 

5.2. Time-dependent heat current 

Interference in time has even more striking effect on 
a heat current. While a single-particle electrical current is 
positive definite at any time, 2( ) = ( )I t e tµ Ψv  [we used 
Eqs. (21) and (4)], the heat current has no such a constrain. 
In terms of the correlation function the heat current 
reads [55] 

 (1)

=
( ) = ( ; ) .

2
Q

t t'

iI t v G t t'
t t'µ

 − ∂ ∂  − −µ   ∂ ∂   

  (24) 

For a single-particle state it becomes 

*( )( ) = Im ( )Q tI t t
tµ

 ∂ψ
ψ 

∂  
v ,  

which indeed does not look like positive definite. This fact 
illustrates that a heat current is fundamentally different 
from a charge current not only for interacting systems, see, 
e.g., Ref. 61, but even for the system on non-interacting 
fermions, see, e.g., Refs. 62–64. 

The heat current caused by injection of a single electron 
with wave function ( )cΨ , Eq. (13), was analyzed in 
Ref. 55. It was rather a surprise, that at intermediate values 
of the adiabaticity parameter ζ  — when interference in 
time manifests itself the most — the heat current can be-
come negative for short times. A negative heat current ap-
peared also in calculations of Refs. 65, 66. In this context 
negative means that a heat current is directed not from the 
electronic source into a zero-temperature reservoir but 
back. 

This fact puts in focus the issue of interpretation of a 
heat current in quantum systems and, in particular, of a 
heat current associated to a single-particle excitation. 

The nave classical-like interpretation of a heat current 
direction as the direction where heat runs to is completely 
unphysical. In fact, the heat current characterizes how heat 
content of a quantum system changes in time. In the case 
of a freely moving singe particle under consideration here, 
the heat current gives the rate of change of (a strictly posi-
tive) heat carried by such a particle. A negative heat cur-
rent means that heat decreases with time. In other words, 
for those times, when a heat current is negative, the meas-
urement performed at later times would reveal lesser (but 
still positive) heat carried by a particle. 

This sound counterintuitive. Indeed, due to the energy 
conservation the heat is nothing but the work done by a 
dynamic force driving the source. It is natural to expect 
that this force performs more work when it acts longer on 
an emitted particle. On the other hand, when we perform a 
measurement on a particle, we break the connection be-
tween a particle and a driving force. As a result, an earlier 
measurement is expected to show a lesser heat associated 
to a particle. 

A negative heat current, which is counterintuitive ac-
cording to classical expectations, is a result of quantum-
mechanical interference. Therefore, a negative heat current 
witnesses a quantum state that has no underlying classical 
model. 

Here I explore whether a negative heat current persists 
at finite temperatures. Let us use the general Eq. (9) and 
express a finite-temperature heat current ( )QI tθ  in terms of 
a zero-temperature heat current 0 ( )QI t  and a zero-tem-
perature charge current 0 ( )I t , 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 7 1087 



Michael Moskalets 

 0
( )( ) =Q Qf ' 'I t d ' I t

' c

∞

θ
−∞

∂ ε ε   ε − − +   ∂ε   ∫   

 0
1 ( ) .f ' 'd ' 'I t
e ' c

∞

−∞

∂ ε ε   + ε − ε −   ∂ε   ∫  (25) 

Note that the second term in Eq. (25) comes from the phase 
factor in Eq. (9), which reflects renormalization of the ef-
fective Fermi energy for different components of the mixed 
state at finite temperature, see Eq. (10). 

Likewise as an electrical current, the heat carried by 
a leviton is not affected by finite temperatures, 

( ) ( )
0( ) = ( )Q L Q LI t I tθ , see a remark after Eq. (22). 

5.2.1. Single quantum level raising at a constant rapidity 

The wave function ( ) ( )c tΨ , Eq. (13), substituted into 
Eq. (4) and then into Eq. (24) results in a zero-temperature 
heat current, 

 2 0
0 2 2

000

( ) = e
24

'
Q d d ' 'I t

ε+ε∞ −
ε

τ

ε ε ε + ε
×

επΓ ε∫ ∫
   

 ( ) ( )22

2
0

cos .
4

' t ' ε − ε ε − ε
 × + ζ
 ε 

 (26) 

This current is shown in Fig. 2, the left panel for different 
values of the adiabaticity parameters ζ . In the adiabatic 
emission regime, = 0ζ , the heat current 0 ( )QI t  is a smooth 
and positive function of time. As we discussed above, no 
interference in time occurs in this regime. 

With increasing ζ  the heat current becomes oscillating 
in time. Since these oscillations are due to interference 
(interference in time), their existence is a manifestation of 
the quantum nature of a carrier. A distinctive feature of 
heat current oscillations is that they fall below zero. This 
fact has no classical explanation. With increasing tempera-

ture, when a pure state becomes a mixed state, the ampli-
tude of oscillations and the time interval, where heat is 
negative, are diminished, see Fig. 2, the right panel. 

6. Conclusion 

I found the general condition, which guarantees that an 
electron source, which injects single particles onto the sur-
face of the Fermi sea at zero temperature, works as a sin-
gle-particle source at finite temperatures as well. Accord-
ing to this condition the scattering amplitude of a source, 

in ( , )S t ε , has to possess the time-energy translation sym-
metry, in in( , ) = ( / , )S t S t cε − δε ε − δε , Eq. (8), where c is a 
constant. In this case the temperature effect boils down to 
the fact that the injected single-particle state becomes a 
mixed state whose components have the same in shape but 
shifted in time envelope functions, see Eq. (10). The prob-
ability density is given by the energy derivative of the 
Fermi distribution function. 

A particular case, when inS  is energy independent, falls 
into this category as well. The recently realized source of 
levitons, see Ref. 15, is characterized by an energy-inde-
pendent scattering amplitude. Therefore, at finite tempera-
tures it emits a single-particle mixed state. 

I analyzed a few theoretical models of a single-electron 
source whose scattering amplitude does possess the time-
energy translation symmetry. In particular, under quite 
general conditions a single-electron source based on a 
quantum capacitor of Ref. 9 is described by such a model. 
To be specific, it is described by the model of a single 
quantum level raising at a constant rapidity, which was put 
forward in Ref. 36. An analytical expression for the wave 
function provided by this model allows to analyze in detail 
the properties of states produced at adiabatic as well as at 
non-adiabatic emission regimes. 

The non-adiabatic emission regime of a quantum capac-
itor driven by a fast harmonic potential is particularly in-

Fig. 2. (Color online) Left panel: A time-dependent heat current 0 ( )QI t  at zero ambient temperature, Eq. (26), is shown for different 
values of the adiabaticity parameter, = 0ζ , = 0.5ζ , and = 1ζ  shown in the order of decreasing maximum. Right panel: A time-
dependent heat current ( )QI tθ , Eq. (25), with 0I  from Eq. (23) and 0

QI  from Eq. (26), is shown for different temperatures, = 0θ , 
*= 0.1θ θ , *= 0.15θ θ , and *= 0.2θ θ  in the order of decreasing oscillations. The effective temperature * = / ( )Bk τθ Γ . The adiabaticity 

parameter = 0.5ζ . 
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teresting. In this regime the interference of partial ampli-
tudes corresponding to processes that last different time 
(the interference in time) manifests itself in oscillations of 
time-dependent electrical and heat currents associated with 
a single-particle excitation. Moreover, a time-dependent 
heat current can temporarily even change a sign, that is 
forbidden from the classical point of view. Therefore, a 
time-resolved heat current (when it is negative) can witness 
a quantum state that has no underlying classical model. 

The last finding reveals two interesting points. First, the 
transport measurements can be used instead of the Wigner 
function measurement [67] to provide evidence of quantum 
states with no classical interpretation. Second, a single-
electron source can be used to generate such quantum 
states. 

Appendix A: A harmonically driven quantum 
capacitor: The Floquet scattering matrix formalism 

In this appendix we derive the scattering amplitude ( )
in
cS , 

Eq. (12), found in Ref. 35 as the limiting case of the scat-
tering amplitude of a quantum capacitor (cap)

inS , Eq. (15), 
found in Ref. 36. 

First, we use the wide band approximation and linearize 
( )k E  in Eq. (15) around the Fermi energy µ. In this 

case the kinematic phase ( ) = ( )E k E Lϕ  becomes 
1( ) =E −

µϕ ϕ + τ ε , where µϕ  is a phase calculated at the 
Fermi energy, = / ( )Lτ µv  is the time of a single revolution 
calculated for an electron with Fermi energy, and = Eε −µ 
is an electron energy counted from the Fermi energy µ. 

Second, we go to the limit of a large level spacing, 
= /h∆ τ (to unsure that only one level contributes to emis-

sion), while keeping the dwell time finite, = /D Tτ τ : 
(i) 0∆ →∞⇒ τ→ , (ii) 0 < / 0T Tτ ⇒ → . Remind that T  
is the transmission probability of a quantum point contact 
connecting the dot and the waveguide. 

Third, we suppose that the amplitude of a driving po-
tential 0( ) = cos ( )U t U tΩ  is of the order of the level spac-
ing, 0eU ∆ . In this case the time interval 2 τΓ , during 
which a quantum level of width 2 = / (2 ) = / DTδ ∆ π τ  
crosses the Fermi level, is small compared to the half-
period / 2 = /π Ω , during which the energy of a level 
changes by 02U ∆ δ  . If so, we can linearize ( )U t  
close to time 0t , when a quantum level crosses the Fermi 
level: 0 0( ) ( ) ( )eU t eU t c t t≈ + − , where the rapidity 

= /c edU dt  is calculated at 0=t t . Without loss of general-
ity we put 0 = 0t . 

The approximation of a constant rapidity allows us to 
simplify a time-dependent phase, qΦ , Eq. (16), as follows: 

 
2 2

0( ) = ,
2q

c qt q tq
 τ

Φ Φ + τ−  
 

 (A.1) 

where 0 0= /eUΦ τ . In the equation above the first term, 
0qΦ , is a phase picked up by an electron during q revolu-

tions at a constant potential 0U . The second term accounts 
for the change of potential in time. 

Using these approximations we rewrite the scattering am-
plitude in Eq. (15) as follows ( ) ( )(cap) (cap)

in in[ , , ]S t S tµ + ε ≡ ε , 

 ( )(cap)
in

=1
( , ) = e 1 e ,

qi iqr

q

TS t R R
R

∞
θ Θ

  ε − 
  

∑  (A.2) 

where 

 ( )
2

0=
2

cqctτ τ
Θ Θ + ε − +

 

 (A.3) 

is the total phase accumulated during a single revolution 
and 0 0= r µΘ θ + ϕ −Φ . The constant contribution 0Θ  can 
be eliminated if we redefine the origin of time. In what 
follows we put 0 = 0Θ , which means that a raising quan-
tum level crosses the Fermi level at = 0t . 

In Eq. (A.2) we introduced the modulus = 1R T−  and 
the phase rθ  of a reflection amplitude, = ei rr R θ . In addi-
tion we use * */ = /t r t r−  , which follows from the 
unitarity of the scattering matrix of a quantum point con-
tact connecting a capacitor and a waveguide. 

Next, we replace the sum over the number of revolu-
tions q in Eq. (A.2) by the corresponding integral. We can 
do this, since the time of a single revolution τ is small 
compared to other relevant time scales, such as the dwell 
time Dτ , the crossing time 2 = 2 / cτΓ δ , etc. We introduce 

= / DqT qξ ≡ τ τ  and replace 

 
=1 0

.
q

T d
∞∞

→ ξ∑ ∫  (A.4) 

Finally, since 0T →  we can transform 

( ) log(1 )
2 2 2= e e = e
q TT qq

R
ξ

− − −
≈ .  

In the two additional factors, in front of the sum and in 
front of the curly brackets in Eq. (A.2), we put 1R ≈  and 
obtain 

 
( ) 2

(cap) 2 4
in

0

( , ) = e 1 e e e ,
i ct iDi rS t d

ξ ζ∞ − ξτ ε− ξθ
  ε − ξ 
  

∫   (A.5) 

where we introduced the parameter 2= 2 /Dcζ τ . 
Apparently the equation above in nothing but the 

Eq. (12) up to the irrelevant phase factor ei rθ . 

A1. Unitarity 

The scattering amplitude (cap)
in ( , )S t E , Eq. (15), is uni-

tary. The proof is rather simple and it can be found, for 
instance, in Ref. 34. Let us check the unitarity of the trans-
formed amplitude to be sure that we missed nothing essen-
tial on the way from Eq. (15) to Eq. (A.5). 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 7 1089 



Michael Moskalets 

The unitarity condition for the scattering amplitude of a 
periodically driven scatterer in the mixed energy-time rep-
resentation reads [41] 

 ( )
2 2(cap)

in

2

, = 1,dt S t E

−

∫



 
 (A.6) 

where   is the period of drive. 
When we went over from the sum over q in Eq. (15) to 

the integral over ξ  in Eq. (A.5), we supposed that the am-
plitude of a driving potential is large, 0eU ∆ →∞ . To-
gether with the assumption of a finite rapidity, <c ∞, this 
means formally that the period of a drive is large, →∞ . 
Therefore, we rewrite the equation above as follows: 

 ( )
2 2(cap)

in

2

, 1 =lim
dt S t E

→∞
−

−∫


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i ct iDd A B

ξ ζ∞ − − ξτ ε− − ξ  × − ξ − + 
  

∫   (A.7) 

where 

( ) 22
2 4

0
2

= 2 Re e e e ,lim
i ct iDdtA d

ξ ζ∞ − ξτ ε− ξ

→∞
−

 
  − ξ 
 
  

∫ ∫ 



  
 (A.8) 

 
( ) 22

2 4

0
2

= e e elim
i ct iDdtB d

ξ ζ∞ − ξτ ε− ξ

→∞
−

ξ ×∫ ∫ 



  
  

 
( ) ( )2

2 4

0

e e e .
' i ' ct i 'Dd '
ξ ζ∞ − − ξ τ ε− − ξ

× ξ∫   (A.9) 

We need to show that = 0A B+ . 
First of all we integrate out t  in A , 

 ( )
2

2

2e = ,lim lim
c Dit

D

dt
c

τ
− ξ

→∞ →∞
−

π
δ ξ

τ∫ 





   
 (A.10) 

and in B , 

( )
( )

2

2

2e = .lim lim
c Dit '

D

dt '
c

τ
ξ −ξ

→∞ →∞
−

π
δ ξ − ξ

τ∫ 





   
 (A.11) 

Then we evaluate A, Eq. (A.8). We substitute Eq. (A.10) 
in Eq. (A.8), evaluate the integrand at = 0ξ , use 

0
( ) = 1/ 2d

∞
ξδ ξ∫ , and get 

 2 1= 2 .lim 2D
A

c→∞

π
−

τ


 
 (A.12) 

To evaluate B  we substitute Eq. (A.11) into Eq. (A.9). 
Then we use ( )'δ ξ − ξ  and integrate out 'ξ . Since ='ξ ξ, 
the oscillating factors cancel each other. After evaluation 
of the remaining integral, 

0
e = 1d

∞ −ξξ∫ , we find 

 2= .lim
T D

B
T c→∞

π
τ
  (A.13) 

Comparing Eqs. (A.12) and (A.13) we see that indeed 
= 0A B+ , as expected. So, the scattering amplitude (cap)

inS , 
Eq. (A.5), does satisfy the unitarity condition Eq. (A.6). 

A2. Single-electron wave function 

For completeness, let us derive the wave function ( )cΨ , 
Eq. (13), directly from the excess correlation function (1)G , 
Eq. (2), using the scattering amplitude (cap)

inS , Eq. (A.5). 
Note that originally the wave function ( )cΨ  was calculated 
in Ref. 36 using another approach. 

We substitute Eq. (A.5) into Eq. (2) and replace 
0

( )d f E d
∞

−∞ −∞
ε → ε∫ ∫  at zero temperature. Then, for the 

sake of convenience, we change ε → −ε  and go over to di-
mensionless variables. We normalize t  by 2 = / ( )DcτΓ τ  
and µ and = Eε −µ by 0 = / (2 )τε Γ . In addition we in-
troduce the adiabaticity parameter = /D τζ τ Γ  and finally 
obtain (the subscript “cap” indicates that we use the scatter-
ing amplitude of a quantum capacitor) 

 
( ) 31 2(1)

cap 1 2 1 2
=1

e( ; ) = ( ; ),
4

i t t

j
j

G t t t t
v

µ −

τ µ
γ

πΓ ∑  (A.14) 

where 
2

2 1 4 1 2 21 1 2
0 0

( ; ) = e e e e e e ,
i ii t i t i tt t d d

ξ ζ ζ∞ ∞− − ξ εξξ − ε εγ − ξ ε∫ ∫  (A.15) 

2
2 2 4 1 2 22 1 2

0 0

( ; ) = e e e e e e ,
i ii t i t i tt t d d

ξ ζ ζ∞ ∞− ξ − εξ− ξ − ε εγ − ξ ε∫ ∫  (A.16) 

 
( )2

1 2 2 1 4 23 1 2
0 0

( ; ) = e e e e e e
' i ' i 'i t i t i 'tt t d d '
ξ ζ ζ∞ ∞ − − ξ εξ− ε ε ξγ ε ξ ×∫ ∫   

 
2

2 2 4 2

0

e e e e .
i ii td

ξ ζ ζ∞ − ξ − εξ− ξ× ξ∫  (A.17) 

To find a wave function we need to factorize Eq. (A.14) 
and then to use Eq. (4). To this end we, first, need to get 
rid of the third integral in the equation above. 
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A2.1. Evaluation of 3γ  

We make the following change of variables: 

 = ,
2 2

y y x x
z

+ −
ε + +   

 = ,
2

x x
' z

+
ξ +  (A.18) 

 = ,
2 2

y y x x
z

− −
ξ + +   

that also implies a change of the area of integration, 

 
0 0 0 0

.d d ' d dz dx dy
∞ ∞ ∞ ∞ ∞ ∞

−∞ −∞

ε ξ ξ →∫ ∫ ∫ ∫ ∫ ∫  (A.19) 

To simplify notations we introduce 

 

, > 0,
= =

0, < 0,2

0, > 0,
= =

, < 0,2

X X X X
X

X
X X X

X
X X

+

−

+ 



− 
−

 (A.20) 

and get 
 = ,z y x+ −ε + +   
 = ,' z x+ξ +  (A.21) 
 = .z y x− −ξ + +   

The factors entering Eq. (A.17) are modified as follows: 

 1 1 1 1e e e e ,i t izt iy t ix t− ε − − −+ −→   

 2 2 2 2e e e e ,i t izt iy t ix tε + −→   

 2 2 2e e e ,
x' zξ +− − −

→   

 1 1 1e e e ,i 't izt ix tξ +→   

 
( )2 2 2

4 4 2 4e e e e ,
i ' iz izx ixζ ζ ζ ζ

− ξ − − −+ +→   

 
2

2 2 2 2 2 2 2e e e e e e e ,
i ' iz izy izx izx iy x ix xζ ζ ζ ζ ζ ζ ζ
εξ + + − + + + −→   

 2 2 2 2e e e e ,
y xzξ − −− − − −

→   

 2 2 2 2e e e e ,i t izt iy t ix t− ξ − − −− −→   

 
2 2 2 2

4 4 2 2 4 2 4e e e e e e e ,
i iz izy izx iy iy x ixζ ζ ζ ζ ζ ζ ζ
ξ − − − − − −→   

 
2

2 2 2 2 2e e e e e e
i iz izy izy iy yizx

ζ ζ ζ ζ ζ
− εξ − − − −+ − + −− ζ−→ × 

              
2

2 2 2e e e .
iy x iy x ixζ ζ ζ

− − −+ − − − −×  
(A.22)

 

Substituting Eqs. (A.19) and (A.22) into Eq. (A.17) we 
obtain 

 
| | 2 2
2 1 4 43

0

= e e e e e
x ix ixixtzdz dx

ζ ζ∞ ∞ − − −+ −−

−∞

γ ×∫ ∫   

 
2

2 1 2 4 2e e e e e .
y

iy iy xiy t iytdy
ζ ζ∞ −− − +− +

−∞

× ∫  (A.23) 

Here we used 0X X+ − ≡ . 
The integral over z  is trivial. This allows us to represent 

3γ  as a double integral like 1γ  and 2γ , that facilitates factor-
ization, 

 
| | 2 2
2 1 4 43 = e e e e
x ix ixixtdx

ζ ζ∞ − − −+ −

−∞

γ ×∫   

 
2

2 1 2 4 2e e e e e .
y

iy iy xiy t iytdy
ζ ζ∞ −− − +− +

−∞

× ∫  (A.24) 

A2.2. Evaluation of 2γ  

To rewrite Eq. (A.16) for 2γ  we use the following coor-
dinate transformation: 

 

0 0 0

= ,
= ,

.

x y
x y

d d dx dy

+

−
∞ ∞ ∞ ∞

−∞

ε +
ξ +

ξ ε →∫ ∫ ∫ ∫

 (A.25) 

The respective exponential factors become the following: 

 1 1 1e e e ,i t ixt iy t− ε − − +→   

 2 2 2e e e ,i t ixt iy tε +→   

 2 2 2e e e ,
yxξ −− − −

→   

 2 2 2e e e ,i t ixt iy t− ξ − − −→   

 
2 2 2

4 4 4 2e e e e ,
i ix iy ixyζ ζ ζ ζ
ξ − −→   

 
2

2 2 2 2 2e e e e e .
i ix ixy ixy iy yζ ζ ζ ζ ζ

− εξ − − − −− + + −→  (A.26) 

As a result, we get 

2 2
2 1 4 2 1 2 4 22

0

= e e e e e e e e .
yx ix iy ixyixt iy t iytdx dy

ζ ζ ζ∞ ∞ −− − − −− +− − +

−∞

γ −∫ ∫
  (A.27) 

Here we used that 0X X+ − ≡ . 
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A2.3. Factorization 

Now we show that the contributions 1γ  and 2γ  are can-
celed by the part of 3γ  and what remains is a factorizable 
equation. 

Easy to see that 1−γ  is cancelled by the part of 3γ , 
which arises from the integration area in Eq. (A.24) corre-
sponding to > 0x  and > 0y . Indeed, for this area we have 

 
2

2 1 4 1 2 23
0 0

= e e e e e e .
x ix iyxixt iyt iytdx dy

ζ ζ∞ ∞− − −′γ ∫ ∫  (A.28) 

Remember that = 0X−  and =X X+  for > 0X . The 
equation above is exactly 1−γ , see Eq. (A.15), where we 
identify xξ  and yε . 

In addition one can see that 2−γ  is cancelled by the part 
of 3γ , which arises from the integration area in Eq. (A.24) 
corresponding to < 0x , where = 0X+ : 

 
| |0 2 2
2 1 4 2 1 2 4 23 = e e e e e e e e

yx ix iy ixyixt iy t iytdx dy
ζ ζ ζ∞ −− − − −− +− +

−∞ −∞

′′γ ∫ ∫   

  (A.29) 

Here we change additionally x x→ −  and obtain, 

 
2 2

2 1 4 2 1 2 4 23
0

= e e e e e e e e ,
yx ix iy ixyixt iy t iytdx dy

ζ ζ ζ∞ ∞ −− − − −− +− − +

−∞

′′γ ∫ ∫   

  (A.30) 

which is exactly 2−γ , see Eq. (A.27). 
Therefore, the sum of all three γ ’s is given by the part 

of Eq. (A.24), namely that part, which is defined by the 
area > 0x  and < 0y , 

 
0 2 23

2 2 4 2 1 4

=1 0

= e e e e e e .
y xiy ixiyt ixt

j
j

dy dx
ζ ζ∞ − −

−∞

γ∑ ∫ ∫  (A.31) 

This equation is represented as the product of two factors, 
each of which depends on a single time only. 

As the final step we change a sign x x→ −  in the equa-
tion above and substitute it into Eq. (A.14). After restoring 
proper dimensions of time and energy we find that the cor-
relation function (1)

capG , Eq. (A.14), is cast into the form of 
Eq. (4) with a wave function given in Eq. (13). 
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