
Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 7, pp. 1109–1112 

On massive photons inside a superconductor as follows 
from London and Ginzburg–Landau theory 

R. de Bruyn Ouboter 
Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University 

P.O. 9506, 2300 RA Leiden, The Netherlands 
E-mail: r.de.bruijn.ouboter@umail.leidenuniv.nl 

A.N. Omelyanchouk 
B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine 

47 Nauky Ave., Kharkiv 61103, Ukraine 

Received April 3, 2017, published online May 25, 2017 
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The research presented in this paper is triggered by the 
reading the timelines in Wilczek’s recent book [1] on “a beau-
tiful question — finding nature’s deep design” on p. 335: 
“1963 Philip Anderson [2] suggests the importance for parti-
cle physics of work on equations for massive photons that 
arose in work by the brothers Fritz and Heinz London [3] in 
1935 and Lev Landau and Vitaly Ginzburg [4] in 1950”. 

A phenomenological derivation is given that photons 
behave inside a superconductor as if they have mass by 
comparison of the original first equation of the London`s 
and the equations for the electromagnetic field with the 
time-dependent relativistic Schrödinger equation. The pho-
tons move through a medium, the Ginzburg–Landau free 
energy density, inside the superconductor in which they 
acquire mass. The Compton wave length of the massive 
photons is equal to 2π  times the London penetration depth 
and the mass of the photon is equal to / Lm c= λ . 

The essential feature of superconductivity according 
F. London [3] is a condensation of a macroscopic number 
particles (bound electron pairs, with mass 2 em  and charge 
2e, first described by Cooper [5]) in the same single 
quasiparticle quantum state and obtained a fundamental 
relation for the generalized dynamical momentum sp  of 
the superconducting pairs, 

(2 ) (2 ) ,s e sm e= + = ∇φp v A   (1) 

in which sv  is the superfluid velocity, A is the vector po-
tential, and φ  is the phase of the macroscopic wave func-
tion. Cooper pairs behave like bosons. The superfluid cur-

rent density (2 )
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e=I v  in which sn  is the superfluid 

density. Taking the curl of Eq. (1) the well known first 
relation of the London’s from 1935 is obtained for in simp-
ly connected isolated superconductor:  
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in which Lλ  is the London penetration depth 
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Equation (3) is valid as long as s GL GLζ = ∇φ ζp     
in which GLξ  is the Ginzburg–Landau (GL) coherence 
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length. When the wave length 1/ ∇φ  is smaller or com-
patible to the coherence length the superconductivity dis-
appears. According to Ginzburg–Landau [4] is their mac-
roscopic theory reliable based on Eq. (3). 

We restrict ourselves mainly to the case T = 0, and ne-
glect normal currents. We like to remark that at T = 0 the 
London penetration depth 

2
2

2
0

(0) e
L

pe

m c
n e

 
λ = =   ωµ  

 

in which the plasma frequency pω  is defined by 
2 2

0/p e en e mω ≡ ε  (at T = 0 sn  goes to the electron density 
en ). 

Combining the first London equation (3) with the 
Maxwell equation 
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the London’s obtain [3] 
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In a static situation Eq. (7) leads to 2 2/ L∇ = λB B  which 
explains the Meissner effect.  

The differential Eqs. (6)–(8) contain, respectively, only 
A, B and E and its spatial and time differentials of second 
order separately and the constants 2

Lλ  and 2c . 
However, the brilliant observation of Anderson [2] 

(1963) was that the Eqs. (6), (7) and (8) of the work of the 
London`s is also applicable to the photon field inside the 
superconductor with massive photons presented by the 
terms 2/ LλA , 2/ LλB  and 2/ LλE . 

In this phenomenological description is for comparison 
written down the relativistic Schrödinger wave equation 
[6] for a free particle which shows the same structure and 
describes Bose particles, hence also photons with mass m  
and wave function ψ : 
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 (9) 

in which /c mcλ ≡   is equals to the Compton wave length 
/h mc  divided by 2π  for a photon with mass m . 

The Eqs. (6)–(9) are relativistic equations and have the 
same form, are mathematically identical and describe ex-

actly the same phenomenon [1]. The squared lengths on 
the right hand sides of the Eqs. (6)–(8) 2

Lλ , and in Eq. (9), 
2 2 2 2/c m cλ ≡   should be equal to each other 

 2 2 2 2 2/L c m cλ = λ =  ,  

or 
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or 
 / Lm c= λ . (11) 

Mass (11) is the mass of the photon inside the supercon-
ductor. This implies when penetrating the superconductor 
from outside into the bulk, superconductivity and photon 
mass arises in the same way. At T = 0, sn  goes to the elec-
tron density en  so that the plasma frequency is equals to 
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If we use (0)Lλ =  500 Å = 5⋅10–8 m we find 
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For comparison 319,1 10em −= ⋅  kg and we find for 
15/ (0) 6 10 Hzp Lcω = λ = ⋅ . For comparison the gap fre-

quency 11 12
gap 2 (0)/ 10 –10 Hzω ≈ ∆ ≈ . 

The very small photon mass m implies a very large ze-
ro-point motion inside the superconductor. 

These macroscopic phenomenological considerations 
are very academic since free space between the atoms in 
the superconductor is very limited for investigation. A pho-
ton in empty spaces moves at the speed of light, v = c, and 
has two transverse field components (E and B) perpendicu-
lar to each other and perpendicular to the direction of wave 
propagation. From the Eqs. (7) and (8) follows that a pho-
ton in motion inside a superconductor acquires also a third 
degree of freedom forward and back in the direction of 
motion (left and right, up and down and forward and back 
oscillations) leading to a particle with mass.  

A massless photon moves at the speed of light in vacu-
um and moves into a bulk superconductor through a medi-
um, a field inside the superconductor (the Ginzburg–
Landau free energy density) of which the symmetry is bro-
ken and the photon acquires mass. We start by investigat-
ing the penetration depth in the Ginzburg–Landau theory 
(1950) [4]. We write down a modern version of the second 
Ginzburg–Landau equation, an equation also present in the 
theory of F. and H. London (1935) [3]: 
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from which follows Eq. (1). Taking the curl of Eqs. (1) 
and (2) is obtained. This Eq. (13) follows in form from 
both the relativistic [8] and the nonrelativistic [6,8] ex-

pression, in which 2 /2s snψ =  is the pair density in 
modern language. In the GL theory the difference in the 

free energy density 2 ,sF T ψ  
 can be written as  

 2 2 41( , ) ( ) ( ) ...
2s s n s sF F T F T T∆ = ψ − = α ψ + β ψ +   

  (14) 

in which β is positive at all temperatures and ( ) 0Tα <  for 

cT T< . The equilibrium superconductive state is 
2/ 0sF∂∆ ∂ ψ = , hence 2 2/ 0s sF∂∆ ∂ ψ = α +β ψ = , or 

2
equil / /sψ = −α β = α β and 2

equil equil
1
2 sF∆ = − α ψ . We 

find the GL penetration depth GLλ  by 
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in which  
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If 2
equil /2s snψ =  this equation is identical with Eq. (4), 

the London penetration depth, and  
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In the spirit of the “Higgs mechanism” and the principle of 
broken symmetry which starts when the temperature is low-
ered from cT T>  to cT T<  we plot the relevant Ginzburg–

Landau free energy density F versus 2
sψ , which is often 

called the “Higgs field”, for both cT T>  and cT T<  when the 
symmetry of the “Higgs field” is broken (Fig. 1).  

The lowest potential energy density for cT T<  corre-
sponds to a finite displacement of a non-zero value of 

2
sψ . There is a small bump in the bottom of the curve, 

the presence of this bump forces the symmetry to break as 
the “field” cools from cT T>  to cT T<  and a valley appears 

in the curve. The lowest point in the curve corresponds to a 
non-zero value of the scalar “field”. The photon in the su-
perconductor does interact with the Ginzburg–Landau or 
“Higgs field”, it interacts with this field, gains energy, 
slows down, the “field” dragged on the photon and the 
interaction with the particle photon and the field is mani-
fested as a resistance of the photon particle acceleration. 
When the photon particle moves at constant velocity it is 

not affected by the “field” and 2/ 0sF∂∆ ∂ ψ = . The 
Ginzburg–Landau “field” is a scalar field with no direc-
tions. During the cooling of the superconductor from 

cT T>  to cT T<  each photon inside the superconductor 

acquires an energy 2mc . 
We now consider the solution of the Eqs. (6)–(9) inside 

the bulk superconductor 
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in which 2E = ω = πνk    is the relativistic energy 
2 2 4 2 2( )pE m c p c= +  and 2 /p k= = π λ   is the relativistic 

momentum. We have plotted ω versus k  for the photon 
mass m inside the bulk superconductor and for a photon in 
empty space /c k= ω  (Fig. 2) for two cases: a type I and a 
type II superconductors. Inside the bulk superconductor the 
massive photon particle has a group velocity /g k= ∂ω ∂v  of 
the associated wave. 

We remarked already that if 2 / 1/ GL∇φ = π λ < ξ  super-
conductivity exists [10], and if 2 / 1/ GL∇φ = π λ > ξ  super-
conductivity ceases to exist [10]. For k values smaller than 
1/ GLξ  the wave-packet of the photon behaves massive, 
contrary to the opposite case for k values larger than 1/ .GLξ  
It should be possible in principle to observe this transition 
from the superconductive state 1/ GL∇φ < ξ  to the state of 
anomalous conductivity 1/ GL∇φ > ξ  with a quantum foam-
like structure (hence from the m to the /k cω =  state of 
photons) in a superconducting layer in an external radia-
tion field 2 /∇φ = π λ of which the frequency increases.  

Fig. 1. The relevant GL free energy density F versus 2
sψ  for 

cT T>  and cT T< . 
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Fig. 2. ω  versus k  for the photon mass m  inside the bulk su-
perconductor and for a photon in empty space /c k= ω  for two 
cases: a type I and a type II superconductors. 
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