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The photonic band structure and transmission coefficient of a dielectric bilayer periodic array with strong im-
pedance contrast are calculated and analyzed. It is found that the photonic band structure has broad pass bands 
and very narrow gaps. However, because of the strong impedance contrast and the use of lossless dielectric lay-
ers, the transmission spectrum exhibits sharp peaks inside the pass bands. The remarkable properties of the 
superlattice can be used for the fabrication of narrow-pass-band filters. 

PACS: 78.67.Pt Multilayers, superlattices, photonic structures, metamaterials; 
42.70.Qs Photonic band gap materials; 
78.67.–n Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures. 
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1. Introduction

Optical periodic nanostructures are of great importance 
for modern photonics because of the possibility to control 
the light propagation through them in a wide frequency 
range. Such nanostructures, being commonly composed of 
dielectric and metal components, have been called photon-
ic metamaterials. They have promising applications in 
nanophotonics due to their exotic optical properties as, for 
example, hyperbolic photonic dispersion and negative re-
fractive index [1–3]. 

In the case of one-dimensional periodic dielectric-metal 
nanostructures (i.e. superlattices), it is well established 
(see, e.g., [4–6]) that if the metallic layers are sufficiently 
thin then the photonic band structure exhibits narrow pass 
bands due to the very strong contrast between the imped-
ances of the dielectric and the metal. The slightly disper-
sive (almost flat) photonic bands are associated with 
Fabry–Perot resonances occurring inside the relatively 
thick dielectric layer. However, the light transmission 
through a dielectric-metal multilayer stack diminishes with 
its length because of the energy losses in the metal compo-
nent, which are particularly considerable in the THz and 
infrared frequency range. 

Energy losses in optic superlattices with narrow photonic 
pass bands might be reduced by substituting the metal layers 
for dielectric ones of extremely high refractive index [7,8]. 
Indeed, the impedance of the ordinary dielectric layer, which 
has low enough refractive index, and that of the layer with 
high refractive index turn out to be essentially different and, 
therefore, sharp transmission resonances should be observed. 

In this work the optical properties of one-dimensional 
periodic nanostructures composed of alternating dielectric 
layers with rather different impedances are investigated. In 
particular, the photonic band structure and transmission 
optical spectrum for binary dielectric superlattices are ana-
lyzed and discussed. We show that such periodic nano-
structures with strong impedance contrast can operate as 
narrow-pass-band filters of electromagnetic radiation. 

2. Problem formulation: Basic relations

We consider a plane electromagnetic wave propagating 
along the growth direction of a periodic multilayer stack, 
see Fig. 1. The wave has frequency ω, its electric ( , )x tE  
and magnetic ( , )x tH  components read 

( , ) = {0, ( ),0}exp( ),x t E x i t− ωE  (1a) 

( , ) = {0,0, ( )}exp( ).x t H x i t− ωH  (1b) 
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A unit ( , )a b  cell of the stack consists of two dielectric a- 
and b-slabs with the constant thickness ad  and bd , respec-
tively. The size of the unit cell is = a bd d d+ . The array 
contains N  identical unit cells with the whole length Nd . 

Every kind of dielectric a- and b-layers is respectively 
specified by the dielectric constant (permittivity) ,a bε , 
magnetic permeability ,a bµ , corresponding refractive index 

,a bn , impedance ,a bZ , wave number ,a bk , and wave phase 
shift ,a bϕ , 

 = , = , = , = ;a
a a a a a a a a a

a
n Z k n k d

n c
µ ω

ε µ ϕ  (2a) 

 = , = , = , = .b
b b b b b b b b b

b
n Z k n k d

n c
µ ω

ε µ ϕ  (2b) 

For definiteness, we assume that all optical parameters (2) 
are of positive values. 

With the use of the transfer matrix method (see, e.g., 
the book [9]), the Bloch wave number κ  and the transmis-
sion coefficient (or, the same, the transmittance) NT  of 
such a system can be readily obtained to obey two follow-
ing equations: 

 cos( ) = cos cos sin sin ,a b a bd +κ ϕ ϕ −α ϕ ϕ  (3) 

 
2 2 2 2

1= .
1 ( )/ ( )sin sin sin

N
b

T
N d d−+ α ϕ κ κ

 (4) 

In these expressions  

 2 21= , = 1,
2

a b

b a

Z Z
Z Z± + −

 
α ± α −α 

 
 (5) 

where the parameter −α  is so-called mismatching factor. It 
is worth noting that the dispersion relation (3) defines the 

spectrum of the Bloch wave number, = ( )κ κ ω . Specifical-
ly, the Bloch wave number κ  turns out to be real inside the 
spectral pass bands (where | cos( ) | 1dκ ≤ ) and of complex 
value within the reflection bands (gaps with | cos( ) | > 1dκ ). 
In addition, one can reveals that expression (4) for the 
transmittance adequately describes the wave transmission 
both within spectral pass bands and gaps. 

Equations (3) and (4) are quite general and applicable to 
the wide class of bilayer stack-structures. In the present 
study we shall analyze such systems whose unit-cell opti-
cal parameters are assumed to satisfy three constitutive 
conditions. First, the strong contrast between the imped-
ances must be met: the impedance bZ  of the b-layer must 
be much smaller than the impedance aZ  of the a-layer,  

 1.
2

a
b a

b

Z
Z Z

Z±<< → α ≈ >>  (6) 

Second, the optic paths, a an d  and b bn d , of the wave travel-
ing through the corresponding basic a- and b-slabs, are 
substantially different. However, as opposed to the condi-
tion (6), the optic path of the b-layer is assumed to be 
much greater than that of the a-layer, i.e.  

 = .b b
a a b b a b a

a a

n d
n d n d

n d
<< → ϕ << ϕ ϕ  (7) 

Apart from the two parameters introduced above, great 
/a bZ Z , Eq. (6), and small /a a b bn d n d , Eq. (7), there is one 

more, a third parameter that is the product of the two pre-
vious ones. The third parameter has to be small: the first 
great ratio is compensated by the second small one,  

 1 1.a a a a a

b b b b b

Z n d d
Z n d d

µ
<< → <<

µ
 (8) 

When the permeabilities 1a bµ µ  , the third require-
ment (8) means that the thickness ad  of the a-layer with 
smaller refractive index an  is much smaller than the thick-
ness bd  of the b-layer with the higher refractive index bn . 
Therefore, three basic conditions (6)–(8) can be presented 
in the form of a double inequality,  

 1 .a b

b a

n d
n d

<< <<  (9) 

Note that this inequality is valid not only when 1an   and 
  1bn >> , but also when 0 < 1an <<  and 1bn  . 

3. Spectrum 

The band structure of the spectral dependence = ( )κ κ ω  
governed by the dispersion relation (3) starts with so-called 
lowest path band that is not of great interest. As for the 
higher bands, one can draw some important qualitative con-
clusions about them without actual solving the problem 
completely. Indeed, under the strong-contrast condition (6), 
the factor +α  appearing in front of the product sin sina bϕ ϕ  

Fig. 1. (Color online) A sketch of the problem. 
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in Eq. (3) has a great value. It is obvious that inside the 
pass bands, this great value should be compensated by very 
low values of sin aϕ  or sin bϕ . Hence, the transmission 
bands can be situated only in the vicinity of the a - and b -
resonances arising, respectively, in a- and b-layers, i.e. in 
the vicinity of the points  

 = or = ,a a b bj jϕ π ϕ π  (10) 

where aj  and bj  are positive integer numbers. Correspond-
ingly, we shall call these bands a-band or b-band. 

As a consequence of the condition (7), within the region 
between the top =bϕ π of the lowest propagation band and 
the first a-resonance =aϕ π, i.e., when  

 ,b b
b

a a

n d
n d

π ϕ π   (11) 

there are a lot of transmission b-bands associated with the 
b-resonances. At the same time, within the interval (11), 
the phase shift aϕ  changes from very small values, in the 
lower b-bands, to the values of the order of π, in the higher 
b-bands. Due to peculiar properties of the lower b-bands, 
which are demonstrated below, here we restrict ourself to 
the study of the lower b-bands only where the values of the 
phase shift aϕ  are small,  

 = 1.a a a a
a b b

b b b b

n d n d
j

n d n d
ϕ ϕ π <<  (12) 

There exists common belief that the pass bands of a bi-
layer periodic structure with strong contrast of the imped-
ances always should be narrow. Remarkably, the b-bands 
of the superlattice under consideration are expected to be 
broad, in spite of the strong contrast (6). Indeed, it easy to 
show that under conditions (6), (7) and within the frequen-
cy range (11), (12), the dispersion relation (3) can be rep-
resented in the following approximate form  

 
2

21cos ( ) = 1 cos
2

a a
b b

b b

n d
d

n d

   κ − ϕ ϕ −    
  

 sin .
2

a a a
b b

b b b

Z n d
Z n d

− ϕ ϕ  (13) 

Surprisingly, the asymptotics (13) does not contain any 
great parameter, as opposed to initial Eq. (3). Moreover, 
the factor in front of sinb bϕ ϕ , turns out to be small due to 
condition (8). This is the reason why the b-bands are ex-
pected to be broad, whereas the gaps between them are 
expected to be narrow. 

Within the zero approximation with respect to the second 
and third small parameters of the problem, see Eqs. (7) and 
(8), for the lower b-resonances (12), the simplified disper-
sion relation (13) degenerates into  

 cos( ) = cos .bdκ ϕ  (14) 

In such a case the stack-structure is effectively equivalent 
to a homogeneous medium with linear spectrum and aver-
age refractive index n . In the representation of extended 
Brillouin zones one gets  

 = = , = .b b
b

n dnd n
c d
ω

κ ϕ → κ  (15) 

Note that in this case there are no gaps in the spectrum. 
Due to the inequality (7), the average refractive index does 
not depend on the optic path a an d  of a-layers. 

In the first Brillouin zone representation, in which 
| |dκ ≤ π, the spectrum has the form of a vertical “saw”,  

 2= ( 1) ,
2 2

j b bb j jn
c d

 ω π  − κ + +   
  

 (16) 

 = 0, 1, 2, , 0 ,bj d≤ κ ≤ π   

depicted in Fig. 2 by the dash-dot line. Here the braces { }x  
refer to the fractional part of the inner number x . As bj  is 
an integer, the fractional part { /2}bj  takes solely two val-
ues: it is zero for even bj  and a half for odd bj . Index bj  
enumerates the transmission b-bands: the larger bj , the 
higher spectral b-band. The edges of the b-bands are de-
fined by 

 = 0, 2 , 4 , at = 0,b dϕ π π κ  (17a) 

 = , 3 , 5 , at = .b dϕ π π π κ π  (17b) 

As seen, the edges (17) of the unperturbed b -bands (16) 
are situated at the b-resonances (10). In the zero approxi-
mation, the width (band)

b∆ϕ  of the b-bands is equal to π. 
The zero-approximation band structure is degenerated 

because the top and the bottom of the neighboring unper-
turbed b-bands coincide. Accounting for the small terms 

Fig. 2. (Color online) Solid line — band structure (3) for 
/ = 30b ad d , / = 25b an n . Dash-dot line — unperturbed band 

structure displayed by vertical “saw” (16). Horizontal dashed 
straight lines indicate the edges of the spectral broad bands and 
narrow gaps. 
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in the dispersion relation (13) that have been omitted in 
Eq. (14), results in the non-zero width of the gaps as a 
consequence of the splitting of the b-band edges in the 
b-resonances. 

For such a band structure, one might expect a practical-
ly perfect transmission for the whole spectrum except the 
narrow gaps. Remarkably, the analysis following below, 
completely disproves this supposition. 

In the middle of the b-bands, the spectrum is linear. It 
can be approximately described by the vertical “saw” (16), 
see Fig. 2. Therefore, the analysis of the spectrum in the 
vicinity of the b-resonances, Eq. (17), is of actual interest 
only. 

It can be shown that the width of the gaps is given by  

 (gap) = 1.a a a
bb

b b b

Z n d
j

Z n d
∆ϕ π <<  (18) 

The b-resonances are situated very close to the top edges 
of the gaps: the relative distance between the b-resonance 
and the top edge of the gap, with respect to the width of the 
gap is 2( / ) 1b aZ Z << . 

The width of the bands, (band)
b∆ϕ , is found to be slightly 

smaller than π,  

 (band) = 1 ( 1) .a a a
bb

b b b

Z n d
j

Z n d
 

∆ϕ − + π 
 

 (19) 

The bands are asymmetric because the corresponding b-re-
sonances are placed within the bands, however, near their 
bottom edges: the ratio of the distance between the b-re-
sonance and the bottom edge of the band to the width of 
the band is / 1b a a a b b bj Z n d Z n d << . 

To summarize, the stack-structure represents a quasi-
homogeneous medium. Specifically, the wide b-layers with 
high refractive index bn  are separated from each other by 
the narrow a-layers with low refractive index an , i.e. 

a bd d<<  and a bn n<< , see Eq. (9). Therefore, within the 
zero approximation (neglecting a-layers), the spectrum of 
this structure is described by the linear dependence (15), 
or, the same, by the saw-like expression (16). The presence 
of the narrow a-layers gives rise to the emergence of the 
narrow gaps and slight changes of the spectrum at the edg-
es of the broad bands whose width (band)

b∆ϕ  is approxi-
mately equal to π. The exact band structure described by 
the exact dispersion relation (3) is illustratively compared 
with the unperturbed band structure (16) in Fig. 2. 

4. Transmittance 

With thorough analysis of the dispersion relation (3), 
we have shown that the band structure of the bilayer peri-
odic array under consideration consists of broad bands 
separated by narrow gaps. At first glance, it seems that the 
system with such a band structure is perfectly transparent 
within the whole spectrum except the narrow gaps. Never-
theless, the analytical and numerical study of the expres-

sion (4) for the transmittance, reveals that the behavior of 
the transmittance drastically differs from that based on the 
form of the band structure only. In fact, the transmittance 
has form of a “comb”: inside each pass band, the transmit-
tance, getting very sharp peaks, turns out to be very small 
within large intervals between them. We show below that 
this unexpected effect is a direct consequence of the strong 
contrast condition (6). Within every b-band, the number of 
the peaks equals to the number N  of the unit ( , )a b  cells 
that constitute the stack-structure. The leftmost peak is 
originated from the corresponding b-resonance (10). To the 
right from the b-peak, there are ( 1)N −  equidistant peaks 
contributed by the Fabry–Perot resonances,  

 = / , = 1, 2, 3, , 1,d m N m Nκ π −  (20) 

arising due to multiple wave-reflections from the bounda-
ries of the whole superlattice. 

The predicted behavior of the transmittance can be un-
derstood as follows. By substitution of the unperturbed 
spectrum (15) into the general Eq. (4) for the transmittance 

NT , one can readily express the latter in the terms of the 
phase shift bϕ ,  

 
2 2

1= .
1 ( )sin

N
b

T
N−+ α ϕ

 (21) 

This equation shows that the transmission is perfect, i.e., 
= 1NT , when the phase shift bϕ  within the bj th b-band, 

takes values  

 (res) = , = 1, 2, 3b
m m
N
π

ϕ   

 1 2 1= , , , , .b b b b
m Nj j j j
N N N N

−
+ + +  (22) 

Here the ratio / = bm N j  defines the b-resonances, whereas 
the rest of the ratios, from ( 1/ )bj N+  to [ ( 1)/ ]bj N N+ − , 
refer to the Fabry–Perot resonances within the bj th b-band. 

Between the peaks, the transmittance takes small values 
of the order of  

 
2

2 1.b
N

a

Z
T

Z
−
−

 
α << 

 
   (23) 

The small values of the transmittance between the peaks 
are caused by the mismatching factor −α  which is great in 
the strong contrast regime, see Eq. (6). The value of NT  
given by Eq. (23) is inverse to the squared mismatching 
factor. Therefore, the transmittance NT  decreases with in-
crease of the mismatching factor rapidly enough. 

Since the transmittance significantly differs from the 
small values of the order of 2 1−

−α <<  only in the narrow 
vicinities of the very sharp peaks situated at the resonances 
(22), we can determine the form of these peaks. By replac-
ing the sine in Eq. (21) with its approximate expression in 
the vicinity of the resonances (22), we get  
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( )

2

2(res)2
= .N

b b

T ∆

∆ + ϕ −ϕ
 (24) 

The peaks (24) have form of Lorentzian lines centered on 
(res)
bϕ  with the half width at half maximum  

 1= 1.
N −

∆ <<
α

 (25) 

From Eq. (25) it follows that the sharpness of the peaks of 
the transmittance spectrum results from the inequality 

1N −α >>  which is always met in the strong contrast re-
gime (6). 

Figure 3 displays the resonant structure of the transmit-
tance within the second b-band ( = 1bj ) for the superlattice 
with = 11N  unit ( , )a b  cells, refractive indices = 1an , 

= 25bn , and the relation between the layer thicknesses 
/ = 30b ad d . The thickness bd  of the b-layer is chosen in 

such a way that the frequency corresponding to wavelength 
1.55 µm (1550 nm), the standard wavelength for optical 
transfer-lines, is situated in the middle of the second band, 
where / = 1.5bϕ π , see Fig 2. This gives = 46.5 nmbd  and 

= 1.55 nmad . 

5. Conclusions 

We have investigated the propagation of the electro-
magnetic radiation through the dielectric bilayer periodic 
array with strong contrast of impedances. Specifically, we 
have obtained and studied both the band structure and the 
transmission coefficient using analytical and numerical 
calculations. 

We have found that, in spite of such a strong impedance 
contrast, lower b-bands are broad, whereas the gaps be-
tween them are narrow. This is because the strong contrast 
condition alone does not define the structure of the bands 
uniquely. Besides the strong contrast condition (6), there 
are two additional conditions (7) and (8) which reveal the 
structure of the pass bands. As for the transmission coeffi-
cient, we have clearly demonstrated that the array is not 
transparent within the almost whole spectrum. On the con-
trary, the transparency occurs in the quite narrow vicinity 
of the b- and Fabry–Perot resonances only. In the intervals 
between these resonances, the transmission coefficient is 
very close to zero. 

The remarkable properties of the superlattices described in 
the present study can be used for the fabrication of narrow-
pass-band filters. The main condition is using dielectrics with 
strong contrast of their impedances. For this purpose, as mate-
rials for the a- and b-layers, one can respectively employ die-
lectrics with low and very high refractive index, 1an   and 

1bn >> . Another possibility is to use a low refractive index 
material with 1bn   for the b-layers and a material with un-
naturally low refractive index, 0 <   1an << , for the a-layers. 
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