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Boundary conditions for the two-dimensional fermions in ribbons of the hexagonal lattice are studied in the 
dice model whose energy spectrum in infinite system consists of three bands with one completely flat band of 
zero energy. Like in graphene the regular lattice terminations are of the armchair and zigzag types. However, 
there are four possible zigzag edge terminations in contrast to graphene where only one type of zigzag termina-
tion is possible. Determining the boundary conditions for these lattice terminations, the energy spectra of 
pseudospin-1 fermions in dice model ribbons with zigzag and armchair boundary conditions are found. It is 
shown that the energy levels for armchair ribbons display the same features as in graphene except the zero ener-
gy flat band inherent to the dice model. In addition, unlike graphene, there are no propagating edge states local-
ized at zigzag boundary and there are specific zigzag terminations which give rise to bulk modes of a metallic 
type in dice model ribbons. We find that the existence of the flat zero-energy band in the dice model is very ro-
bust and is not affected by the zigzag and armchair boundaries. 
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1. Introduction

After the experimental discovery of graphene [1] there 
was an explosion of activity in the study of materials with 
relativistic like spectrum of quasiparticles whose dynamics 
is governed by the Dirac or Weyl equation. In addition to 
graphene, they are topological insulators [2,3] and 3D Di-
rac and Weyl semimetals [4–6]. However, the properties 
and energy dispersion of the electron states in condensed 
matter systems are constrained by the crystal space group 
rather than the Poincare group. This gives rises to the pos-
sibility of fermionic excitations with no analogues in high-
energy physics. Indeed, it was proposed [7] that the three 
non-symmorphic space groups host fermionic excitations 
with three-fold degeneracies. The corresponding touchings 
of three bands are topologically non-trivial and either carry 
a Chern number 2±  or sit at the critical point separating 
the two Chern insulators. 

The triply degenerate fermions with nodal points located 
closely to the Fermi surface were predicted in the RERh6Ge4 
(RE = (Y, La, Lu)) [8] and NaCu3Te2 [9] compounds. They 
are expected to occur at a high symmetry point in the 
Brillouin zone and are protected by nonsymmorphic sym-
metry [7]. Latter they were suggested also to exist at a sym-
metric axis [10–15]. Experimentally, the three-component 

fermions were observed in MoP and WC [16,17]. The triply 
degenerate topological semimetals provide an interesting 
platform for studying exotic physical properties such as the 
Fermi arcs, transport anomalies, and topological Lifshitz 
transitions. The pairing problem in materials with three bands 
crossing was studied in Ref. 18. A pressure induced super-
conductivity was reported in MoP [19]. 

Certain lattice systems possess strictly flat bands [20] 
(for a recent review of artificial flat band systems, see Ref. 
21). The dice model provides the historically first example 
of such a system. It is a tight-binding model of two-
dimensional fermions living on the so-called 3T  (or dice) 
lattice where atoms are situated at both the vertices of a 
hexagonal lattice and the hexagons centers [22,23]. Since 
the dice model has three sites per unit cell, the electron 
states in this model are described by three-component fer-
mions. It is natural then that the spectrum of the model is 
comprised of three bands. The two of them form a Dirac 
cone and the third band is completely flat and has zero 
energy [24]. All three bands meet at the K  and K ′  points, 
which are situated at the corners of the Brillouin zone. The 

3T  lattice has been experimentally realized in Josephson 
arrays [25] and its optical realization by laser beams was 
proposed in Ref. 26. 
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In linear order to momentum deviations from the K  
and K ′  points, the low-energy Hamiltonian of the dice 
model describes massless pseudospin-1 fermions. These 
fermions give a surprising strong paramagnetic response in 
a magnetic field [24]. The minimal conductivity and topo-
logical Berry winding were analyzed in three-band semi-
metals in Ref. 27. The dynamic polarizability of the dice 
model was calculated in the random phase approximation 
[28] and it was found that the plasmon branch due to 
strong screening in the flat band is pinched to the point 

= | | =ω µk . In addition, the singular nature of the 
Lindhard function leads to much faster decay of the Friedel 
oscillations. The magneto-optical conductivity of pseudo-
spin-1 fermions was calculated in Ref. 29. 

Perfectly flat bands are expected to be not stable with re-
spect to generic perturbations. The presence of boundaries is 
one of such perturbations. The question whether the flat 
band survives in finite size systems provides one of the main 
motivation for the present study. To answer this question, 
we consider the two-dimensional dice lattice model, deter-
mine the possible types of its terminations and the corre-
sponding boundary conditions. Then we find the energy 
spectra and electron states in the dice model ribbons. 

The paper is organized as follows. The dice model and 
its electron states in infinite system are described in Sec. 2. 
The electron states and energy spectra in ribbons with zig-
zag and armchair edges are studied in Secs. 3 and 4, re-
spectively. The results are summarized in Sec. 5 . The gen-
eral form of the boundary condition for the electric current 
is considered in Appendices A and B. 

2. Model and boundary condition for current 

The dice model describes quasiparticles in two dimen-
sions with pseudospin = 1S  on the 3  lattice schematically 
shown in Fig. 1. This lattice has a unit cell with three differ-

ent lattice sites whose two sites (A, C) like in graphene form 
a honeycomb lattice with hopping amplitude 1=ACt t  and 
additional B  sites at the center of each hexagon are con-
nected to the C  sites with hopping amplitude 2=BCt t . The 
two hopping parameters 1t  and 2t  are not equal in general. 
The corresponding model is known as the 3α −   model 
[24]. The dice model corresponds to the limit 1 2=t t . The 
basis vectors of the triangle Bravais lattice are 

 1 2
3 3= ( 3,0) , = , ,

2 2
a a 

  
a a  (1) 

where a  is the distance between two neighbors. The set of 
vectors with 3 2 1= −a a a  

 3 1 2 31 2
1 2 3= , = , =

3 3 3
− ++

−
a a a aa a

δ δ δ  (2) 

connect atoms from A sublattice with nearest C atoms (al-
so these vectors with minus sign connect atoms B with C). 
The tight-binding equations are [30] 

 1 2( ) = ( ) ( ),C A j B j
j j

t tεΨ − Ψ + − Ψ −∑ ∑r r rδ δ   

 1( ) = ( ),A C j
j

tεΨ − Ψ −∑r r δ   

 2( ) = ( ).B C j
j

tεΨ − Ψ +∑r r δ  (3) 

The corresponding Hamiltonian in momentum space 
reads [24] 

 * 2

1*

0 cos 0

= cos 0 sin , tan = ,

0 sin 0

f
t

H f f
t

f

ϕ 
 ϕ ϕ α ≡ ϕ 
 ϕ 

k

k k

k

  

 2 2 321 2= (1 e e ).iif t t −−− + + + kaka
k  (4) 

It is easy to find the energy spectrum of the above Hamil-
tonian, which is qualitatively the same for any α  and con-
sists of three bands: a zero-energy flat band, 0 ( ) = 0ε k , 
and two dispersive bands 

 ( ) = | | =kfλε λk   

2 2 1/2
1 2 1 2 3[3 2(cos( ) cos( ) cos( ))] , = .t t= λ + + + + λ ±a k a k a k  

  (5) 

The presence of a completely flat band with zero energy is 
one of the remarkable properties of the 3α −   lattice 
model. Since we will consider in this paper the boundary 
conditions for fermions in the dice model, we will set 

= 1α  in what follows and denote 1 2= = / 2t t t . 
There are six values of momentum for which = 0fk  and 

all three bands meet. They are situated at the corners of the 
hexagonal Brillouin zone. Two inequivalent points, for ex-
ample, are 

Fig. 1. (Color online) The T3 lattice whose red points display the 
atoms of the A sublattice, the blue points describe the B 
sublattice, and the green points define the C sublattice. The vec-
tors 1 = ( 3, 0)aa  and 2 = ( 3/2, 3/2)aa  are the basis vectors 
of the C sublattice. 
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 2 3 1 2 3 1= , , = , .
9 3 9 3a a

π π   −′      
K K  (6) 

For momenta near the K-points, = ( ) ,+′k K K k  we find 
that fk  is linear in k , i.e., = ( )F x yf k ikξ −k

 

v  with 
=ξ ± , where = 3 /2F ta v  is the Fermi velocity, and in 

what follows we omit for the simplicity of notation the 
tilde over momentum. Thus, we obtain the low-energy 
Hamiltonian near the K-point in the form [28] 

 
0 0

= = 0 ,
2

0 0

F
d F

k
k k

k

−

+ −

+

 
 
 
 

Sk



v

v   

 
0 1 0 0 0

1 1= 1 0 1 , = 0 ,
2 2

0 1 0 0 0
x y

i
S S i i

i

−   
   −
   
   

 (7) 

where S are the spin matrices of the spin 1 representation 
and = x yk k ik± ± . The Hamiltonian acts on three-compo-
nent wave functions = ( , , )T

A C BΨ Ψ Ψ Ψ . In our analysis 
of boundary conditions for different lattice terminations, we 
will need, in general, the full low-energy Hamiltonian in 
both K  and K ′  valleys. Therefore, it is worth writing 
down this Hamiltonian explicitly 

 
0

= ,
0
d

d
H

 
 − 



 (8) 

which acts on 6-component spinor =Ψ
( , , , , , ),A C B B C A= ψ ψ ψ ψ ψ ψ′ ′ ′  where like in graphene the 

A and B spinor components are interchanged in the 'K  val-
ley. We note that the tight-binding Eqs. (3) have the electron-
hole symmetry ,C Cψ → −ψ ε → −ε  or, equivalently, 

, ,A A B Bψ → −ψ ψ → −ψ ε → −ε . For the tight-binding 
Hamiltonian (4), as well as the continuum Dirac-like Hamil-
tonian (8), this symmetry is translated into the anticommu-
tation relation {H, C} = 0 with the charge conjugation op-
erator (A16) in Appendix A. This particle-hole symmetry 
implies that if E(k) is an eigenvalue at given k, then so is 
−E(k). Since, in the present case, the total number of bands 
is odd, this makes it necessary the existence of a zero eigen-
value at all k, hence a zero energy flat band. The Hamiltoni-
an (8) is invariant also with respect to the time reversal T̂  
transformation where the operator T̂  has the form 

1
ˆ ˆ= ,T FKτ ⊗  here K̂  is the operator of complex conjuga-

tion and the matrix F  is given by Eq. (A10). 
In the analysis of boundary conditions, it is convenient 

to represent 6 6×  matrices in the form of a tensor product 
µ ντ ⊗ λ , where 0= ( , )iµτ τ τ  and 0= ( , )jνλ λ λ  act in 

the valley and sublattice spaces, respectively. Here iτ  are 
the Pauli matrices, jλ  are the Gell–Mann matrices, and 

0τ  and 0λ  are the unit 2 2×  and 3 3×  matrices, respec-
tively. Clearly, if no leads are attached to the material, the 
electric current through boundary should vanish. The cur-
rent operator in the direction n normal to a boundary in our 
theory reads 

 3 3

0 0
= ( ) = 0 , = .

2
0 0

F
F x y

n
n n n n in

n

−

+ − ±

+

 
 τ ⊗ τ ⊗ ± 
 

nJ Sn
v

v   

  (9) 

Since the current operator is not a differential operator, 
vanishing of electric current at boundary cannot be formu-
lated as the Neumann condition as is usual in nonrelativ-
istic physics. The same situation occurs in graphene whose 
low-energy Hamiltonian is also linear in momentum. 
Therefore, like in graphene [31,32], the general boundary 
condition for the current to vanish at boundary can be for-
mulated as a requirement that the wave function satisfies 
the following condition at boundary: 

 boundary boundary= ,MΨ Ψ  (10) 

where matrix M  is Hermitian and anticommutes with the 
current operator, i.e., 

 †= , { , } = 0.M M M nJ  (11) 

In view of 

 | | = | ( ) | = | ( ) | =M M〈Ψ Ψ〉 〈Ψ Ψ〉 −〈Ψ Ψ〉nJ nJ nJ   

 | |= −〈Ψ Ψ〉nJ ,  

the anticommutation of M  with the current operator guar-
antees that the current normal to the boundary vanishes. 
However, unlike graphene [31] we cannot prove the in-
verse statement that the anticommutation relation of M  
with the current operator follows from the current conser-
vation requirement because det[ ] = 0nJ  in the case under 
consideration. The most general form of 6 6×  matrix M  
is considered in Appendix A. 

3. Ribbons with zigzag boundary conditions 

In this section, we will study the boundary conditions 
and electron states in ribbons with zigzag edges along the 

= 0y  and =y L  sides. Since the dice lattice does not have 
mirror symmetry (or, equivalently, the π  rotational sym-
metry), possible zigzag terminations on both lower and 
upper sides of a ribbon should be analyzed. The corre-
sponding terminations are displayed in Fig. 2. Its upper and 
lower panels imply that there are four possible zigzag ter-
minations. It is worth recalling here that graphene ribbons 
admit only one type of the zigzag edge. 

Since the zigzag boundary conditions do not mix wave 
functions from different valleys, it suffices to perform our 
analysis in the K  valley using the low-energy Hamiltonian 
(7). In view of the translation symmetry in the x-direction, 
we seek the wave function in the form = e ( )ik xx yµ µΨ ϕ  
and replace y yk i→ − ∂ . Then we obtain the system of 
equations for ( )yµϕ  with = ( , , )A C Bµ , 
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0 0

0 = ,

0 0

x y A A

x y x y C C

B Bx y

k

k k

k

 − ∂ ϕ ϕ   
     + ∂ − ∂ ϕ ε ϕ       ϕ ϕ   + ∂ 

  (12) 

where = 2/( )Fε ε

v  and y  belongs to the [0, ]L  inter-
val. For 0ε ≠ , expressing Aϕ  and Bϕ  through Cϕ  and 
then substituting them into the second line of Eq. (12), we 
obtain the following second-order equation for Cϕ : 

 
2

2 2( ) = ,
2y x C Ck ε

∂ − ϕ − ϕ


 (13) 

whose general solution is given by (we use the short-hand 

notation 
2

2=
2 xz kε

−


) 

 ( ) = e e .izy izy
C y A B −ϕ +  (14) 

Then we easily find the following expressions for the Aϕ  
and Bϕ  components 

 
( ) e ( ) e1= .
( ) e ( ) e

izy izy
x xA

izy izyB x x

k iz A k iz B

k iz A k iz B

−

−

 − + +ϕ 
  ϕ ε  + + − 

 (15) 

For = 0ε  the component = 0Cϕ  and we get one equation 
for two functions, 

 ( ) ( ) = 0,x y A x y Bk k+ ∂ ϕ + − ∂ ϕ  (16) 

that leads to infinite degeneracy of this band. The above 
equations are analyzed below for different boundary 
conditions. 

3.1. Analytic results at non-zero energy 

In this subsection, we enumerate all possible zigzag 
terminations, analyze the corresponding boundary condi-
tions, and determine analytically the energy spectrum for 
ribbons with zigzag edges at non-zero energy. 

3.1.1. The C–C boundary conditions. It is very easy to 
check that vanishing of the C-component of the spinor wave 
function at the boundaries ( = 0) = ( = ) = 0,C Cy y Lϕ ϕ  
where L is the width of the ribbon, follows from the general 
boundary condition (10) with the matrix 

 0

1 0 0
= 0 1 0 .

0 0 1
CM

 
 τ ⊗ −
 
 

 (17) 

Note that the other necessary conditions (11) on matrix M  
are satisfied too. This matrix also preserves both time re-
versal and electron-hole symmetries. Since CM  does not 
mix states from different K  points, we omit below the 
matrix 0τ . Applying the obtained boundary conditions to 
the general solution (14), we easily find the spectrum 

 
2 2

2
2

2( ) = 2 , = 1, 2,n x x
nk k n

L
π

ε ± +

  (18) 

and the corresponding wave functions normalized in one 

valley as †

0
( , ) ( , ) = 1

L

x xdy k y k yΨ Ψ∫ , 

Fig. 2. (Color online) Upper panels: 3 possible types of zigzag termination at y = L with C, CB, and BA missing atoms. Lower panels: 3 
possible types of zigzag termination at y = 0 with C, CA, and AB missing atoms. 
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sin cos

1( , ) = sin e ,

sin cos

x

ik xxn x n
n

x

ny n nyk
L L L

nyk y
L L

ny n nyk
L L L

 π π π    −       
 

π  Ψ ε    ε  
π π π    +        





  

  (19) 

which describe the particle and hole bands for positive and 
negative energies, respectively. These are extended bulk 
states which are gapped due to a spatial confinement in a 
finite width ribbon. 

3.1.2. The BA–AB boundary conditions. It is straightfor-
ward to satisfy the boundary conditions ( = 0) =A yϕ  

( = 0) = 0B y= ϕ  and ( = ) = ( = ) = 0A By L y Lϕ ϕ  by choo-
sing the matrix M in the form 

 
1 0 0

= 0 1 0 .
0 0 1

ABM
− 

 
 

− 
 (20) 

Obviously, conditions (11) are satisfied also because 
=AB CM M−  and M  defined in Eq. (20) give four linear-

ly independent boundary conditions on the components of 
the wave function. Then combining them with Eq. (15), we 
obtain only trivial solutions. However, the direct numerical 
tight-binding calculations in the lattice model give nontri-
vial solutions shown in the upper panel of Fig. 4 (see also 
the corresponding discussion in Sec. 3.3). This means that 
we should try to find other BA–AB boundary conditions in 
the continuum model which reproduce at low energies the 
numerical solutions found in the lattice model. 

According to Eq. (B2) in Appendix B, the normal com-
ponent of the current vanishes if either = 0Cϕ  or 

= 0A Bϕ − ϕ  as is clear from Eq. (B3). Definitely, we 
should choose the second variant because the first de-
scribes the case of C missing atoms considered above. 
Note that the boundary condition = 0A Bϕ − ϕ  is not just a 
lattice termination, but allows for local electric fields and 

strained bonds. For the equation = 0A Bϕ − ϕ , the corre-
sponding matrix M  has the form 

 
0 0 1

= 0 1 0 .
1 0 0

ABM
 
 
 
 

 (21) 

Obviously, this matrix anticommutes with the yJ  current 
operator and preserves both T- and C-symmetries. Alt-
hough ABM  is quite different from CM , the results in the 
cases of the C–C and BA–AB boundary conditions are 
similar. Using solutions (15) and imposing the boundary 
conditions with the matrix ABM , we obtain equations for 
constants A and B. This gives the same spectrum as in the 
C–C zigzag ribbons with the normalized wave functions 

 

cos sin

1( , ) = cos e ,

cos sin

x

ik xxn x n
n

x

ny n nyk
L L L

nyk y
L L

ny n nyk
L L L

 π π π    +       
 

π  Ψ ε    ε  
π π π    −        





  

 = 0, 1, 2,n   (22) 

(compare these functions with those in Eq. (19). Note that the 
solution with = 0n  is special with the gapless linear energy 
dispersion = 2 xkε ±  and constant wave function ( ) =C yϕ

const 0.= ≠  This is the only case of ribbons with zigzag 
terminations which have bulk gapless (metallic) modes. Such 
modes are absent for graphene zigzag ribbons [33]. 

3.1.3. The C–AB boundary conditions. They corre-
spond to ( = 0) = 0C yϕ  and ( = ) ( = ) = 0A By L y Lϕ − ϕ . 
Combining equations (14) and (15), we obtain the energy 
spectrum 

 
22

2 2
2

2 1( ) = 2 , = 0, 1, 2, ,
2n x xk k n n

L
π  ε + +  



  (23) 

and wave functions 
____________________________________________________ 

 

1 1 1sin cos
2 2 2

1 1( , ) = sin e .
2

1 1 1sin cos
2 2 2

x

ik xxn x n
n

x

y yk n n n
L L L

yk y n
L L

y yk n n n
L L L

  π  π  π      + − + +                  
  π  Ψ ε +     ε  
  π  π  π       + + + +                 





 (24) 

_______________________________________________ 

Obviously, spectrum (23) is shifted compared to that in 
Eq. (18) due to the presence of 1/2 in the brackets and is 
plotted in the lower panel of Fig. 4. 
The analysis of the BA–C boundary conditions 

( = 0) ( = 0) = 0A By yϕ − ϕ , ( = ) = 0C y Lϕ  is similar be-

cause it does not matter to which side the AB and C 
boundary conditions are imposed. 

3.1.4. The CB–CA boundary conditions. Naively, one 
may try to use the boundary conditions ( = 0) =A yϕ

( = 0) = 0C y= ϕ  and ( = ) = ( = ) = 0.B Cy L y Lϕ ϕ  Howev-
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er, the eigenvalue problem (12) becomes overdetermined for 
these boundary conditions and does not have nontrivial solu-
tions. Like in the case of the BA–AB boundary conditions 
considered above, the numerical tight-binding calculations 
in the lattice model give nontrivial solutions shown in the 
lower panel of Fig. 3. Once again, this means that we should 
try to find other CB–CA boundary conditions in the contin-
uum model which reproduce at low energies the numerical 
solutions found in the lattice model. 

Recall that Eq. (B3) in Appendix B implies the normal 
component of the current vanishes if either = 0Cϕ  or 

= 0A Bϕ − ϕ . Since we have already used the second vari-

ant for the BA–AB boundary conditions, the only remaining 
way to impose the boundary condition in the continuum 
theory is to use the condition =| = 0C y Lϕ  as an approxima-
tion. Certainly, the corrections from the boundary conditions 
with the missing A and B atoms in the lattice model may 
become notable at high energies. However, as we checked in 
Subsec. 3.3 below, this is not important in the low-energy 
model. Therefore, the zigzag boundary conditions CB–CA 
in the low-energy continuum model are similar to the C–C 
zigzag ones. 

3.1.5. There are four other possible zigzag C–CA, CB–C, 
CB–AB, BA–CA terminations of a ribbon, however, all of 
them are equivalent to the cases discussed above. 

Thus, we end up with the two main types of zigzag ter-
minations C and AB on each side on a ribbon leading, ob-
viously, to four possible zigzag edges. Note that the spec-
trum in each case differs from that in graphene [33] and 
there are no states localized near the edges of the ribbon. 
On the other hand, ribbons with the BA–AB boundary 
conditions contain solutions of metallic type in bulk and 
this is a new feature of zigzag boundary conditions in the 
dice model compared to graphene ribbons where metallic 
states in bulk are absent. [It is worth mentioning that the 
dispersion relations for bulk states in graphene ribbons are 
essentially nonlinear unlike the bulk states in the dice lat-
tice model found here.] Ribbons with other combinations 
of terminations are insulators at zero chemical potential. 

3.2. Zero energy 

The case of zero energy is of a special interest. The cru-
cial question is whether the zero energy flat band present 
in an infinite size system survives in the presence of 
boundaries. It is appropriate to recall that the zero-energy 
solution in the dice model in the absence of boundaries 
have 0Cϕ ≡  [24,30]. For the strip of finite width we also 
have 0Cϕ ≡ , and only one equation (16) for two compo-
nents Aϕ , Bϕ  that reflects an infinite degeneracy of the 
zero-energy band. An arbitrary function defined on a seg-
ment [0, ]L  can be parameterized by the coefficients of its 
Fourier series. Therefore, we seek the solutions of Eq. (16) 
in the form 

 1 2( ) = sin( ) cos( )A y A zy A zyϕ + ,  

 1 2( ) = sin( ) cos( )B y B zy B zyϕ +  (25) 

that gives the equation 

 1 2 1 2( )sin( )x xk A zA k B zB zy− + + +   

 1 2 1 2( ) cos( ) = 0,x xzA k A zB k B zy+ + − +  (26) 

which is identically satisfied for any 0 < <y L  when the 
coefficients near sin( )zx  and cos( )zx  are zero. 

As was discussed in previous section, there are two 
main different types of conditions — C and AB. For brevi-
ty, we analyze one of the possible terminations in Sec. 3.1, 
namely, the BA–AB termination with the boundary condi-

Fig. 3. (Color online) The cell denoted by black rectangle is used in 
the calculation of ribbons with the zigzag CB–CA boundary condi-
tions (a). The energy bands for ribbons with CB–CA boundary 
conditions as functions of the wave vector k parallel to the 
nanoribbon edge, measured with respect to the center of the 
Brillouin zone. The blue lines denote the energy levels determined 
from the tight-binding equations and the red dashed lines are plot-
ted by using the theoretical formula (18) only at positive energy for 
the clarity of presentation. The gray point denotes the K-point. The 
number of elementary cells in the numerical calculations is 100 (b). 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12 1683 



D.O. Oriekhov, E.V. Gorbar, and V.P. Gusynin 

tions = 0A Bϕ − ϕ . Equation (26) and the boundary condi-
tions at the = 0y  and =y L  edges give the system 

 1 2 1 2 1 2 1 2= 0, = 0,x x x xk A zA k B zB zA k A zB k B− + + + − +   

2 2 1 1 2 2= 0, ( )sin( ) ( ) cos( ) = 0,A B A B zL A B zL− − + −  (27) 

which has nontrivial solutions when sin( ) = 0zL , i.e., 
= = /nz z n Lπ  with = 1,2n  . The normalized wave 

functions are 

____________________________________________________ 

 
1/22 2

2
0 2

sin cos
1( , ) = 0 e .

sin cos

x

ik xxn x x

x

ny n nyk
L L L

nz k k
L L ny n nyk

L L L

−

 π π π    −       
   π

Ψ +   
   π π π    − −       

 (28) 

_______________________________________________ 

Solutions for other terminations can be found similarly. 
The found solutions are in accordance with the general 
solution of the tight-binding Hamiltonian for the zero-
energy band in the case of infinite system [24,30]. 

3.3. Numerical results 

In the previous two subsections, we determined the en-
ergy spectrum and wave functions for ribbons with the 
zigzag boundary conditions in the low energy continuum 
model. However, we met some problems in imposing the 
BA, CB, and CA boundary conditions. Therefore, it is nec-
essary to perform the calculations in the tight-binding 
model, compare the corresponding results, and find out 
how the spectrum looks like at high energy where the low 
energy continuum model is, strictly speaking, not applica-
ble. For the unit computation cell with the zigzag CB–CA 
boundary conditions shown in upper panel of Fig. 3, we 
plot in the lower panel of the same figure the correspond-
ing energy levels calculated at the K point as well as the 
energy levels in the low energy continuum model shown 
by red dashed lines. The latter are shown only in the upper 
energy half-plane for the clarity of presentation because 
the energy levels in the lower half-plane trivially follow 
from the particle-hole symmetry of the spectrum. Since the 
energy levels for the C–C and CA–C boundary conditions 
are practically indistinguishable from the energy levels in 
the of Fig. 3(b), we do not plot them separately. In addi-
tion, Fig. 4(b) describes the results obtained for the BA–
AB and BA–C boundary conditions, respectively. Our 
main results are the following: 

3.3.1. The results found in the low energy continuum 
model are very accurate and the energy of the nth level for 

= 0k  equals = 2 /n n Lε π , where = 3 /2L Na  is the 
width of the ribbon and N is the number of elementary 
cells in the calculation cell. 

3.3.2. The CB–CA boundary conditions as well as the 
C–CA and CB–C ones lead to the same dispersion as the 
C–C boundary conditions. This supports our conclusion 
that at small momenta the CB and CA zigzag boundary 
conditions type are similar to the C boundary condition. 

However, the energy dispersion for the BA–AB boundary 
conditions shown in Fig. 4(a) is qualitatively different and 
contains two gapless modes. 

Fig. 4. (Color online) The panels (a), (b) describe the results ob-
tained for the BA–AB and BA–C boundary conditions, respec-
tively. The number of elementary cells in the numerical calcula-
tions is 100. Note that there are two gapless states for a ribbon 
with the BA–AB boundary conditions. The theoretical curves are 
represented as red dashed lines only in the upper energy half-
plane for the clarity of presentation. The gray point denotes the 
K-point. 
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3.3.3. The BA–C boundary conditions lead to a shifted 
spectrum, as predicted by Eq. (23). 

3.3.4. The numerical results shown in Fig. 5 demon-
strate the energy levels found in the continuum and tight-
binding models in the zigzag ribbons with C–C, CB–CA, 
and BA–AB boundary conditions throughout the Brillouin 
zone. 

4. Ribbons with armchair boundary conditions 

In this section we will study the electron states and ener-
gy spectrum in ribbons with the armchair boundary condi-
tions imposed at the = 0x  and =x L  sides. Such a ribbon 
is schematically shown in Fig. 6. Following the derivation of 
corresponding boundary conditions in graphene [34], we 
find that the = , ,A B Cµ  components of the wave function 
obey the equations 

 ( = 0) = ( = 0), ( = ) = e ( = ).i KLx x x L x L∆
µ µ µ µϕ ϕ ϕ ϕ′ ′   

  (29) 

The armchair boundary conditions mix states from the 
different K  and K ′  valleys and the factor = 4 /3 3K a∆ π  
comes from the scalar product ( )( ),xL− ′K K e  which de-
scribes the phase difference between states from different 
valleys on the =x L  edge. Note that the phase in the se-
cond Eq. (29) is similar to graphene [33]. Therefore, the 
matrix M  has nonzero off-diagonal blocks and equals 

 1 =0 1 1

0 0 1
| = 0 1 0 =

1 0 0
xM F

 
 τ ⊗ τ ⊗
 
 

,  

 2 =

0 0 1
0 e

| = 0 1 0 .
e 0 1 0 0

i KL

x L i KL
M

∆

− ∆

  
 ⊗      

 (30) 

Obviously, †
1,21,2 =M M  and the matrices 1,2M  anti-

commute with the normal component of the current 
1,2{ , } = 0M nJ  for = 1xn ± . Both matrices M1,2 also pre-

serve T- and C-symmetries. Our next step is to find non-
trivial solutions for ribbons with the armchair boundary 
conditions. 

4.1. Armchair ribbons 

We seek a solution in the form 

   = e ( ( ), ( ), ( ); ( ), ( ), ( ))
ik yy

A C B B C Ax x x x x xΦ ϕ ϕ ϕ ϕ ϕ ϕ′ ′ ′ .  

The wave functions in the K  valley satisfy the equations 

0 0 ( ) ( )
0 ( ) = ( ) .

( ) ( )0 0

x y A A

x y x y C C

B Bx y

i ik x x
i ik i ik x x

x xi ik

 − ∂ − ϕ ϕ   
     − ∂ + − ∂ − ϕ ε ϕ       ϕ ϕ   − ∂ + 

   

  (31) 

The wave function in the 'K  valley satisfies the same 
equation with the replacement ε → −ε   and the inverse or-
der of components. The armchair boundary conditions are 
given in Eq. (29). For 0ε ≠ , we can express the Aϕ  and 

Bϕ  components through Cϕ  by using Eq. (31) in both val-
leys. Then the second equation in system (31) gives the 
equation for Cϕ  (the same equation is valid for Cϕ′  too) 

 
2

2 2= ( )
2 C x y Ckε

ϕ − ∂ − ϕ


. (32) 

Its general solution is given by Eq. (14). The boundary 
conditions lead to the following system of equations for 
constants , , ,A B A B′ ′  with 2 2= /2 yz kε − : 

Fig. 5. The numerically calculated energy spectrum throughout the Brillouin zone for ribbons with the zigzag C–C boundary conditions (a), 
the CB–CA boundary conditions (b), and the BA–AB boundary conditions (c). The number of elementary cells in the calculations is 10. 

Fig. 6. (Color online) Ribbon with the armchair boundary condi-
tions. The unit cell for which tight-binding calculations are per-
formed is shown as a black rectangle. 
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 = ,A B A B+ +′ ′   

 e = e eizL izL izL i KL izL i KLAe B A B− + ∆ − + ∆+ +′ ′ ; (33) 

 = ,A B A B− − +′ ′   

 e e = e e .izL izL izL i KL izL i KLA B A B− + ∆ − + ∆− − +′ ′  (34) 

This system of linear homogeneous equations has nontrivi-
al solutions when 

 8e (cos( ) cos(2 )) = 0.i KL KL Lz∆ ∆ −  (35) 

The solutions to the above equation are 2 = 2zL KL n±∆ + π . 
Note that by definition 0z ≥ , which gives limits on n. 
Combining the “ + ” and “ − ” solutions gives the energy 
spectrum 

 
2

2 21 =
2 2y

n Kk
L

π ∆ ε + −  
  (36) 

with integer = 0, 1, 2,n ± ±   and the wave functions 

 2
21( , ) = e ,

2

2

y K ni x ik yyL
n y n

n

y

K n ik
L

k x
L

K n ik
L

∆ π − + +  

∆ π − + − 
 Ψ ε ε  ∆ π

− + +  

K




 

 2
21( , ) = e .

2

2

y K ni x ik yyL
n y n

n

y

K n ik
L

k x
L

K n ik
L

∆ π − − + +  ′

∆ π − + + 
 Ψ ε ε  ∆ π

− + −  

K




  

  (37) 

The solutions are plain waves like in graphene [33]. 
The length L  is defined as = 3/2( 1)L N a+  for a strip 

with N  atomic rows. For L  such that = 2KL N∆ π  with 
integer N , the gap in spectrum Eq.(36) vanishes when 

= 3 1N N − . In this case, the spectrum contains two gapless 
(semi-metallic) modes with the linear dispersion = 2 ykε ±

. The other energy levels have band gaps 1/ L  and are 
doubly degenerate. Ribbons with 3 1N N≠ −  have nondege-
nerate states and do not possess zero energy modes, hence 
these ribbons are band insulators. In general, for armchair 
ribbons, we have the results similar to graphene [33] except 
the existence of the zero-energy flat band inherent to the dice 
lattice model. 

4.2. Zero energy 

For the zero energy = 0ε , we have again only one 
equation for the two components in each valley  

 ( ) ( ) ( ) ( ) = 0,x y A x y Bk x k x−∂ + ϕ + −∂ − ϕ   

 ( ) ( ) ( ) ( ) = 0x y B x y Ak x k x−∂ + ϕ + −∂ − ϕ′ ′  (38) 

with the boundary conditions (29) for ,A Aϕ ϕ′  and 
,B Bϕ ϕ′  functions. We seek the solution in the form 

 1 2 1 2( ) = e e , ( ) = e e ,izx izx izx izx
A Ax A A x A A− −ϕ + ϕ +′ ′ ′   

 1 2 1 2( ) = e e , ( ) = e e .izx izx izx izx
B Bx B B x B B− −ϕ + ϕ +′ ′ ′   

  (39) 

Combining Eqs. (38) and (39), we obtain the system 

____________________________________________________ 

 1 1 2 2[( ) ( ) ]e [( ) ( ) ]e = 0,izx izx
y y yiz ky A iz k B iz k A iz k B −− + + − − + + + −   

 1 1 2 2[( ) ( ) ]e [( ) ( ) ]e = 0,izx izx
y y yiz ky A iz k B iz k A iz k B −− − + − + + − + +′ ′ ′ ′  (40) 

which is satisfied for any 0 < <x L  when the coefficients near eizx  and e izx−  functions are zero. The armchair boundary 
conditions at the = 0x  and =x L  edges give 

 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

= e e = e [ e e ],
, .

= e e = e [ e e ]

izL izL i KL izL izL

izL izL i KL izL izL

A A A A A A A A
B B B B B B B B

− ∆ −

− ∆ −

+ + + +′ ′ ′ ′ 
 + +′ ′ + +′ ′

 (41) 

_______________________________________________ 

Eqs. (40) together with Eq.(41) have nontrivial solutions 
when 

 2 232 e (cos( ) cos(2 )) = 0.i KL
yk z KL zL∆ ∆ −  (42) 

This means that the system has nontrivial solutions for 
= /2 /z K n L±∆ + π  with such integer n that z > 0. The cor-

responding normalized wave functions for + and − solu-
tions can be combined and written as 

 0 2 2
1( , ) = 0 e ,

2( )

y n
iz x ik yn y

n y
y n y n

k iz

z k
k z L k iz

+
+ 

 Ψ  +  − 

K   

  0 2 2
1( , ) = 0 e ,

2( )

y n
iz x ik yn y

n y
y n y n

k iz

z k
k z L k iz

− +′
− 

 Ψ  +  + 

K  (43) 
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where we used short-hand notation = /2 /nz K n L−∆ + π  
with 0, 1, . . . .n = ±  
Hence the flat band with zero energy has infinite degenera-
cy parameterized by quantum numbers yk  and n. 

4.3. Numerical results 

For ribbons with the armchair edges, we compare the en-
ergy spectrum (36) with the results of tight-binding calcula-
tions in Fig. 7, where = ( 3/2)( 1)L N a+  with N  atomic 
rows. The theoretical results are plotted as red dashed lines 
only in the upper energy half-plane for the clarity of presen-
tation. The corresponding curves in the lower half-plane 
trivially follow from the particle-hole symmetry. As was 
mentioned before, only ribbons with = 3 1N N −  demon-
strate metallic type of spectrum, which contain gapless states 
with linear dispersion (see Fig. 7(b)). The gapped (semicon-
ducting) states are arranged in pairs with very small gaps 
between them for wide ribbons, while the continuum model 
predicts double degeneracy of these states. The spectrum for 
ribbons with a number of atomic rows different from 3 1N −  
fits very well the spectrum of continuum model (see, in 

Fig. 7(a)). Similar situation is valid for graphene [33] where, 
of course, the zero-energy flat band is absent. 

5. Summary 

We studied the possible lattice terminations in the dice 
model and determined the corresponding boundary condi-
tions. We found that there are four possible non-equivalent 
zigzag terminations, but they produce in the low energy con-
tinuum model only two different types of low-energy 
boundary conditions. As to the armchair boundary condi-
tion, it is unique. All these types of boundary conditions 
preserve the charge conjugation and time reversal symme-
tries. We found the most general 6 6×  matrix M  which 
determines boundary conditions for the wave function of the 
Dirac-like equation for pseudospin-1 fermions in continuum 
model which extends the form of analogous matrix for 
graphene [31]. 

We determined the energy spectrum of ribbons with the 
zigzag and armchair edges. We found that in some cases the 
presence of boundaries opens an energy gap between the 
zero-energy band and the first discrete level and leads to an 
insulating behavior of the system. While the energy levels 
for a ribbon with armchair boundary conditions show the 
same features as in graphene [31,33] (except, of course, the 
zero-energy flat band absent in graphene), the results for 
ribbons with the zigzag boundary conditions are quite dif-
ferent. In particular, in the dice lattice ribbons there are no 
propagating edge states localized at a zigzag boundary. On 
the other hand, there are ribbons with specific terminations 
which contain modes of metallic type in a bulk. 

Our numerical calculations in the tight-binding model for 
wide ribbons excellently confirm the analytic results obtained 
in the low energy continuum model. Moreover, the qualita-
tive structure of the energy levels in both models agrees also, 
although there some quantitative differences at wave vectors 
far from the K  and K ′  points. We found that the zero-
energy flat band in the dice lattice model is very robust. Our 
calculations show that it exists for both zigzag and armchair 
dice lattice terminations. The boundary conditions affect only 
the degeneracy of this band which is quantified by the wave 
vector along the termination side and an integer quantum 
number n. It was already known [23,24] that the zero-energy 
flat band survives even in the presence of an external mag-
netic field which breaks both the time reversal and charge 
conjugation symmetries. This clearly differs from the case of 
graphene in a magnetic field, where the flat Landau levels in 
infinite system are deformed by the finite size of the system 
(see, for example, Refs. 35, 36). 

It would be interesting to study the effects of external 
electric and magnetic fields in the dice model. Some of 
them for infinite dice lattice in a magnetic field are already 
described in the literature [24,29] but not for ribbons. Oth-
er effects, like the Schwinger particle-hole pair creation 
[37] or Klein tunneling [34,38] in electric field wait for 
their study for pseudospin-1 fermions. Also, the electronic 

Fig. 7. (Color online) The numerical results (blue solid curves) 
and the energy dispersion given by Eq. (36) (red dashed curves in 
the upper energy half-plane) for a ribbon with the armchair edges. 
The panel (a) demonstrates insulating spectrum for a strip with 
100 atomic rows. The panel (b) shows semi-metallic spectrum for 
a strip with 101 atomic rows. The gray point denotes the K-point. 
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states of pseudospin-1 fermions in the field of charged  
impurities are of considerable interest (for a similar study 
in graphene, see, for example, review [39]). 
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Appendix A: Derivation of general boundary condition 

It is convenient to represent M  in the basis 

 
3 8

=0 =0
= ( ) ,M cµ ν µν

µ ν
τ ⊗ λ∑ ∑  (A1) 

where the coefficients cµν  are real because matrix M  is 
Hermitian. 

General form of matrix M 

By using the property ( )( ) = ( ) ( )A B C D AC BD⊗ ⊗ ⊗ , 
we easily find that vanishing of the anticommutator of M  
with the normal component of the electric current at a 
boundary { , } = 0M nJ  gives 

 
3 8

3 3
=0 =0

[( ) ( ( )) ( ) (( ) )] = 0.cµ ν µ ν µν
µ ν

τ τ ⊗ λ + τ τ ⊗ λ∑ ∑ Sn Sn   

  (A2) 

Since 3τ  commutes with the 0τ  and 3τ  matrices and 
anticommutes with 1τ  and 2τ , we obtain the following 
equations for cµν : 

 
8

(0,3)
=0

{ , ( )} = 0,cµ µ
µ

λ∑ Sn  (A3) 

 
8

(1,2)
=0

[ , ( )] = 0cν ν
ν

λ∑ Sn , (A4) 

or explicitly in terms of the Gell–Mann matrices, 

 
8

1 6 2 7 (0,3)
=0

{ , ( ) ( ) } = 0,x yn n cµ µ
µ

λ λ + λ + λ + λ∑  (A5) 

 
8

1 6 2 7 (1,2)
=0

[ , ( ) ( ) ] = 0.x yn n cν ν
ν

λ λ + λ + λ + λ∑  (A6) 

Calculating the anticommutator in the first equation and the 
commutator in the second, we obtain two matrix equations. 
Further, setting the coefficients at different Gell–Mann mat-
rices to zero, we find the following system of equations for 
the coefficients of matrix M : 

____________________________________________________ 

 2 2
2 1 4 0 3 5 0 3 6 1 7 1 8 3

2 4 1= , = ( )( 3 ), = ( 3 ), = , = , = ,
3 3 3y x x y x y y xn f n f f n n f f f n n f f f f n f n f f f− − − + − + − −   

 2 2
2 1 4 3 5 3 6 1 7 1 8 3

1= , = 2( ) , = 4 , = , = , = ,
3x y y x x y x yn g n g g n n g g n n g g g n g n g g g− − −  (A7) 

_______________________________________________ 

where we used the notation (0,3), =c fµ µ  and (1,2), = .c gν ν  
Thus, we have 3-parametric family of fµ  and gν  which 
defines a 12-parametric family of M-matrices. The condi-
tion 2 = 1M  further reduces the number of parameters 
leaving only six independent ones. 

Symmetry restrictions 

The Hamiltonian of the dice model is invariant with re-
spect to the time reversal T  and charge conjugation C  
transformations. The operator T  has the form 

1
ˆ ˆ=T FKτ ⊗  and K̂  is the operator of complex conjuga-

tion. The relation  

 1ˆ ˆ( ) = ( )TH T H− −k k  (A8) 

implies the two following equations for F : 

 1 1= , = ,x x y yFS F S FS F S− − −  (A9) 

whose solution with † = 1F F  and up to an arbitrary phase 
factor is 

 
0 0 1

= 0 1 0 .
1 0 0

F
 
 
 
 

 (A10) 

The time reversal operator T̂  satisfies 2ˆ 1.T =  Note that 
in the presence of a real spin degree of freedom the operator 
T̂  should be replaced by the operator 2

ˆ ˆi T= σ ⊗  which 
satisfies the standard condition 2ˆ 1.= −  with the matrix 

2σ  acting in real spin space. Clearly, Ŝ  is a symmetry if 
ˆ ˆ=MS SM . Using the general form of matrix M  given by 

Eq.(A1), we find that the time reversal symmetry leads to 

 *
1 1( ) ( ) = 0M F F Mτ ⊗ − τ ⊗  (A11) 

that gives for real cµν  

3 8
* *

1 1 ,
=0 =0

(( ) ( ) ( ) ( )) = 0.F F cµ ν µ ν µ ν
µ ν

τ τ ⊗ λ − τ τ ⊗ λ∑ ∑  (A12) 
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The above equation implies 

 
8

*
, ,1

=0
( ) = 0 =F F c cν ν µ ν µ

ν
λ − λ ⇒∑   

 ,6 ,2 ,7 ,8 ,3
1, = , = ,
3

c c c c cµ µ µ µ µ= −  (A13) 

for = 0,1,2µ , and 

 
8

*
3, 3,0 3,4 3,5

=0
( ) = 0 = = = 0,F F c c c cν ν ν

ν
λ + λ ⇒∑   

 3,1 3,6 3,2 3,7 3,8 3,3= , = , = 3c c c c c c− −  (A14) 

for = 3µ . 
Combining Eq. (A7) with conditions (A13) and (A14) 

we find the set of nine survived parameters, 0,0 0,3 3,1, , ,c c c
(1,2),0 (1,2),1 (1,2),3, ,c c c , if the condition 2 = 1M  is not tak-

en into account. The condition 2 = 1M  gives one more 
constraint and leaves free only five parameters. 

The operator of the charge conjugation does not inter-
change spinors from different K  valleys, therefore, it is 
defined by the equation 

 1ˆ ˆ( ) = ( ),CH C H− −k k  (A15) 

whose solution is 

 0 0 0 3 8

1 0 0
1 1ˆ = 0 1 0 = .
3 3

0 0 1
C

 
  τ ⊗ − τ ⊗ λ + λ − λ    

 
  

  (A16) 

Using the general form of matrix M  given by Eq.(A1), we 
find that the charge conjugation symmetry leads to the fol-
lowing equation for M : 

 ˆ ˆ = 0C CMS S M− ⇒   

 
3 8

0 3 8 ,
=0 =0

1 1, = 0,
3 3

cµ ν µ ν
µ ν

  ⇒ τ ⊗ λ λ + λ − λ    
∑ ∑   

  (A17) 

which for every = 0, 1, 2, 3µ  gives the following re-
strictions on parameters: 

 ,1 ,2 ,6 ,7= = = = 0.c c c cµ µ µ µ  (A18) 

According to Eq. (A7), there remain independent only eight 
parameters, which can be chosen as 0,0 3,0 0,3 3,3, , , ,c c c c  

1,0 2,0 1,3 2,3, , ,c c c c  (without taking into account the con-
straints 2 = 1).M  

The general form of matrix M, which preserves T- and 
C-symmetries is: 

____________________________________________________ 

 2 2
, 0 0,0 0 0,3 3 0,0 0,3 4 0,0 0,3 5 0,3 8

2 4 1= ( )( 3 ) ( 3 )
3 3 3S S x y x yT C

M c c n n c c n n c c c τ ⊗ λ + λ + − − + λ + − + λ − λ +  
  

 
2

2 2
0 ,0 3 4 5 8 ,3

=1

12( ) 4
3

( )i i y x x y i
i

c n n n n c + τ ⊗ λ + λ + − λ − λ − λ  ∑ . (A19) 

Note that this expression contains six independent parameters. The condition 2 = 1M  further restricts the number of free 
parameters giving several families of solutions with a maximal subset having two parameters. 

Appendix B: Boundary conditions from zero boundary current 

We start with the exact formula for the matrix element of current (9) 

 * * * * * *1 = ( ) ( ) ,[ ] [ ]B A C C A B B C B C C B A A C
F

n n n n n n n n− + − + − + − +′ ′ ′ ′ ′ ′ ′Ψ Ψ Ψ Ψ + Ψ Ψ + Ψ + Ψ Ψ − Ψ Ψ + Ψ Ψ + Ψ + Ψ Ψn J
v

  

  (B1) 
_______________________________________________ 

where = x yn n in± ± . We begin with the zigzag boundary 
conditions = 0, = 1x yn n . 

Zigzag boundary conditions. For the zigzag boundary 
conditions, it is sufficient to analyze only one valley. The 
matrix element in the K valley has the form 

 * *1 = ( )
KB A B C

F
n n− +Ψ Ψ Ψ + Ψ Ψ +n J

v
  

 * ( ) = 0.C A Bn n+ −+ Ψ Ψ + Ψ  (B2) 

Obviously, the above equation has two possible solutions 
for = 1yn ± : 

 = 0 and = 0.A B CΨ − Ψ Ψ  (B3) 

This means that the AB boundary condition can be written 
as = 0A BΨ − Ψ . 

For the CA or BC boundary conditions, we automatical-
ly have missing C-atoms. Then, the simplest boundary 
condition is = 0CΨ . There are also some corrections from 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12 1689 



D.O. Oriekhov, E.V. Gorbar, and V.P. Gusynin 

missing A- or B-atoms, but we can neglect them in our 
analysis, because these corrections are important only for 
upper levels, where the linearized Hamiltonian cannot be 
applied. 

Armchair boundary conditions. Here we need to com-
bine both valleys. Imposing the armchair boundary condi-
tions on the x  sides, ( = ( 1,0)Bn ± ), we find for the matrix 
element of the current  

 * * *1 = ( ) ( )[ ]B A B C C A B
F

Ψ Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ −n J
v

  

 * * *( ) ( ) = 0.[ ]A B C C A B′ ′ ′ ′ ′ ′− Ψ + Ψ Ψ + Ψ Ψ + Ψ  (B4) 

Therefore, the possible types of conditions are  

 *= , = = , ,i ie e A B Cα α
µ µ µ µ′ ′Ψ Ψ Ψ Ψ µ  (B5) 

with real phase α , which is equal to all three functions 
(this phase cancels out due to complex conjugation in the 
products). 
 _______  
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Електронні стани ферміонів із псевдоспіном 
одиниця в стрічках дайс-гратки 

Д.О. Орєхов, Е.В. Горбар, В.П. Гусинін 

Вивчено граничні умови для двовимірних ферміонів на 
стрічці гексагональної гратки в дайс-моделі, енергетичний 
спектр якої в нескінченній системі складається з трьох зон, 
одна з яких є повністю плоскою зоною із нульовою енергією. 
Подібно графену регулярними краями стрічки є два типи 
границь у вигляді крісла та зигзагу. Існують чотири можли-
вих границі типу зигзаг на відміну від графену, де тільки 
один тип таких границь можливий. Знайдено енергетичний 
спектр ферміонів із псевдоспіном одиниця в дайс-моделі з 
граничними умовами у вигляді крісла та зигзагу. Показано, 
що енергетичні рівні для стрічок з граничними умовами у 
вигляді крісла аналогічні рівням в графені, включаючи до-
датково плоску зону нульової енергії. З іншого боку, на 
відміну від графену, не існує крайових мод, локалізованих на 
границях стрічки, проте існують зигзаг границі, для яких 
моди металічного типу присутні усередині стрічки. Енерге-
тична дисперсія повністю плоскої енергетичної зони дайс-
моделі не змінюється в присутності граничних умов обох 
типів, які інваріантні відносно симетрій зарядового сполу-
чення та обернення часу. 

Ключові слова: псевдоспін одиниця, двовимірні ферміони, 
дайс-гратка. 

Электронные состояния фермионов с 
псевдоспином единица в полосках дайс-решетки 

Д.А. Орехов, Э.В. Горбар, В.П. Гусынин 

Исследованы граничные условия для двумерных фермио-
нов на полоске гексагональной решетки в дайс-модели, энер-
гетический спектр которой в бесконечной системе состоит из 
трех зон, одна из которых является полностью плоской зоной с 
нулевой энергией. Подобно графену регулярными краями 
полоски являются два типа границ в виде кресла и зигзага. 
Существуют четыре возможных границы типа зигзаг в отли-
чие от случая графена, где только один тип таких границ воз-
можен. Найден энергетический спектр фермионов с псевдо-
спином единица в  дайс-модели с граничными условиями в 
виде кресла и зигзага. Показано, что энергетические уровни 
для полосок с граничными условиями в виде кресла аналогич-
ны уровням в графене, включая дополнительно плоскую зону 
нулевой энергии. С другой стороны, в отличие от графена, не 
существует краевых мод, локализованных на границах полос-
ки, однако имеются зигзаг границы, для которых существуют 
моды металлического типа внутри полоски. Энергетическая 
дисперсия полностью плоской энергетической зоны дайс-
модели не изменяется в присутствии граничных условий обо-
их типов, которые инвариантны относительно симметрий за-
рядового сопряжения и обращения времени. 

Ключевые слова: псевдоспин единица, двумерные фермионы, 
дайс-решетка. 
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