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Boundary conditions for the two-dimensional fermions in ribbons of the hexagonal lattice are studied in the

dice model whose energy spectrum in infinite system consists of three bands with one completely flat band of

zero energy. Like in graphene the regular lattice terminations are of the armchair and zigzag types. However,

there are four possible zigzag edge terminations in contrast to graphene where only one type of zigzag termina-

tion is possible. Determining the boundary conditions for these lattice terminations, the energy spectra of

pseudospin-1 fermions in dice model ribbons with zigzag and armchair boundary conditions are found. It is

shown that the energy levels for armchair ribbons display the same features as in graphene except the zero ener-

gy flat band inherent to the dice model. In addition, unlike graphene, there are no propagating edge states local-

ized at zigzag boundary and there are specific zigzag terminations which give rise to bulk modes of a metallic

type in dice model ribbons. We find that the existence of the flat zero-energy band in the dice model is very ro-

bust and is not affected by the zigzag and armchair boundaries.

Keywords: pseudospin-1, two-dimensional fermions, dice lattice.

1. Introduction

After the experimental discovery of graphene [1] there
was an explosion of activity in the study of materials with
relativistic like spectrum of quasiparticles whose dynamics
is governed by the Dirac or Weyl equation. In addition to
graphene, they are topological insulators [2,3] and 3D Di-
rac and Weyl semimetals [4-6]. However, the properties
and energy dispersion of the electron states in condensed
matter systems are constrained by the crystal space group
rather than the Poincare group. This gives rises to the pos-
sibility of fermionic excitations with no analogues in high-
energy physics. Indeed, it was proposed [7] that the three
non-symmorphic space groups host fermionic excitations
with three-fold degeneracies. The corresponding touchings
of three bands are topologically non-trivial and either carry
a Chern number 2 or sit at the critical point separating
the two Chern insulators.

The triply degenerate fermions with nodal points located
closely to the Fermi surface were predicted in the RERhgGeg
(RE = (Y, La, Lu)) [8] and NaCu3Te; [9] compounds. They
are expected to occur at a high symmetry point in the
Brillouin zone and are protected by nonsymmorphic sym-
metry [7]. Latter they were suggested also to exist at a sym-
metric axis [10-15]. Experimentally, the three-component

© D.O. Oriekhov, E.V. Gorbar, and V.P. Gusynin, 2018

fermions were observed in MoP and WC [16,17]. The triply
degenerate topological semimetals provide an interesting
platform for studying exotic physical properties such as the
Fermi arcs, transport anomalies, and topological Lifshitz
transitions. The pairing problem in materials with three bands
crossing was studied in Ref. 18. A pressure induced super-
conductivity was reported in MoP [19].

Certain lattice systems possess strictly flat bands [20]
(for a recent review of artificial flat band systems, see Ref.
21). The dice model provides the historically first example
of such a system. It is a tight-binding model of two-
dimensional fermions living on the so-called 73 (or dice)
lattice where atoms are situated at both the vertices of a
hexagonal lattice and the hexagons centers [22,23]. Since
the dice model has three sites per unit cell, the electron
states in this model are described by three-component fer-
mions. It is natural then that the spectrum of the model is
comprised of three bands. The two of them form a Dirac
cone and the third band is completely flat and has zero
energy [24]. All three bands meet at the K and K’ points,
which are situated at the corners of the Brillouin zone. The
T5 lattice has been experimentally realized in Josephson
arrays [25] and its optical realization by laser beams was
proposed in Ref. 26.
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In linear order to momentum deviations from the K
and K’ points, the low-energy Hamiltonian of the dice
model describes massless pseudospin-1 fermions. These
fermions give a surprising strong paramagnetic response in
a magnetic field [24]. The minimal conductivity and topo-
logical Berry winding were analyzed in three-band semi-
metals in Ref. 27. The dynamic polarizability of the dice
model was calculated in the random phase approximation
[28] and it was found that the plasmon branch due to
strong screening in the flat band is pinched to the point
o=|k|=W. In addition, the singular nature of the
Lindhard function leads to much faster decay of the Friedel
oscillations. The magneto-optical conductivity of pseudo-
spin-1 fermions was calculated in Ref. 29.

Perfectly flat bands are expected to be not stable with re-
spect to generic perturbations. The presence of boundaries is
one of such perturbations. The question whether the flat
band survives in finite size systems provides one of the main
motivation for the present study. To answer this question,
we consider the two-dimensional dice lattice model, deter-
mine the possible types of its terminations and the corre-
sponding boundary conditions. Then we find the energy
spectra and electron states in the dice model ribbons.

The paper is organized as follows. The dice model and
its electron states in infinite system are described in Sec. 2.
The electron states and energy spectra in ribbons with zig-
zag and armchair edges are studied in Secs. 3 and 4, re-
spectively. The results are summarized in Sec. 5 . The gen-
eral form of the boundary condition for the electric current
is considered in Appendices A and B.

2. Model and boundary condition for current

The dice model describes quasiparticles in two dimen-
sions with pseudospin S =1 on the 73 lattice schematically
shown in Fig. 1. This lattice has a unit cell with three differ-
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Fig. 1. (Color online) The T3 lattice whose red points display the
atoms of the A sublattice, the blue points describe the B
sublattice, and the green points define the C sublattice. The vec-
tors a; =(+/3, 0)a and a, =(~/3/2, 3/2)a are the basis vectors
of the C sublattice.

ent lattice sites whose two sites (4, C) like in graphene form
a honeycomb lattice with hopping amplitude ¢,- =# and
additional B sites at the center of each hexagon are con-
nected to the C sites with hopping amplitude t5~ =1, . The
two hopping parameters #; and ¢, are not equal in general.
The corresponding model is known as the o —7; model
[24]. The dice model corresponds to the limit # =, . The
basis vectors of the triangle Bravais lattice are

a =(/3,0)a, a, =(?, %)a,

(1)
where a is the distance between two neighbors. The set of
vectors with a; =a, —a;

_ + a, a3 —a

a, +a
8 =172 3§,= , 8=
! 3 2 3 3 3

2

connect atoms from A sublattice with nearest C atoms (al-
so these vectors with minus sign connect atoms B with C).
The tight-binding equations are [30]

V() =—4 W, (r+8,) -1, Y Wp(r-3)),
J J

e¥ (1) =) ¥c(r-38)),
J

eWp(r)=—1 Y W (r+d)). 3)
J

The corresponding Hamiltonian in momentum space
reads [24]

0 Jx Cos @ 0
H= f;cosq) 0 Jisino |,
0 f; sin @ 0

fi =t +8 (+e ™2 17y (4)

It is easy to find the energy spectrum of the above Hamil-
tonian, which is qualitatively the same for any o and con-
sists of three bands: a zero-energy flat band, £y(k)=0,
and two dispersive bands

g k) =A|fi [=

b
o=tan@=-=,
h

= M1 +13[3+2(cos(ak) + cos(ak) + cos(ask))]2, A=+
(5)

The presence of a completely flat band with zero energy is
one of the remarkable properties of the o —73 lattice
model. Since we will consider in this paper the boundary
conditions for fermions in the dice model, we will set
o.=1 in what follows and denote #, =t, =1//2 .

There are six values of momentum for which f, =0 and
all three bands meet. They are situated at the corners of the
hexagonal Brillouin zone. Two inequivalent points, for ex-
ample, are
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For momenta near the K-points, k = K(K’)+k, we find
that fi is linear in Kk, ie., f =hop(Ek, —ik,) with
==, where vp =3ta/2h is the Fermi velocity, and in
what follows we omit for the simplicity of notation the
tilde over momentum. Thus, we obtain the low-energy
Hamiltonian near the K-point in the form [28]

(0 k0
Hd=rmFSk=% ke 0 k|,
0 k 0
J[oro (0o
S=—|1 0 1|, §,=—|i 0 -i|, @
2 Y2
2l 1 0 20 i o

where S are the spin matrices of the spin 1 representation
and ky =k, +ik,. The Hamiltonian acts on three-compo-
nent wave functions ! = (¥ 4-Yc,¥p). In our analysis
of boundary conditions for different lattice terminations, we
will need, in general, the full low-energy Hamiltonian in
both K and K’ valleys. Therefore, it is worth writing
down this Hamiltonian explicitly

H; O
H= , (®)
0 -Hy,
which acts on 6-component spinor Y=

= (W 4,We,Vp, W5, We,Wy), where like in graphene the
A and B spinor components are interchanged in the K val-

ley. We note that the tight-binding Egs. (3) have the electron-
hole symmetry Y. ——-yc,e—>—€ or, equivalently,
Y,y > -V, ,Yp > —VYpg,e—>—¢€. For the tight-binding
Hamiltonian (4), as well as the continuum Dirac-like Hamil-
tonian (8), this symmetry is translated into the anticommu-
tation relation {H, C} = 0 with the charge conjugation op-
erator (A16) in Appendix A. This particle-hole symmetry
implies that if E(k) is an eigenvalue at given k, then so is
—E(k). Since, in the present case, the total number of bands
is odd, this makes it necessary the existence of a zero eigen-
value at all k, hence a zero energy flat band. The Hamiltoni-
an (8) is invariant also with respect to the time reversal T
transformation where the operator T has the form
T= T ® FK, here K is the operator of complex conjuga-
tion and the matrix F' is given by Eq. (A10).

In the analysis of boundary conditions, it is convenient
to represent 6 X6 matrices in the form of a tensor product
T, ® Ay, where 1, =(10,7;) and A, =(Ry,A;) act in
the valley and sublattice spaces, respectively. Here T; are
the Pauli matrices, A j are the Gell-Mann matrices, and
T and A are the unit 2Xx2 and 3Xx3 matrices, respec-
tively. Clearly, if no leads are attached to the material, the
electric current through boundary should vanish. The cur-
rent operator in the direction n normal to a boundary in our
theory reads

0 no O

nJ=UFT3®(Sn)=%T3® e 0 n_ |, g =ngEin,.
0 n, O

)]

Since the current operator is not a differential operator,
vanishing of electric current at boundary cannot be formu-
lated as the Neumann condition as is usual in nonrelativ-
istic physics. The same situation occurs in graphene whose
low-energy Hamiltonian is also linear in momentum.
Therefore, like in graphene [31,32], the general boundary
condition for the current to vanish at boundary can be for-
mulated as a requirement that the wave function satisfies
the following condition at boundary:

\Pboundary =M \Pboundary > (10)

where matrix M is Hermitian and anticommutes with the
current operator, i.c.,

M=MT, {M,nJ}=0. (11)
In view of
(Y nd W) =¥ [mI)M | V)=~V M )| V)=
=—(¥[nJ|¥),

the anticommutation of M with the current operator guar-
antees that the current normal to the boundary vanishes.
However, unlike graphene [31] we cannot prove the in-
verse statement that the anticommutation relation of M
with the current operator follows from the current conser-
vation requirement because det[ndJ]=0 in the case under
consideration. The most general form of 6x6 matrix M
is considered in Appendix A.

3. Ribbons with zigzag boundary conditions

In this section, we will study the boundary conditions
and electron states in ribbons with zigzag edges along the
y=0 and y= L sides. Since the dice lattice does not have
mirror symmetry (or, equivalently, the © rotational sym-
metry), possible zigzag terminations on both lower and
upper sides of a ribbon should be analyzed. The corre-
sponding terminations are displayed in Fig. 2. Its upper and
lower panels imply that there are four possible zigzag ter-
minations. It is worth recalling here that graphene ribbons
admit only one type of the zigzag edge.

Since the zigzag boundary conditions do not mix wave
functions from different valleys, it suffices to perform our
analysis in the K valley using the low-energy Hamiltonian
(7). In view of the translation symmetry in the x-direction,
we seck the wave function in the form ‘¥, = e’k"x(pM »)
and replace k,, e—iay. Then we obtain the system of
equations for ¢, (y) with p=(4,C,B),
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Fig. 2. (Color online) Upper panels: 3 possible types of zigzag termination at y = L with C, CB, and BA missing atoms. Lower panels: 3
possible types of zigzag termination at y = 0 with C, CA, and AB missing atoms.

0 kx_ay 0 Dy Py
kx+8y 0 kx—ay (pC =g (PC , (12)
0 ke+9, 0 ¢p ?p

where & =¢e+2/(hvp) and y belongs to the [0,L] inter-
val. For €#0, expressing ¢4 and @p through ¢, and
then substituting them into the second line of Eq. (12), we
obtain the following second-order equation for @, :

a2

€
(@5 ~k)0c ==—9c (13)

whose general solution is given by (we use the short-hand

52
notation z = 7—/{% )

oc(y)= 4™ + Be™ . (14)

Then we easily find the following expressions for the @ 4
and @y components

-

For € =0 the component ¢~ =0 and we get one equation
for two functions,

(k. —iz)Ae™ + (k, +iz)Be™™™

(k, +iz)Ae™ +(k, —iz)Be ™ |

Dy 1

Pp

(15)

o |

(kx+ay)(pA+(kx_ay)(pB =09 (16)
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that leads to infinite degeneracy of this band. The above
equations are analyzed below for different boundary
conditions.

3.1. Analytic results at non-zero energy

In this subsection, we enumerate all possible zigzag
terminations, analyze the corresponding boundary condi-
tions, and determine analytically the energy spectrum for
ribbons with zigzag edges at non-zero energy.

3.1.1. The C—C boundary conditions. It is very easy to
check that vanishing of the C-component of the spinor wave
function at the boundaries @-(y=0)=¢(y=L)=0,
where L is the width of the ribbon, follows from the general
boundary condition (10) with the matrix

1 0 0
Mc=1,®|0 -1 0] (17)
0 0 1

Note that the other necessary conditions (11) on matrix M
are satisfied too. This matrix also preserves both time re-
versal and electron-hole symmetries. Since M~ does not
mix states from different K points, we omit below the
matrix T(. Applying the obtained boundary conditions to
the general solution (14), we easily find the spectrum

2.2
~ _ 2 21 n
g, (k=% /2kx + 2

and the corresponding wave functions normalized in one

=1,2,...  (18)

L
valley as J.dy‘}’T ke, ¥(k,,y)=1,
0
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k, sin(w)—M os(nﬂ)
L L L
1 ~ . [Tmny ik, x
Y, (k,,y)=< g sin| —— X
e
k, sin (M) + I cos (Tcﬂ
L L L
(19)

which describe the particle and hole bands for positive and
negative energies, respectively. These are extended bulk
states which are gapped due to a spatial confinement in a
finite width ribbon.

3.1.2. The BA-AB boundary conditions. 1t is straightfor-
ward to satisfy the boundary conditions ¢ ,(y=0)=
=¢p(y=0)=0 and @4(y=L)=¢p(y=L)=0 by choo-
sing the matrix M in the form

-1 0 0
Mup=0 1 0 (20)
0 0 -1

Obviously, conditions (11) are satisfied also because
M 4p =—Mc and M defined in Eq. (20) give four linear-
ly independent boundary conditions on the components of
the wave function. Then combining them with Eq. (15), we
obtain only trivial solutions. However, the direct numerical
tight-binding calculations in the lattice model give nontri-
vial solutions shown in the upper panel of Fig. 4 (see also
the corresponding discussion in Sec. 3.3). This means that
we should try to find other BA—AB boundary conditions in
the continuum model which reproduce at low energies the
numerical solutions found in the lattice model.

According to Eq. (B2) in Appendix B, the normal com-
ponent of the current vanishes if either @-=0 or
¢®,—0p=0 as is clear from Eq. (B3). Definitely, we
should choose the second variant because the first de-
scribes the case of C missing atoms considered above.
Note that the boundary condition ¢ 4 —@p =0 is not just a
lattice termination, but allows for local electric fields and

strained bonds. For the equation ¢, —@p =0, the corre-
sponding matrix M has the form

00
Mag=|0 1
10

1
0. (21)
0

Obviously, this matrix anticommutes with the J), current
operator and preserves both 7- and C-symmetries. Alt-
hough M 4B is quite different from M-, the results in the
cases of the C—C and BA-AB boundary conditions are
similar. Using solutions (15) and imposing the boundary
conditions with the matrix M 45 , we obtain equations for
constants 4 and B. This gives the same spectrum as in the
C—C zigzag ribbons with the normalized wave functions

k, cos (nﬂ) + ™ sin (ﬂ)
L L L
1 nny ik,.x
Y (k,,y)== €, COS| —— e X,
e——
k, cos M)—E in Ty
L L L
n=0,1,2,... (22)

(compare these functions with those in Eq. (19). Note that the
solution with n =0 is special with the gapless linear energy
dispersion §=1+2k, and constant wave function @ (y)=
=const # 0. This is the only case of ribbons with zigzag
terminations which have bulk gapless (metallic) modes. Such
modes are absent for graphene zigzag ribbons [33].

3.1.3. The C-AB boundary conditions. They corre-
spond to ¢¢(y=0)=0 and ¢,(v=L)~@z(y=L)=0.
Combining equations (14) and (15), we obtain the energy
spectrum

21’

2
i 1
eﬁ(kx)—2k§+L—2(n+5), n=0,1,2,..., (23)

and wave functions

k, sin Q(n+l) E(n+l)cos Tl:_y(n_’_l)
L 2 L 2 L 2
1 ~ . [Ty 1 ik
\Pn (kxay) = f—:n\/f en SIH(T(I’Z'FE)) el xx. (24)

1
n+—
2

[Ty
k. sin] —
o2

Obviously, spectrum (23) is shifted compared to that in
Eq. (18) due to the presence of 1/2 in the brackets and is
plotted in the lower panel of Fig. 4.

The analysis of the BA-C boundary conditions

©0,(y=0-0p(y=0)=0, @c(y=L)=0 is similar be-

1682

)

Aol

cause it does not matter to which side the AB and C
boundary conditions are imposed.

3.1.4. The CB—CA boundary conditions. Naively, one
may try to use the boundary conditions ¢ ,(y=0)=

=¢c(y=0)=0 and ¢g(y=L)=0¢c(y=L)=0. Howev-
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er, the eigenvalue problem (12) becomes overdetermined for
these boundary conditions and does not have nontrivial solu-
tions. Like in the case of the BA—AB boundary conditions
considered above, the numerical tight-binding calculations
in the lattice model give nontrivial solutions shown in the
lower panel of Fig. 3. Once again, this means that we should
try to find other CB—CA boundary conditions in the contin-
uum model which reproduce at low energies the numerical
solutions found in the lattice model.

Recall that Eq. (B3) in Appendix B implies the normal
component of the current vanishes if either @~ =0 or
¢4 —0p =0. Since we have already used the second vari-
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C C C C
B B B B B
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® ® ® ® ®
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Fig. 3. (Color online) The cell denoted by black rectangle is used in
the calculation of ribbons with the zigzag CB—CA boundary condi-
tions (a). The energy bands for ribbons with CB-CA boundary
conditions as functions of the wave vector k parallel to the
nanoribbon edge, measured with respect to the center of the
Brillouin zone. The blue lines denote the energy levels determined
from the tight-binding equations and the red dashed lines are plot-
ted by using the theoretical formula (18) only at positive energy for
the clarity of presentation. The gray point denotes the K-point. The
number of elementary cells in the numerical calculations is 100 (b).

ant for the BA—AB boundary conditions, the only remaining
way to impose the boundary condition in the continuum
theory is to use the condition ¢¢ |,—;=0 as an approxima-
tion. Certainly, the corrections from the boundary conditions
with the missing A and B atoms in the lattice model may
become notable at high energies. However, as we checked in
Subsec. 3.3 below, this is not important in the low-energy
model. Therefore, the zigzag boundary conditions CB—CA
in the low-energy continuum model are similar to the C—C
zigzag ones.

3.1.5. There are four other possible zigzag C—CA, CB-C,
CB-AB, BA-CA terminations of a ribbon, however, all of
them are equivalent to the cases discussed above.

Thus, we end up with the two main types of zigzag ter-
minations C and AB on each side on a ribbon leading, ob-
viously, to four possible zigzag edges. Note that the spec-
trum in each case differs from that in graphene [33] and
there are no states localized near the edges of the ribbon.
On the other hand, ribbons with the BA—-AB boundary
conditions contain solutions of metallic type in bulk and
this is a new feature of zigzag boundary conditions in the
dice model compared to graphene ribbons where metallic
states in bulk are absent. [It is worth mentioning that the
dispersion relations for bulk states in graphene ribbons are
essentially nonlinear unlike the bulk states in the dice lat-
tice model found here.] Ribbons with other combinations
of terminations are insulators at zero chemical potential.

3.2. Zero energy

The case of zero energy is of a special interest. The cru-
cial question is whether the zero energy flat band present
in an infinite size system survives in the presence of
boundaries. It is appropriate to recall that the zero-energy
solution in the dice model in the absence of boundaries
have @~ =0 [24,30]. For the strip of finite width we also
have @~ =0, and only one equation (16) for two compo-
nents @4, @p that reflects an infinite degeneracy of the
zero-energy band. An arbitrary function defined on a seg-
ment [0,L] can be parameterized by the coefficients of its
Fourier series. Therefore, we seek the solutions of Eq. (16)
in the form

¢ 4(y) = 4 sin(zy) + 4; cos(zy)
95 (y) = By sin(zy) + B cos(zy) (25)
that gives the equation
(kxAl — ZA2 + kal + ZB2 ) Sin(zy) +
+ (ZAl + kxAz - ZBl + kaz)COS(Zy) = O, (26)
which is identically satisfied for any 0 <y <L when the
coefficients near sin(zx) and cos(zx) are zero.
As was discussed in previous section, there are two
main different types of conditions — C and AB. For brevi-

ty, we analyze one of the possible terminations in Sec. 3.1,
namely, the BA-AB termination with the boundary condi-
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tions @ 4 —@p = 0. Equation (26) and the boundary condi-
tions at the y =0 and y =L edges give the system

kxAl —ZA2 +kal +ZBZ = O, ZA] +kXA2 —ZBI +kaz = O,

Ay =B, =0, (4 — B)sin(zL) + (4, — B,)cos(zL) = 0, (27)

| Y2
Wo(zy,ky) = f(kf +L_2J

Solutions for other terminations can be found similarly.
The found solutions are in accordance with the general
solution of the tight-binding Hamiltonian for the zero-
energy band in the case of infinite system [24,30].

3.3. Numerical results

In the previous two subsections, we determined the en-
ergy spectrum and wave functions for ribbons with the
zigzag boundary conditions in the low energy continuum
model. However, we met some problems in imposing the
BA, CB, and CA boundary conditions. Therefore, it is nec-
essary to perform the calculations in the tight-binding
model, compare the corresponding results, and find out
how the spectrum looks like at high energy where the low
energy continuum model is, strictly speaking, not applica-
ble. For the unit computation cell with the zigzag CB-CA
boundary conditions shown in upper panel of Fig. 3, we
plot in the lower panel of the same figure the correspond-
ing energy levels calculated at the K point as well as the
energy levels in the low energy continuum model shown
by red dashed lines. The latter are shown only in the upper
energy half-plane for the clarity of presentation because
the energy levels in the lower half-plane trivially follow
from the particle-hole symmetry of the spectrum. Since the
energy levels for the C—C and CA—C boundary conditions
are practically indistinguishable from the energy levels in
the of Fig. 3(b), we do not plot them separately. In addi-
tion, Fig. 4(b) describes the results obtained for the BA—
AB and BA-C boundary conditions, respectively. Our
main results are the following:

3.3.1. The results found in the low energy continuum
model are very accurate and the energy of the nth level for
k=0 equals &, =~2mn/L, where L=3Na/2 is the
width of the ribbon and N is the number of elementary
cells in the calculation cell.

3.3.2. The CB—CA boundary conditions as well as the
C—CA and CB-C ones lead to the same dispersion as the
C—C boundary conditions. This supports our conclusion
that at small momenta the CB and CA zigzag boundary
conditions type are similar to the C boundary condition.

1684

which has nontrivial solutions when sin(zL)=0, i.e.,
z=z,=7n/L with n=1,2.... The normalized wave
functions are

k, sin TN - | 22
L L L

0 et 28)

—k, sin oy —Ecos i
L L L

However, the energy dispersion for the BA—AB boundary
conditions shown in Fig. 4(a) is qualitatively different and
contains two gapless modes.
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Fig. 4. (Color online) The panels (a), (b) describe the results ob-
tained for the BA—AB and BA-C boundary conditions, respec-
tively. The number of elementary cells in the numerical calcula-
tions is 100. Note that there are two gapless states for a ribbon
with the BA-AB boundary conditions. The theoretical curves are
represented as red dashed lines only in the upper energy half-
plane for the clarity of presentation. The gray point denotes the
K-point.
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Fig. 5. The numerically calculated energy spectrum throughout the Brillouin zone for ribbons with the zigzag C—C boundary conditions (a),

the CB—CA boundary conditions (b), and the BA—AB boundary conditions (c). The number of elementary cells in the calculations is 10.

3.3.3. The BA—C boundary conditions lead to a shifted
spectrum, as predicted by Eq. (23).

3.3.4. The numerical results shown in Fig. 5 demon-
strate the energy levels found in the continuum and tight-
binding models in the zigzag ribbons with C—C, CB—CA,
and BA—AB boundary conditions throughout the Brillouin
zone.

4. Ribbons with armchair boundary conditions

In this section we will study the electron states and ener-
gy spectrum in ribbons with the armchair boundary condi-
tions imposed at the x =0 and x =L sides. Such a ribbon
is schematically shown in Fig. 6. Following the derivation of
corresponding boundary conditions in graphene [34], we
find that the @ = 4,B,C components of the wave function
obey the equations

Pu(x=0)=¢,(x=0), ¢,(x=L)=e* ¢/ (x=1L).
(29)

The armchair boundary conditions mix states from the
different K and K’ valleys and the factor AK = 41/3+/3a
comes from the scalar product (K—-K’)(Le,), which de-
scribes the phase difference between states from different
valleys on the x =L edge. Note that the phase in the se-
cond Eq. (29) is similar to graphene [33]. Therefore, the
matrix M has nonzero off-diagonal blocks and equals

A ° e ' 'Y A
] S @ 9 ;]
B @ o ® ® B
e | o o | e | e
Cal @ « e & | =cC
|o ® ® o oI
A ®. ® 7 ® A
| ] ® | L 3|
Bl @ ® ® ® |B
o o | e | e o
C b . O, O 4 C
[ ] [ ] (]

Fig. 6. (Color online) Ribbon with the armchair boundary condi-
tions. The unit cell for which tight-binding calculations are per-
formed is shown as a black rectangle.
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M l==1®|0

0 1
1 0 :T1®F,
0 0

o edkr) (001
L ®lo 1 0| 30
e 0 100

Obviously, MlT’ ) =M;, and the matrices M;, anti-
commute with the normal component of the current
{Mj,,nd} =0 for n, =+1. Both matrices M also pre-
serve T- and C-symmetries. Our next step is to find non-
trivial solutions for ribbons with the armchair boundary
conditions.

4.1. Armchair ribbons
We seek a solution in the form

o= (©4(),0¢ (x), 95 (x); 93 (x), Pr (x), 9% (x)) .

The wave functions in the K valley satisfy the equations

0 —id, —ik,, 0 0 4(x) 0 4(x)
—id, +ik, 0 —idy—ik, || 9c(x) [=€| 0c(¥) |
0 —id,, +ik, 0 0p(x) 0p(x)
@31

The wave function in the K valley satisfies the same
equation with the replacement € — —€ and the inverse or-
der of components. The armchair boundary conditions are
given in Eq. (29). For € #0, we can express the ¢, and
¢p components through ¢ by using Eq. (31) in both val-
leys. Then the second equation in system (31) gives the
equation for @ (the same equation is valid for @ too)

§2

5 9c =03 —k})oc. (32)

Its general solution is given by Eq. (14). The boundary
conditions lead to the following system of equations for

constants A4, B, A’, B’ with z= 1/52/2—k§ :
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A+B=A"+B’,
AeizL +Be—izL _ A/eizL+iAKL +Bre—izL+iAKL . (33)
A-B=-A'+B,

AeizL _Be—izL _ _A/eizL+iAKL +B/e—izL+iAKL. (34)

This system of linear homogeneous equations has nontrivi-
al solutions when

8e"KL (cos(AKL) — cos(2Lz)) = 0. (35)

The solutions to the above equation are 2zL =+AKL+2mnn .
Note that by definition z =0, which gives limits on n.
Combining the “+” and “—" solutions gives the energy
spectrum

2 L 2

with integer n=0,%1,%2,... and the wave functions

2
1o K2 +(E—A—K) (36)

The solutions are plain waves like in graphene [33].

The length L is defined as L =+/3/2(N +1)a for a strip
with N atomic rows. For L such that AKL =2nN with
integer N, the gap in spectrum Eq.(36) vanishes when
N =3N-1. In this case, the spectrum contains two gapless
(semi-metallic) modes with the linear dispersion € = iﬁky
. The other energy levels have band gaps ~1/L and are
doubly degenerate. Ribbons with N # 3N —1 have nondege-
nerate states and do not possess zero energy modes, hence
these ribbons are band insulators. In general, for armchair
ribbons, we have the results similar to graphene [33] except
the existence of the zero-energy flat band inherent to the dice
lattice model.

4.2. Zero energy

For the zero energy €=0, we have again only one
equation for the two components in each valley

_AK T (=0 + k)P 4 (x) + (=0, =k, )05 (x) =0,
1 2 L g i(—§+ﬂ)x+ikyy
K — o 2 L ’ ’
\Pn (ky,x)—T €, (& 5 (—8x+ky)(pB(x)+(—ax—ky)(pA(x):O (38)
€,v2L AK T
_TJF —+ik y with the boundary conditions (29) for ¢,, ¢’ and
©p, @3 functions. We seek the solution in the form
AK 7n . . . .
_T+_+Zky AK n (pA(x):Ale’ZX+A2e le, (p’A(x):Al'e’ZX+A§e zzx,
T — ; e_l(_Tf)H’kyy
n Ky, %)== n - izx —izx ’ — pralzx 7 —lzX
n\/ﬁ AK T (pB(x) Ble +Bze , (pB(x) Ble +Bze .
5 + 7 ik, 39)
Combining Egs. (38) and (39), we obtain the system
(37)
[(—iz+ky) 4y +(=iz =k, ) B 1™ + [(iz+ k) A4y + (i — k) B, Je ™ =0,
[(—iz— k) A + (—iz + k,, )B{ e + [z —ky) A +(iz +k, )B; Je# =0, (40)

which is satisfied for any 0 < x < L when the coefficients near ¢ and e '** functions are zero. The armchair boundary

conditions at the x =0 and x =L edges give

{Al + Ay = A+ 4 {AleiZL + Aye 7L = IAKL[ grolEL | gL

Bl+32 :Bl’+Bé’

Egs. (40) together with Eq.(41) have nontrivial solutions
when

32k} 2% (cos(AKL) - cos(2zL)) = 0. (42)

This means that the system has nontrivial solutions for
z=1*AK/2+nn/L with such integer n that z > 0. The cor-
responding normalized wave functions for + and — solu-
tions can be combined and written as

. ‘ . , _ (41
BlelzL +Bze—lzL _ elAKL [BlrelzL +Bée_lZL]
| ky +iz, )
K iz, x+ik,y
Yo Gpoky)=—=—==—==| 0 [¢" 7,
2062+ 2L b -z,
ky —iz, o
\PK/ 2 k)= e—zznxﬂkyy’ 43
0 n>y

S S B
NIGRT) ki,
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where we used short-hand notation z, = —-AK/2+mn/L
with n=0,%1,....

Hence the flat band with zero energy has infinite degenera-
cy parameterized by quantum numbers k,, and n.

4.3. Numerical results

For ribbons with the armchair edges, we compare the en-
ergy spectrum (36) with the results of tight-binding calcula-
tions in Fig. 7, where L= (V3/2)(N+1)a with N atomic
rows. The theoretical results are plotted as red dashed lines
only in the upper energy half-plane for the clarity of presen-
tation. The corresponding curves in the lower half-plane
trivially follow from the particle-hole symmetry. As was
mentioned before, only ribbons with N =3N—1 demon-
strate metallic type of spectrum, which contain gapless states
with linear dispersion (see Fig. 7(b)). The gapped (semicon-
ducting) states are arranged in pairs with very small gaps
between them for wide ribbons, while the continuum model
predicts double degeneracy of these states. The spectrum for
ribbons with a number of atomic rows different from 3N —1
fits very well the spectrum of continuum model (see, in

0.20
0.15 |
0.10 |
0.05 |

—0.05 |
-0.10 |

—0.15F

-0.20 I
-0.20

0.20
0.15 } (b)
0.10 |
0.05 |
g0
~0.05
010

—0.15 F

-0.20 ! !
-0.20 —0.10 0
k

0.20

Fig. 7. (Color online) The numerical results (blue solid curves)
and the energy dispersion given by Eq. (36) (red dashed curves in
the upper energy half-plane) for a ribbon with the armchair edges.
The panel (a) demonstrates insulating spectrum for a strip with
100 atomic rows. The panel (b) shows semi-metallic spectrum for
a strip with 101 atomic rows. The gray point denotes the K-point.

Fig. 7(a)). Similar situation is valid for graphene [33] where,
of course, the zero-energy flat band is absent.

5. Summary

We studied the possible lattice terminations in the dice
model and determined the corresponding boundary condi-
tions. We found that there are four possible non-equivalent
zigzag terminations, but they produce in the low energy con-
tinuum model only two different types of low-energy
boundary conditions. As to the armchair boundary condi-
tion, it is unique. All these types of boundary conditions
preserve the charge conjugation and time reversal symme-
tries. We found the most general 6 X6 matrix M which
determines boundary conditions for the wave function of the
Dirac-like equation for pseudospin-1 fermions in continuum
model which extends the form of analogous matrix for
graphene [31].

We determined the energy spectrum of ribbons with the
zigzag and armchair edges. We found that in some cases the
presence of boundaries opens an energy gap between the
zero-energy band and the first discrete level and leads to an
insulating behavior of the system. While the energy levels
for a ribbon with armchair boundary conditions show the
same features as in graphene [31,33] (except, of course, the
zero-energy flat band absent in graphene), the results for
ribbons with the zigzag boundary conditions are quite dif-
ferent. In particular, in the dice lattice ribbons there are no
propagating edge states localized at a zigzag boundary. On
the other hand, there are ribbons with specific terminations
which contain modes of metallic type in a bulk.

Our numerical calculations in the tight-binding model for
wide ribbons excellently confirm the analytic results obtained
in the low energy continuum model. Moreover, the qualita-
tive structure of the energy levels in both models agrees also,
although there some quantitative differences at wave vectors
far from the K and K’ points. We found that the zero-
energy flat band in the dice lattice model is very robust. Our
calculations show that it exists for both zigzag and armchair
dice lattice terminations. The boundary conditions affect only
the degeneracy of this band which is quantified by the wave
vector along the termination side and an integer quantum
number #. It was already known [23,24] that the zero-energy
flat band survives even in the presence of an external mag-
netic field which breaks both the time reversal and charge
conjugation symmetries. This clearly differs from the case of
graphene in a magnetic field, where the flat Landau levels in
infinite system are deformed by the finite size of the system
(see, for example, Refs. 35, 36).

It would be interesting to study the effects of external
electric and magnetic fields in the dice model. Some of
them for infinite dice lattice in a magnetic field are already
described in the literature [24,29] but not for ribbons. Oth-
er effects, like the Schwinger particle-hole pair creation
[37] or Klein tunneling [34,38] in electric field wait for
their study for pseudospin-1 fermions. Also, the electronic
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states of pseudospin-1 fermions in the field of charged
impurities are of considerable interest (for a similar study
in graphene, see, for example, review [39]).
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Appendix A: Derivation of general boundary condition

It is convenient to represent M in the basis

3 8
M= (1 ®k)cyy. (A1)
u=0 v=0

where the coefficients ¢, are real because matrix M is

Hermitian.

Y

General form of matrix M

By using the property (4A® B)(C® D)= (AC)®(BD),
we easily find that vanishing of the anticommutator of M
with the normal component of the electric current at a
boundary {M,nJ} =0 gives

mfs = =nhi S =202 =3 o+ ) S =

2 2
negr =n,gy, 84=2ny,—ny)g3, gs=—4nn,g3, g¢=g,N:87 =Nn,8, &8 = BNERER

where we used the notation ¢ 3y, = f, and ¢ 5y = gy-
Thus, we have 3-parametric family of f, and g, which
defines a 12-parametric family of M-matrices. The condi-
tion M2 =1 further reduces the number of parameters
leaving only six independent ones.

Symmetry restrictions

The Hamiltonian of the dice model is invariant with re-
spect to the time reversal 7 and charge conjugation C
transformations. The operator 7 has the form
T= T ® FK and K is the operator of complex conjuga-
tion. The relation

THK)T ™' = H(—k) (A8)
implies the two following equations for F':
-1 -1
FS,F =8, FS,F =-S, (A9)

whose solution with FTF =1 and up to an arbitrary phase
factor is

3 8
> Yty t3) ® (A (Sm) + (131, ) ® (Sm)A )y = 0.
u=0 v=0

(A2)

Since T3 commutes with the T, and T3 matrices and
anticommutes with T; and T,, we obtain the following

equations for ¢, :

8
D (S 3y, =0,

(A3)
u=0
8
> Ay (Sm)lc12yy =0, (A4)
v=0

or explicitly in terms of the Gell-Mann matrices,

8
D s Mg +R)ne + (kg +A7)n, Yeg 3 =0, (AS)
u=0

8

D[y, A +Rg)ne + (g +hg)nyJer o)y = 0. (A6)
v=0

Calculating the anticommutator in the first equation and the
commutator in the second, we obtain two matrix equations.
Further, setting the coefficients at different Gell-Mann mat-
rices to zero, we find the following system of equations for
the coefficients of matrix M :

R

ny,(=3fo+f3). fo = =S1s nyf7 = fis Sg :—\/gf&
1 (A7)
00 1
F=lo 1 ol (A10)
1 0 0

The time reversal operator T satisfies T2 =1. Note that
in the presence of a real spin degree of freedom the operator
T should be replaced by the operator T = i0, ® T which
satisfies the standard condition 7 >=—1. with the matrix
0, acting in real spin space. Clearly, S isa symmetry if
MS =SM . Using the general form of matrix M given by
Eq.(Al), we find that the time reversal symmetry leads to

M ®F)—(1,®F)M" =0 (Al1)

that gives for real ¢,

3 8
> S () @A F) — (41, ® (FA e,y = 0. (A12)
n=0v=0
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The above equation implies

8
> F=FAy)cyy =0=>¢y 1 =

v=0
_ 1
=Cu6:Cu2 =7 Cug = _ﬁ‘/’uﬁ’ (A13)
for ©=0,1,2, and
8 *
2 (}\’VF+F}\'V)CS,V =0 = C3’0 = 03,4 = C375 = 0,
v=0
€31~ 7C36-632 = —€37,C38 = \/503,3 (Al14)
for u=3.

Combining Eq. (A7) with conditions (A13) and (A14)
we find the set of nine survived parameters, cg g, o3, 31,
€(1,2),0> €(1,2),1> €(1,2),3 » 1f the condition M? =1 is not tak-
en into account. The condition M2 =1 gives one more
constraint and leaves free only five parameters.

The operator of the charge conjugation does not inter-
change spinors from different K valleys, therefore, it is
defined by the equation

CHK)C™'=-H(K), (A15)

whose solution is

1 0 0 | |
C=1,® [0 =1 0|=7® | =Ag+Az——Ae |.
0 0 (3 0 3 \/§ 8)
0 0 1
(A16)

Using the general form of matrix M given by Eq.(A1l), we
find that the charge conjugation symmetry leads to the fol-
lowing equation for M :

MSe—ScM =0=

3 8

1 1
= z ZTH ®[7\,V,(§7\.0 +7L3 —ﬁlg)]cu,v = 0,

u=0 v=0

(A17)
which for every u=0,1, 2,3 gives the following re-
strictions on parameters:

C, =C,

w2 =6

=7 =0. (A18)

w1 1,6
According to Eq. (A7), there remain independent only eight
parameters, which can be chosen as ¢, ¢39, ¢3, €33,
€105 2,05 €13> €23 (Without taking into account the con-
straints M2 = D).

The general form of matrix M, which preserves 7- and
C-symmetries is:

- 2,2 2 4 1
Mg, 5. =T ® (Co,oko +coahs + 3 U = m)(S3c00 + <o 3 Ay + 3y (F3¢0,0 €03 JAs _ECO,37‘8 ) +

i=1

2
+ ZTI- ®(7\.Ocl~’0 + (7\.3 + 2(71)2/ —l/l)% )7\,4 - 4l’lx}’ly}\,5 - \/§ )\.8)01-’3) .

L (A19)

Note that this expression contains six independent parameters. The condition M 2 =1 further restricts the number of free
parameters giving several families of solutions with a maximal subset having two parameters.

Appendix B: Boundary conditions from zero boundary current

We start with the exact formula for the matrix element of current (9)

1

where ny =n, tin,. We begin with the zigzag boundary
conditions n, =0, n, =1.

Zigzag boundary conditions. For the zigzag boundary
conditions, it is sufficient to analyze only one valley. The
matrix element in the K valley has the form

1 * *
;<T|“BJ|T>‘ i = (Wyn_+¥pn)¥e+

+Wo(n, W +n_Wp)=0. (B2)

—(P|ngd | ) =[¥yn_ P+ Ve, ¥y +n W)+ Wpn, Yo ]-[Ypn Yo +¥o (n, Py +n ¥ )+ ¥pn, W l,
Up

(BI)

Obviously, the above equation has two possible solutions
for n, =+l1:

Y,-¥Y5=0 and ¥, =0. (B3)
This means that the AB boundary condition can be written
as ¥, -¥5=0.

For the CA or BC boundary conditions, we automatical-
ly have missing C-atoms. Then, the simplest boundary
condition is W = 0. There are also some corrections from
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missing A- or B-atoms, but we can neglect them in our
analysis, because these corrections are important only for
upper levels, where the linearized Hamiltonian cannot be
applied.

Armchair boundary conditions. Here we need to com-
bine both valleys. Imposing the armchair boundary condi-
tions on the x sides, (ng = (£1,0) ), we find for the matrix
element of the current

1 * * *
v—(‘P|nBJ|‘I’> =[(¥, +¥p) Ve +W (¥, +¥p)]-
F

—[(¥y + ¥ Wer + ¥ (P o +¥5)]=0. (B4)
Therefore, the possible types of conditions are

¥, =, W, =Y, u=4,B,C (BS)

u u

with real phase o, which is equal to all three functions
(this phase cancels out due to complex conjugation in the
products).
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EnekTpoHHi cTaHn dhepMioHiB i3 nceBgocniHOM
OAMHULA B CTPiYKax Aanc-rpatku

0.0. Opexos, E.B. lNop6ap, B.IM. N'ycuHiH

BuBueHo rpaHHYHi YMOBH AJIs JBOBHMIpHHX (DepMioOHIB Ha
CTpiYLli I'eKCAroHaNbHOI I'paTKH B JalCc-MOJENi, CHepreTHYHHI
CIIEKTp SKOi B HECKIHUCHHIH CHCTEMi CKJIAJAe€ThCsl 3 TPHOX 30H,
OJHA 3 SIKUX € MOBHICTIO IIJIOCKOIO 30HOIO i3 HYJILOBOIO HEPTIEI0.
IMoxni6uo rpadeHy peryasspHAMH KpasMH CTPIUYKH € [Ba TUIH
IpaHMIb Y BUVISAL Kpicia Ta 3ur3ary. ICHYIOTh YOTHPH MOXKIIH-
BUX TpaHMLi THIY 3Ur3ar Ha BiIMiHy Big rpadeHy, Ae TiIbKH
OJIUH THUIl TAKUX IPAHULbL MOXIIUBUHA. 3HAlJICHO CHEPreTUYHUIL
CIeKTp (epMiOHIB i3 MCEBAOCIIHOM OJMHHLS B Jalic-MoOfeni 3
IPaHUYHUMH YMOBaMH y BUIILIAI Kpicia Ta 3ursary. ITokasaHo,
IO €HEepPreTUYHi PiBHI Ul CTPIYOK 3 TPAHUYHUMH YMOBaMH Y
BUIIIAI KpicJla QHAIOTIUHI PIBHSAM B rpadeHi, BKIIOYAIOUH I0-
JIATKOBO IUIOCKY 30HY HYJIbOBOi eHeprii. 3 iHIIOro OOKy, Ha
BiZIMiHY BiJ rpadeHy, He icHye KpaHOBUX MO/, TOKaJIi30BaHUX Ha
TPAHULISAX CTPIYKH, MPOTE ICHYIOTh 3WI3ar IPaHULi, Ui SKHAX
MOJM METAJIiYHOTO THILy IPHCYTHI ycepeauHi crpiuku. Enepre-
THUYHA JIMCIEPCisl MOBHICTIO IUIOCKOI SHEpreTHYHOi 30HU jaiic-
MozeNni He 3MIHIOETHCS B HPHUCYTHOCTI I'PaHUYHHX YMOB 000X
THUIIB, SIKi iHBapiaHTHI BiHOCHO CHMETpid 3apsI0BOrO CIIOIY-
YeHHsI Ta OOCPHEHHS 4acy.

Kiro4oBi cnoBa: IICEBIOCHIH OIUHUI, JIBOBHMIpHI (epMioHH,
Jlafic-rpaTka.

ONEeKTPOHHbIE COCTOSIHUS (PEPMUOHOB C
nceBAOCMNMHOM eavHULA B MONOCcKax Aalc-peLleTku

O.A. Opexos, 3.B. lNopbap, B.IN. N'ycbIHWH

HccnenoBaHbl TpaHUYHbIE YCIOBUS JUIS JBYMEPHBIX (hepMHO-
HOB Ha IOJIOCKE IeKCAarOHaJIbHOM PEIIETKU B Jaic-MOJENHU, SHEp-
TETHYECKUH CIIEKTP KOTOPOH B OECKOHEYHOW CHCTEME COCTOUT U3
TpeX 30H, OZIHA U3 KOTOPBIX SABIIETCS IOJHOCTBIO ILIOCKOU 30HOM ¢
HyneBoil sHeprueil. Ilogo6HO rpadeHy perysaspHBIME Kpasmu
MOJIOCKH SIBJIIOTCS J(BA THUIA TPaHUI] B BUAE Kpecla U 3ur3ara.
CyIecTBYIOT YETHIPE BO3MOXKHBIX TPAHUIIBI THIA 3Ur3ar B OTJIH-
4ne OT ciIydast rpadeHa, Iie TOIBKO OJWMH THUIT TAKUX I'PaHHI] BO3-
MoxeH. HalineH sHepretmueckuil cnekrp (epMHOHOB C IICEBIO-
CIIMHOM EIUHMIA B Jaiic-MOJENH ¢ IPaHUYHBIMH YCJIOBUSIMU B
BHUIE Kpecna U 3ur3ara. Iloka3aHo, uTo 3HEpPreTHM4ecKUe ypOBHU
JUIS TIOJIOCOK € TPaHUYHBIMU YCIOBHAMH B BUJE KpeCila aHaJIOru4-
HbI YPOBHSIM B Tpad)eHe, BKIIOYas JOMOJIHUTEIBHO IUIOCKYIO 30HY
HyneBoi sHeprun. C Apyroil CTOPOHEI, B OTIMYKE OT TpadeHa, He
CYILIECTBYET KPAeBbIX MO/, JIOKATM30BaHHBIX HAa TPAHULAX MOJIOC-
KH, OJJHAKO UMEIOTCS 3Ur3ar TPaHMLbL, A KOTOPBIX CYIIECTBYIOT
MOJIbl METAUIMUECKOr0 THUMA BHYTPH TOJOCKH. DHEpreTudeckas
Jucnepcusl IOJMHOCTBIO IUIOCKOM 3HEpreTudeckod 30HBI paiic-
MOJIENIM HE U3MEHSIETCS B NPUCYTCTBUU IPAHUYHBIX YCIIOBHI 000-
KX TUIIOB, KOTOpbIC MHBAPUAHTHBI OTHOCUTEIBHO CUMMETPUH 3a-
PSIIOBOTO CONPSDKEHUS U OOPAILEHHUs BPEMEHH.

KiroueBsle ciioBa: NCeBIOCIINH €ANHHUIIA, IByMEPHBIC ()ePMHOHBI,
Jlalic-pererka.
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