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Structure and coordinate dependence of the reflected wave, as well as boundary conditions for quasi-particles 
of graphene and the two dimensional electron gas in sheets with abrupt lattice edges are obtained and analyzed 
by the Green's function technique. In particular, the reflection wave function contains terms inversely propor-
tional to the distance to the graphene lattice edge. The Dirac equation and the momentum dependence of the 
wave functions of the quasi-particles near the conical points are also found by the perturbation theory with de-
generacy in terms of the Bloch functions taken at the degeneracy points. The developed approach allows to for-
mulated the validity criteria for the Dirac equation in a rather simple way. 

Keywords: graphene, 2D electron gas, Dirac equation, boundary conditions, validity criteria, Green functions. 

1. Introduction

Dynamical and transport properties of various mesoscopic 
systems have been attracting much attention during the last 
decades [1,2]. Among them are quantum dots, quantum nano-
wires, tunneling junctions and 2D electron gas based 
nanostructures. Fascinating dynamic and kinetic phenomena 
arise in graphene which is a two-dimensional (2D) semi-metal 
having no energy gaps between two bands of electrons and 
holes at six points of the hexagonal Brillouin zone. 

Electronic properties of graphene can be described by 
the two dimensional differential Dirac equation [3,4] sup-
plemented by boundary conditions. Details of the boundary 
conditions depend on microscopic characteristics of the 
concrete structure of the sample boundary [5]. Theoretical 
derivations of the boundary conditions for Dirac equations 
are usually based on various models such as tight bound 
model (see, e.g., review papers [6,7] and references there), 
the effective mass model [8], tight-binding model with a 
staggered potential at a zigzag boundary and with the 
boundary orientation intermediate between the zigzag and 
armchair forms [9]. 

In this paper dynamics of quasi-particles in 2D electron 
gas and graphene are considered in the frame of the con-
ventional approach to the scattering problems for finite 
lattices in terms of the electron Bloch functions and band 
energies without usage of the above-mentioned models. 
Using the Green's function technique the boundary condi-
tions and the coordinate dependence of the wave functions 
of quasi-particles in 2D electron gas and graphene lattices 

with an abrupt edges are obtained. Criteria of the validity 
of the Dirac equation are formulated in a rather simple 
way. It is also shown that the wave function of the reflect-
ed quasi-particle contains slow varying terms inverse pro-
portional to the distance to the edge of the graphene sheet. 

The outline of this paper is as follows. In Sec. 2 the per-
turbation theory with degeneracy is used to obtain the Di-
rac equation and the wave functions in terms of the Bloch 
functions taken at the degeneracy point in the reciprocal 
lattice. In Sec. 3 scattering of quasi-particles by an external 
potential in graphene is considered in the Bloch function 
representation. The Dirac equation is derived and its validi-
ty criteria are formulated. In Sec. 4 the Green's function 
approach to the problem of scattering of quasi-particles in 
a lattice sheet with an abrupt edge is developed. In Sec. 4.1 
the wave function structure and boundary conditions for 
the 2D electron gas in a lattice sheet with an abrupt edge 
are found. In Sec. 4.2, the structure of the wave function 
and its dependence on the distance to the lattice edge are 
found. In Sec. 5 concluding remarks are presented. 

2. Derivation of Dirac equation and Bloch functions for
graphene by perturbation theory 

The Schrödinger equation for electrons is 

0 , ,
ˆ ( ) = ( ) ( )s s sH ϕ ε ϕp pr p r (1) 

where 0Ĥ  is the Hamiltonian for electrons moving in the 
periodic lattice potential ( )U +r a  with the period a . This 
Hamiltonian reads as follows:  
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s suϕ
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is the Bloch function while the Bloch periodic factor 
, ( )su p r  has the translation periodicity of the lattice, p is the 

electron quasi-momentum and s is the band number. 
In order to find the dependence of Bloch functions and 

the dispersion law of the quasi-particle in graphene on their 
momentum p one may use the perturbation theory in 
| | / 1b <<p  with the degeneracy [10] at = 0p  (here b  is the 
characteristic period of the reciprocal lattice). 

Presenting Bloch functions as a superposition of the unper-
turbed wave functions of the zero approximation  

 ( )1 1,0 2 2,0( ) = exp ( ) ( )i g u g uϕ +
prr r r


 (4) 

(here 1,2;0u (r) are the periodic factors of the Bloch func-
tions of the degenerated bands taken at the point of degen-
eracy p = 0) and inserting it in the Schrödinger equation 
Eq. (1), after taking the matrix elements one gets a set of 
algebraic equations for the expansion constants 1,2g . In the 
first approximation in the momentum p these equations are 

 , , ,
=1,2

= 0
'

g g′ ′α α α α
α

−ε + ∑p ppv , (5) 

where = 1,2α  is the band number of the degenerated band 
while ( )αε ≡ ε p ; the matrix elements of the velocity opera-
tor ˆ = ( / ) /i m− ∂ ∂v r  are  

 *, ,0 ,0ˆ= ( ) ( )u u d′ ′α α α α∫ r r rv v . (6) 

Equating the determinant of Eq. (5) one gets the con-
ventional dispersion law of quasi-particles near the degen-
eration point:  

 
2 2

12( ) 4 | |
( ) =

2
+ −

±
± +

ε
pv pv pv

p , (7) 

where 11 22=± ±v vv . 
From Eq. (7) it follows that the dispersion law of quasi-

particles in the vicinity of the band intersection is of the 
graphene-type  

 2 2( ) = =x yp p p±ε ± + ±p v v  (8) 

if the lattice symmetry imposes the following conditions 
on the velocity matrix elements at the point = 0p  of the 
degeneration 1 2(0) = (0)ε ε :  

 11 22 12(0) = (0) = 0, | (0) |= ,v v v v   

 ( )
12 12(0) = (0),y xi±v v  (9) 

where 6= 1 10F ≈ ⋅v v  m/s for graphene. 

Inserting these values in Eq. (5) one gets equation for 
dependence of the expansion coefficients on the momen-
tum p as follows:  

 1, 2,( ) = 0;x yg p ip g−ε + −p pv   

 1, 2,( ) = 0x yp ip g g+ − εp pv . (10) 

Using Eq. (10) one finds the dispersion law Eq. (8) and the 
Bloch functions of quasi-particles in graphene:  

( )
1,0( ; )

, 1 ( )
2,0

( ) 0 1
( ) = exp

e0 ( )
gr

i

u
g i

u

±
±

α θ±

   ϕ       
p

rprr
r 



, (11) 

where 1g  is the normalizing constant and the phase 
= arctan( / )x yp pθ . 
In the next section, scattering of quasi-particles by an 

external potential in 2D gas and graphene is considered. 

3. Scattering of quasi-particles by an external potential 
and derivation of the Dirac equation 

In this section, the scattering problem of electrons by a 
potential ( )V r  (the characteristic properties of which are 
later described) in 2D gas and graphene is investigated. 

The Schrödinger equation of the system under consid-
eration is  

 ( )0
ˆ ( ) ( ) = ( )H V+ Ψ εΨr r r . (12) 

It is assumed that two energy bands are closely spaced or 
intersect in a certain point = 0p  of the reciprocal space as 
it takes place in graphene while the energy ε is in the vi-
cinity of the degenerate energy. In order to investigate dy-
namics of electrons in such a situation it is convenient to 
expand Ψ  in the series of the following functions:  

 ,0
,

,

( ), = 1, 2
= exp

( ), 1, 2,s
s

u s
i

u s
α ≡ α χ   ≠ 

p
p

rpr
r



 (13) 

where band numbers = 1,2α  designate the bands close to 
each other, the periodic Bloch factors of which are taken at 

= 0p . As ,sχ p  constitute a complete set of functions the 
following expansion is satisfied for all values of p.  

 , ,( ) = ( )s s
s

g dΨ χ∑∫ p pr r p. (14) 

Inserting this expansion in Eq. (12) one gets  

 ,
=1,2

ˆexp ( (0)d g iα α
α

  ε + + 
 

∑ ∫ p
prp pv


  

 
2

,0( ) ) ( )
2

V u
m α+ + − ε +

p r r   

 , ,
1,2

ˆ( ( ) ) ( ) = 0s s s
s

d g
≠

+ ε + − ε ϕ∑ ∫ p pp p pv r , (15) 

where ˆ = ( / ) /i m− ∂ ∂v r  is the velocity operator. 
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Multiplying this equation on the left by ,αχ p and ,sχ p  in 
turns and integrating one gets a set of coupled algebraic 
equations for the expansion factors , :gα p  

 
2

, , ,
=1,2

( (0) )
2 '

g g
m ′ ′α α α α α

α
ε + − ε + +∑p p

p pv   

 , , ,
1,2

( ( ) ) ( )p p s s s
s

V g d a g
∞

′ ′− α α
≠−∞

′+ + ε − ε +∑∫ p pp p p   

 , ,
1,2

( ) = 0p p s s s
s

V a g d′ ′ ′−
≠

′ ′+ ∑ ∫ pp,p p , (16) 
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∞
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−∞
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∫p ppv p p   

 , ,
1,2

( ) = 0,p p s s s
s

V a g d′ ′ ′ ′−
≠

′ ′+ ∑ ∫ pp,p p  (17) 

where the matrix elements of the velocity operator 
ˆ = ( / ) /i m− ∂ ∂v r  are  

 *
, ,0 ,0( )

ˆ= ( ) ( )u u d′ ′α α α α∫ a
v r v r r



,  

 *, , ,0( )
ˆ= ( ) ( )s su u d′α α∫ pa

v r v r r


 (18) 

and  

 *
, ,0 ,( )

( ) = ( ) ( )s sa u u drα α∫ pa
p r r


,  

 *
, , ,( )

( ) = ( ) ( )s s s sa u u dr′ ′ ′′ ∫ p pa
p,p r r



. (19) 

Integration in Eqs. (18), (19) is over a unit cell. The above 
equations are valid for all values of the electron momen-
tum p and for an arbitrary form of the potential ( )V r . 

The equations which describe dynamics of electrons 
in graphene and analogous conductors (Dirac equations) 
in the vicinity of the degeneration energy are readily 
obtained from Eqs. (16), (17) in the following limits: 
| | = 2 /b aπp   (a is the characteristic atomic spacing) 
while the potential is assumed to be small and slowly vary-
ing that is gap| | = | ( ) ( ) |sV α∆ ε − εp p , s ≠ α, and the 
characteristic interval lδ  of the variation of ( )V r  is l aδ  . 

Indeed, under the above assumptions one may neglect 
the dependence of the matrix elements in Eq. (19) on p and 
obtain , ,= = 0,s sa sα αδ ≠ α. Inserting this equality in 
Eq. (17) one gets  

 
2,

, gap

| | | |, ( /2 )= 1
| |

sg V p m
gα

γ
∆

p

p
   (20) 

and hence equations Eq. (16) and Eq. (17) are decoupled in 
the zero approximation in 1γ . Therefore, in this appro-

ximation the Schrödinger equation in the χ-representation 
(see Eq. (14)) for electrons in the vicinity of the intersec-
tion of two bands, 1 2(0) = (0) = 0ε ε , reads as follows:  

 , ,
=1,2

( (0) ) '
'

g g ′α α α
α

ε − ε + +∑p a,a ppv   

 , = 0p pV g d
∞

′ ′− α
−∞

′+ ∫ p p . (21) 

While writing this equation we assumed 2 /2 | |p m vp ). 
Using equalities Eq. (9) one gets the set of equations 

that describes dynamics of quasi-particles in the presence 
of potential ( )V x :  

 1, 1, 2,( ) = 0;p p x yg V g d p ip g
∞

′ ′−
−∞

′−ε + + −∫p p pp v   

 1, 2, 2,( ) = 0x y p pp ip g g V g d
∞

′ ′−
−∞

′+ − ε + ∫p p p pv , (22) 

where for the sake of certainty ( )
12 12=y xi−v v  is chosen. Ex-

panding the wave functions in Eq. (22) into the Fourier 
series  

 1,2; 1,2= ( )exp pg i d Φ − 
 ∫p

rr r


 (23) 

one find the equation for the Fourier factors:  

 1 1

2 2

( )
=

( )
x y

x y

V i
i

i V

∂ − ∂  Φ Φ   
− ε      Φ Φ∂ + ∂     

r

r
v . (24) 

The above equation describes dynamics and, in particular, 
quantum tunnelling of quasi-particles between intersecting 
energy bands in the vicinity of the point of degeneration. 
This set of differential equations (with proper changes of 
parameters) arises in all cases in which the unperturbed 
energy spectrum has points of degeneration (or points of 
close approach of energy bands), e.g., in graphene (see 
review papers [6,7,13]), in the cases of Landau–Zener tun-
nelling (see Ref. 12 and references there) and the magnetic 
breakdown — quantum tunnelling in metals under a strong 
magnetic field (see Refs. 11, 14, 15). Note, that the tunnel-
ling transmission of electrons between intersecting energy 
bands without back-scattering (“Klein tunneling” takes 
place in many cases, in particular, in the cases of grapene 
[6,7,13] (normal incident of the electron to barrier) and the 
magnetic breakdown [11]. 

As it follows from the above derivation of Eq. (24) the 
Dirac equation [6,13] is valid only in the limit of small and 
smooth potentials (see Eq. (20) and the text around it) and 
hence it can not be used for investigation of the problem of 
electron scattering by sharp boundaries of the sample. In 
the next section the Green function approach is developed 
to solve this problem for the cases of 2D gas and graphene. 
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4. Scattering of electros in lattice with abrupt edge 
(Green function approach) 

Boundary conditions for Dirac Fermions in graphene 
were derived in Refs. 8, 9, 13 (see also, e.g., Review pa-
pers [6,7]) in the tight-binding model. In this section the 
boundary conditions for two dimensional electron gas and 
grapene are derived by use of the Green’s function tech-
nique in terms of the general properties of electron spectra 
and proper wave functions. 

Below a half infinite two dimensional sheet of 2D gas or 
graphene in the half plane 0x ≥  with the edge line at = 0x  
is considered. In this case the Schrödinger equation is  

 
2 2

2 ( ) ( ) = 0
2

U
m

 ∂
− + − ε Ψ  ∂ 

r r
r

 , (25) 

where ( )U r  is the periodic lattice potential. For the sake of 
certainty the boundary conditions  

 ( ) = 0, = 0xΨ r ,  

 ( )
,0 0

( ) = ( ),in
s xΨ ϕ → +∞pr r  (26) 

are assumed. Here ( )
,0 0

in
sϕ p  is the Bloch function (see 

Eq. (3)) incident to the boundary and (0)
0 = ( , )xp qp  where 

( )= in
yq p  is the conserving momentum projection. 

Below, to investigate the problem of scattering by the 
abrupt edge at = 0x  Green’s function for the infinite lat-
tice is used, that is the needed Green function satisfies the 
equation  

 
2 2

2 ( ) ( , ) = ( )
2

U G
m

 ∂ ′ ′− + − ε δ −  ∂ 
r r r r r

r
  (27) 

in which the lattice potential ( )U r  covers the whole plane 
( , )x y . Expanding ( , )G ′r r  in the series of wave functions of 
electrons in the infinite lattice and using Eq. (27) one finds  

 
*

, ,( ) ( )
( , ) =

( )
s s

ss
G d

i

′ϕ ϕ
′

ε − ε + δ∑∫ p pr r
r r p

p
, (28) 

where 0δ → +  
Below we also assume that along the edge line = 0x  

the lattice is periodic with the period a  and hence the mo-
mentum projection yp  conserves. Taking into account this 
requirement and using Eqs. (25), (27) together with Eq. 
(28) and the boundary conditions for ( )Ψ r  one finds the 
wave function on the right half-plane 0x ≥  as follows:  

 
( ) 2,0 0

, 0

( ) = ( 0, )
2

in
s

x
x s

dy y
mv

∞

−∞

ϕ
′Ψ + Ψ − ×∫

p
r    

 
*, , , ,( 0, ) ( )

( , )

s p q s p qx x y
x

s x ys

y
dp

p q i

ϕ − ϕ
×

ε − ε + δ∑∫
r

 (29) 

where , 0
< 0x sv  is the x-projection of the velocity of the in-

cident electron that normalizes its wave function to the unity 

flux; 0
y

yq p≡  is the conserving y-projection of the momen-
tum 0p  of the incident electron; ( 0, ) = ( )/x y x′Ψ − ∂Ψ ∂r  at 

= 0x − ; as the value of Ψ-function in Eq. (29) exactly on the 
boundary contour is a matter of convention (see Ref. 16) the 
boundary contour is assumed to be shifted to = 0 0 ,x − ≡ − δ  

0δ →  while ( )x′Ψ r  is defined on the half-plane 0x ≥ . 
It is now necessary to introduce the integral equation 

for ( 0, )yΨ −  solution of which completes the definition of 
the wave function ( )Ψ r :  

 
( ) 2,0 0

=0
, 0

1(0, ) = | (0, )
2

in
s

x x x
x s

y dy y
x m

∞

−∞

∂ϕ
′ ′Ψ + Ψ ×

∂ ∫
p



v
  

 
*

, , , ,(0, ) (0, )
.

( , )

s p q s p qx x y
x

s xs

y y
dp

p q i

′ϕ ϕ
×

ε − ε + δ∑∫  (30) 

Here ( ) = ( )/f f x′ ∂ ∂r r . 
In the general case and without usage of an approximate 

model this integral equation can not be solved. However, 
important general features (in terms of (0, )x y′Ψ ) of the 
quasi-particle scattering by the abrupt lattice edge follow 
from Eq. (29). 

Indeed, let us consider one-dimensional integrals in 
Eq. (29) presenting them in the form  

 
/*/2

, , , ,

/2

(0, ) ( )e
=

( , )

ixpb xx s p q s p qx y x y
x

s x ybx

u y u
I dp

p q i
−

ε − ε + δ∫
r 

. (31) 

Here xb  is the period of the reciprocal lattice in the x-di-
rection. In the complex plane the dispersion law ( , )s xp qε  
considered as a function of the complex variable = xz p i+ ξ  
is a multi-valued function which has branching points in the 
complex plane and hence this integral is a sum of the resi-
dues minus sum of integrals along the brunch cuts in the 
upper complex half-plane 0ξ ≥  inside the contour schemati-
cally shown in Fig. 1. The left and right vertical lines of the 
contour are separated by the reciprocal period period xb  and 
hence the integrals along them cancel each other because the 
integrands are periodic functions of the same period. The 
integral along its upper horizonal part exponentially goes to 
zero as this contour part goes to i∞ . 

The poles and branching cuts of the integrand which con-
tribute to the integral Eq. (31) are separated in two types: 

1. Poles lying on the upper side of the real axis  

 ( )
( )= , = 1,2,..., 0,x x
x

p p iα
α
δ

+ α δ→
v

  

where their real parts ( )
xp α  are determined by the equation  

 = ( , )x yp qαε ε  (32) 

while α defines the number of the band which are present 
in the infinite lattice at the energy ε and the momentum 
projection =yp q  (in Fig. 1 they are shown as pockets 
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with the band numbers = 1,2α ). One easily sees that these 
poles are inside the integration contour if the x-projections 
of the velocity 

 , ( )
( , )

= | > 0x y
x pxx

p q
p

α
α α

∂ε

∂
v  (33) 

and, therefore, they correspond to the states of electrons 
reflected back by the boundary. 

2. Poles lying high in the upper complex plane 
(0) (0)= s
s x sp p ib+  which are determined by the equation 
= ( , ),s x yp qε ε  s ≠ α  where the energy bands ( , )s x yp qε  

do not overlap bands α (in which the energy ε lies). 
As the dispersion law ( , )s xp qε  is a multi-valued func-

tions of xp  (a circuit around the branching point changes the 
band number s) there are branching cuts in the upper half 
plane = xz p i+ ξ , schematically shown in Fig. 1, which pass 
from the branching points ( ) ( ) ( )

,=br br br
s x s sp p i+ ξ  ( )

,
br

x sp i+ ∞). 
Taking into account the above-mentioned poles and 

branch cuts one easily carried out integration in Eq. (31) 
and, inserting the result in Eq. (29), one writes the required 
wave function as follows:  

 
( )

, ,0 0

, ,0

( , )
( ) =

in
s px

x s x

x y
C

αα
α

αα

ϕϕ
Ψ + +∑p

r
v v

  

 
(0) (0), /

,

( , )
e

s p b xs ss
x ss

x y
C −

≠α

 ϕ


+ +



∑ 

v
  

 /
( ), ( )

( )
( ) ( , )e x

s brs pss s
br

B x y d
∞

− ζ
ζ

ξ




+ ζ ϕ ζ



∑ ∫  , (34) 

where summation = ,s s α  (that is summation with respect 
to s  is over all electron bands including all α-bands), the 
integral is taken along the s -branching cut in which the 
variable change = iζ ξ has been done; the functions in 
square brackets are  

 
( )

(0) (0), ,
= exp

s
x

s p s ps s

xp qy
u i

 + ϕ  
  

,  

 
( )
,

( ) ( ), ( ) , ( )

)
= exp

br
x s

br brs p s ps s

xp qy
u i

ζ ζ

 + ϕ  
  



, (35) 

where ( ) ( )
,( ) =br br

s x sp pζ + ζ; constants ,sA  Cα and ( )sB ζ  
are presented in Appendix, Eqs. (38), (39). 

4.1. Scattering of electrons by abrupt edge in 2D electron 
gas 

As one sees from Eq. (34) the functions in square 
brackets exponentially decrease with an increase of the x-
coordinate. In the general case the energy gaps between 
non-overlapping electron bands are of the order of the band 
widths E∆  1–10 eV and hence the imaginary parts of the 
pole and branch momenta are of the order of the / FE∆ v  that 
is ( )(0) /s

s brb aξ    where a is the atomic spacing. 
From the above considerations and Eq. (34) it follows 

that inside the layer x a  adjacent to the sample boundary 
the electron wave function is a superposition of Bloch 
wave functions ϕs  of all energy bands including those vir-
tual which are above and below the band of the incident 
electron (that is their band numbers s ≠ α). 

At the distances much larger than the atomic spacing, 
x a , all the virtual wave functions exponentially drop 
out from the superposition and the electron wave function 
Ψ  reduces to  

 
( ),( ) /

,0 0 ,

( , )
( ) = (e )

pin x ax
s

x

x y
C O

αα −
α

αα

ϕ
Ψ ϕ + +∑pr

v
. (36) 

According to the calculations the Bloch functions under 
the summation sign belong to the states with the positive x-
projections of the electron velocity (see Eq. (33), Fig. 1(а)). 
Therefore, they are the Bloch functions of the electron 
scattered back by the sample boundary into all the availa-
ble energy bands at the energy of the incident electron ε 
and the conserving y -projection of the momentum while 
constants Cα are the amplitude probability of this many-
channel scattering (an example of such the two-channel 
scattering is presented in Fig. 1(а)). 

The above general scattering scenario requires a special 
treatment in the case of the generation when the top and 
the bottom of two energy bands are very close or coincide 
in some point of the reciprocal space as it takes place in 
graphene. In the next section the scattering of quasi-
particles by a sharp graphene boundary is considered.  

Fig. 1. (a) An example of the Brillouin zone with 5 contours of 
equal energy of energy bands ( ) =αε εp  with the band number 

= 1, 2, 3, 4, 5α . The arrows show the directions of the velocities at 
the points of intersections of the equal energy contours with the line 
of the constant y-projection q . The incident electron has the con-
serving momentum projection ( )= in

yq p  and the negative direction 
of the velocity x -projection, xv . (b) Contour of integration of 
Eq. (29), (31). Crosses on the real axis xp  and those in the upper 
complex half-plane show positions of the poles corresponding to 
two points with positive xv  and to virtual states ( ) ;s sε ≠ ε ≠ αp . 
Thick vertical lines are brunch lines corresponding to the brunch-
ing points (thick dots) in the electron spectrum. 
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4.2. Scattering of quasi-particles by abrupt edge 
of graphene sheet 

In this section scattering of quasi-particles in graphene 
by an abrupt edge is considered. Graphene fills the half-
plane 0x ≥  while the boundary condition for the quasi-
particle wave function is ( ) (0, ) = 0gr yΨ . 

In the general approach to the scattering problem devel-
oped above, the only peculiarity of the scattering of quasi-
particles in graphene lies in their dispersion law whereas all 
the equations of the previous section remain valid. 

The incident electron in graphene with a negative x-
projection of the velocity in the Bloch state ( , )

( )
gr in
inϕ

p
 and the 

energy > 0ε  belonging (for the sake of certainty) to the 
electronic band ( ) =p p+ε +v  is considered (see Fig. 2(a)). 

Inserting the graphene quasi-particle dispersion law 
Eq. (8) in Eq. (34) one finds the electron wave function at 
the distances much greater that the deBroglie’s wave 
length = /Bx λ εv  as follows (details of calculations 
are given in Appendix B):  

 ,x
ε
v

   

 

( ; )( , )
( )( ) , ,( ) ( )

,=1,2

( , )
( ) =

grgr in
inin p px ygr gr

x x

x y
C

+
αα

α
αα

ϕϕ
Ψ + +∑pr

v v
  

 

( ) /
( ; )( ; )

( ) ( ); ,= =1,2

e( , )

inxpy
grgr

gr inp px y
B x y

x

−
νν

α
αν ± α

+ ϕ∑ ∑


. (37) 

Here Bloch functions ( )
,
gr
αϕ p  (see Eq. (11)) are 

( )

( )

( )
1,( ; )

, 1 ( )
2,

( ) 0 1
( ) = exp

e0 ( )

gr

gr

gr
i

u
g i

u
α

α

±

±
α θ±

 
  

ϕ      
 

p
p

p

r
prr

r 



,  

where gα is the normalizing constant and ( )
1 = 0grp  for 

1,α =  while for 2,α =  it is equal to the coordinate of the 
second cone deg

2p ; note that ( )in
yp  is the conserving y-

projection of the incident quasi-particle momentum. 
Therefore, as it follows from Eqs. (34), (37), near the 

graphene lattice boundary, inside the layer x a  (a is the 
atomic spacing), the quasi-particle wave function is a 
superposition of Bloch wave functions belonging to all 
energy bands (including those virtual). At the distance 
much larger than de Brouglie’s wavelength = /Bλ εv  the 
superposition reduces to the sum of the Bloch functions 
of the reflected electron, Eq. (11), (note, it was assumed 
that an electron was the incident quasi-particle) of the 
infinite graphene sample plus additional terms propor-
tional to the graphene Bloch functions with the momen-
tum the both projections of which are equal to the con-
serving y -projection of the incident quasi-particle ( )in

yp . 
The latter terms slowly decrease at the distances 

( )/ | | /in
yx pδ ε v . If the normal incidence of the quasi-

article on the graphene boundary takes place, ( ) = 0in
yp , 

these terms decease as 1/x . 

5. Conclusion 

In this paper the problem of scattering of quasi-particles 
by an abrupt edge in the 2D electron gas and in graphene 
lattice is considered by the Qreen's function technique. 
This approach allows to find the coordinate dependence of 
the wave function of the quasi-particle reflected at such an 
edge and the boundary conditions in a rather simple way. 
In particular, it is shown that the wave function of the re-
flected quasi-particle in graphene contains terms slowly 
decreasing with an increase of the distance to the edge. In 
the case of the transverse incidence they are inverse pro-
portional to this distance. 

For graphene the Dirac equation, the momentum de-
pendence of the wave functions near the conic points 
and the dispersion law are derived by the perturbation 
method with degeneracy in terms of the Bloch functions 
the periodic factors of which are taken at the degeneracy 
point (the conic point). This approach allows to formu-
late the lattice symmetry and external field properties 
needed for validity of the Dirac equation in grahene and 
other two-dimensional conductors with degenerated en-
ergy bands. 

The author thanks A.F. Volkov for useful discussions. 

Fig. 2. (a) Shematic representation of two equal energy contours 
2 2 =x yv p p+ ε  and 2 2( ) =deg

x x yv p p p− + ε . The arrows show 

directions of the velocities at the points of intersections of the 
equal energy contours with the line of the constant y-projection 
q . The incident electron has the conserving momentum projec-

tion ( )= in
yq p  and the negative direction of the velocity x -projec-

tion, = /x xp pv v . (b) Contour of integration of Eqs. (29), (31). 
Crosses on the real axis xp  and those in the upper complex half-
plane show positions of the poles corresponding to two points 
with positive xv  and to virtual states ( ) ;sε ≠ εp  s ≠ α . Thick 
vertical lines are brunch lines corresponding to the brunching 
points (thick dots) in the quasi-particle spectrum. 
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Appendix A 

After taking the integral in Eq. (31) and the use of 
Eq. (29) one finds constants , sC Cα  and function ( )sB ζ  as 
follows: 
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and  
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Appendix B. Coordinate dependence of the integral 
along the cut for graphene 

Using the grapene dispersion law Eq. (8) and Eq. (A2) 
one re-writes the terms in the last sum in Eq. (34) related to 
the energy bands with the grapene dispersion laws, 

= 1, 2α , as follows:  
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where  
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Changing the variables qζ − → ζ  one gets  
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 (B3) 

As one sees from Eq. (B3) the main contribution of the 
integrand to the integral is at /xζ  . This inequality 
means that the square root in the integral denominator is 
much less than /ε v  (note that ( )| /in

yp ε v). Therefore, 
neglecting the term with the square root one easily takes 
the integral and obtains the result presented in Eq. (37) of 
the main text in which constants Bα are  

2
( ; )( ; )

( ) ( ); ,
= (0, ) (0, )

2
grgr

x gr inp py y
B dy y y dy

m
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Задача розсіяння та граничні умови для 
двовимірного електронного газу і графена  

А.М. Кадигробов 

Використано техніку функцій Гріна для отримання гранич-
них умов та для аналізу координатної залежності хвильової 
функції відбитої квазічастинки у графені та двовимірному елек-
тронному газі у разі, коли кристалічна гратка має різку межу. 
Показано, що відбита хвильова функція містить доданки, вели-
чина яких оберненопропорційна відстані до межі гратки графе-
на. На основі теорії збурень у виродженому випадку виведено 
рівняння Діраку та отримано імпульсну залежність хвильової 
функції квазічастинки поблизу кінцевої точки спектру в 
термінах незбурених функцій Блоха в точках виродження. Роз-
винене наближення дозволяє сформулювати критерій 
справедливості рівняння Діраку відносно простим способом. 

Ключові слова: 2D електронний газ, рівняння Дірака, 
граничні умови, критерії обгрунтованості, функції Грина. 
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Задача рассеяния и граничные условия для 
двумерного электронного газа и графена 

А.М. Кадигробов 

Использована техника функций Грина для получения 
граничных условий и для анализа координатной зависимости 
волновой функции отраженной квазичастицы в графене и 
двумерном электронном газе в случае, когда кристалличе-
ская решетка имеет резкую границу. Показано, что отражен-
ная волновая функция содержит слагаемые, величина кото-
рых обратно пропорциональна расстоянию до границы 

решетки графена. На основе теории возмущений в вырож-
денном случае выведено уравнение Дирака и получена им-
пульсная зависимость волновой функции квазичастицы 
вблизи конической точки спектра в терминах невозмущен-
ных функций Блоха в точках вырождения. Развитое прибли-
жение позволяет сформулировать критерий справедливости 
уравнения Дирака относительно простым способом. 

Ключевые слова: 2D электронный газ, уравнение Дирака, 
граничные условия, критерии обоснованности, функции 
Грина. 
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