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Structure and coordinate dependence of the reflected wave, as well as boundary conditions for quasi-particles
of graphene and the two dimensional electron gas in sheets with abrupt lattice edges are obtained and analyzed
by the Green's function technique. In particular, the reflection wave function contains terms inversely propor-
tional to the distance to the graphene lattice edge. The Dirac equation and the momentum dependence of the
wave functions of the quasi-particles near the conical points are also found by the perturbation theory with de-
generacy in terms of the Bloch functions taken at the degeneracy points. The developed approach allows to for-
mulated the validity criteria for the Dirac equation in a rather simple way.
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1. Introduction

Dynamical and transport properties of various mesoscopic
systems have been attracting much attention during the last
decades [1,2]. Among them are quantum dots, quantum nano-
wires, tunneling junctions and 2D electron gas based
nanostructures. Fascinating dynamic and kinetic phenomena
arise in graphene which is a two-dimensional (2D) semi-metal
having no energy gaps between two bands of electrons and
holes at six points of the hexagonal Brillouin zone.

Electronic properties of graphene can be described by
the two dimensional differential Dirac equation [3,4] sup-
plemented by boundary conditions. Details of the boundary
conditions depend on microscopic characteristics of the
concrete structure of the sample boundary [5]. Theoretical
derivations of the boundary conditions for Dirac equations
are usually based on various models such as tight bound
model (see, e.g., review papers [6,7] and references there),
the effective mass model [8], tight-binding model with a
staggered potential at a zigzag boundary and with the
boundary orientation intermediate between the zigzag and
armchair forms [9].

In this paper dynamics of quasi-particles in 2D electron
gas and graphene are considered in the frame of the con-
ventional approach to the scattering problems for finite
lattices in terms of the electron Bloch functions and band
energies without usage of the above-mentioned models.
Using the Green's function technique the boundary condi-
tions and the coordinate dependence of the wave functions
of quasi-particles in 2D electron gas and graphene lattices
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with an abrupt edges are obtained. Criteria of the validity
of the Dirac equation are formulated in a rather simple
way. It is also shown that the wave function of the reflect-
ed quasi-particle contains slow varying terms inverse pro-
portional to the distance to the edge of the graphene sheet.

The outline of this paper is as follows. In Sec. 2 the per-
turbation theory with degeneracy is used to obtain the Di-
rac equation and the wave functions in terms of the Bloch
functions taken at the degeneracy point in the reciprocal
lattice. In Sec. 3 scattering of quasi-particles by an external
potential in graphene is considered in the Bloch function
representation. The Dirac equation is derived and its validi-
ty criteria are formulated. In Sec. 4 the Green's function
approach to the problem of scattering of quasi-particles in
a lattice sheet with an abrupt edge is developed. In Sec. 4.1
the wave function structure and boundary conditions for
the 2D electron gas in a lattice sheet with an abrupt edge
are found. In Sec. 4.2, the structure of the wave function
and its dependence on the distance to the lattice edge are
found. In Sec. 5 concluding remarks are presented.

2. Derivation of Dirac equation and Bloch functions for
graphene by perturbation theory

The Schrddinger equation for electrons is
Hos p (1) = &5 (P)s p (1) (2

where ﬁo is the Hamiltonian for electrons moving in the
periodic lattice potential U (r+a) with the period a. This
Hamiltonian reads as follows:
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is the Bloch function while the Bloch periodic factor
Us p (r) has the translation periodicity of the lattice, p is the
electron quasi-momentum and s is the band number.

In order to find the dependence of Bloch functions and
the dispersion law of the quasi-particle in graphene on their
momentum p one may use the perturbation theory in
|p| /b <<1 with the degeneracy [10] at p = 0 (here b is the
characteristic period of the reciprocal lattice).

Presenting Bloch functions as a superposition of the unper-
turbed wave functions of the zero approximation

o(r) = expi %(91“1,0 (r)+9zuz0 (r)) 4)

(here uy 5.9 (r) are the periodic factors of the Bloch func-
tions of the degenerated bands taken at the point of degen-
eracy p = 0) and inserting it in the Schrodinger equation
Eq. (1), after taking the matrix elements one gets a set of
algebraic equations for the expansion constants g, ,. Inthe
firstapproximationinthe momentumptheseequationsare

—Ega,p + Z pVa,a’gq’,p =0, (5)
a'=1,2

where a =1,2 is the band number of the degenerated band
while € =g, (p); the matrix elements of the velocity opera-
tor v = (—in/m)o/or are

Voc,ot' = J. UZ,O (")‘A/Uou,o (r)dr. (6)

Equating the determinant of Eq. (5) one gets the con-
ventional dispersion law of quasi-particles near the degen-
eration point:

pv, £4(pv_)2 +4|pvy, P
2 1

e+ (p) = (7

where v, = Vg V).

From Eq. (7) it follows that the dispersion law of quasi-
particles in the vicinity of the band intersection is of the
graphene-type

£+ (p) = +v\/p% + pg = +op ®)

if the lattice symmetry imposes the following conditions
on the velocity matrix elements at the point p =0 of the
degeneration ¢, (0) = &, (0):

V11(0) = v (0) =0, [vi2(0)|=m,
0, (0) = +io{¥ (0), )

where v = vg = 1-108 mys for graphene.
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Inserting these values in Eq. (5) one gets equation for
dependence of the expansion coefficients on the momen-
tum p as follows:

—&01p +0(Px —iPy)92p = O;
v(px +ipy)d1,p —€Ypp = 0. (10)

Using Eqg. (10) one finds the dispersion law Eq. (8) and the
Bloch functions of quasi-particles in graphene:

Pr ul('io)(r) ° [ ' J (12)
pr o
"o upm)e

where g; is the normalizing constant and the phase
6 = arctan(py/py).

In the next section, scattering of quasi-particles by an
external potential in 2D gas and graphene is considered.

o9 (r) = gy expi

3. Scattering of quasi-particles by an external potential
and derivation of the Dirac equation

In this section, the scattering problem of electrons by a
potential V (r) (the characteristic properties of which are
later described) in 2D gas and graphene is investigated.

The Schrddinger equation of the system under consid-
eration is

(Ho+V(n)¥(r) = e¥(r). (12)

It is assumed that two energy bands are closely spaced or
intersect in a certain point p = 0 of the reciprocal space as
it takes place in graphene while the energy ¢ is in the vi-
cinity of the degenerate energy. In order to investigate dy-
namics of electrons in such a situation it is convenient to
expand YW in the series of the following functions:

. prj{ua,o(l’)' s=a=12

Asp = exp(l— g, "), s%1.2,

- (13)

where band numbers o =1,2 designate the bands close to
each other, the periodic Bloch factors of which are taken at
p=0. As s p constitute a complete set of functions the
following expansion is satisfied for all values of p.

W)= Y[ g5 ptsp(N)dp. (14)
S
Inserting this expansion in Eq. (12) one gets
. pr N
> I dPGe.p EXp['?j (g, (0) +pU+

a=1,2

2

+§—m+V(r) — &)U o () +

+ 3 [ dpgs p (s (p) +PT—e)os (1) =0, (15)
s#1,2
where V = —(in/m)o/or is the velocity operator.
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Multiplying this equation on the left by %, , and x5 in
turns and integrating one gets a set of coupled algebraic
equations for the expansion factors g,

2
(84 (0) +§__8)ga,p + z PVo,o' 9o/ p +
m a'=1,2

[ Vo pGapp'+ Y (65 (0) -3 s ()G p +

—0 s#1,2

+ Z J-Vp—p'aS,S’ (pip’)gs,p’dp' =0, (16)
s#1,2

2
(Ss(p)_g)gs,p + z {(aa(o)+§__8)a;,sga,p +
=12 m

+st,a'ga,p + I Vp—p' ;,s(p’)ga,p’dp}"'

—00

+2 ij—p'as,s'(D,p')gsr,prdp’ =0, 17)
s#1,2

where the matrix elements of the velocity operator
V = (—ik/m)o/or are

v uélo(r)\“/uar’o(r)dr,

o~ Ya)
Vsia = § U p (MU o (r)dr 18)
and

5 () = Va0 (s p (1),

55 (.P) = ) Usp (NUsr(M)r. (19)

Integration in Eqgs. (18), (19) is over a unit cell. The above
equations are valid for all values of the electron momen-
tum p and for an arbitrary form of the potential V (r).

The equations which describe dynamics of electrons
in graphene and analogous conductors (Dirac equations)
in the vicinity of the degeneration energy are readily
obtained from Eqgs. (16), (17) in the following limits:
|p| < b=2nAla (a is the characteristic atomic spacing)
while the potential is assumed to be small and slowly vary-
ing that is |V |< Aga =|es(P) &, (P)], s#a, and the
characteristic interval 8l of the variation of V (r) is 8l > a.

Indeed, under the above assumptions one may neglect
the dependence of the matrix elements in Eq. (19) on p and
obtain a, s =9, s =0,5#a. Inserting this equality in
Eq. (17) one gets

2
:lgS,p|N|V|1(p /Zm) <1 (20)
|ga'p | Agap

and hence equations Eq. (16) and Eq. (17) are decoupled in
the zero approximation in y < 1. Therefore, in this appro-

ximation the Schrodinger equation in the y-representation
(see Eq. (14)) for electrons in the vicinity of the intersec-
tion of two bands, & (0) = &, (0) = 0, reads as follows:

(€0 =8)Top+ X, PVagGop+
a'=1,2

+ _[ Vp—p’ga,p’dp' =0. (21)

—00

While writing this equation we assumed p2/2m <|vp)).

Using equalities Eqg. (9) one gets the set of equations
that describes dynamics of quasi-particles in the presence
of potential V (x):

—e01pt J. Vp_p91pdp +0(py —ipy)dp = 0;

—00

v(py + ipy)gl,p —&0op t+ I Vp—p’gz,p’dp' =0, (22)

—00

where for the sake of certainty v}, = —ivg) is chosen. Ex-
panding the wave functions in Eq. (22) into the Fourier
series

o129 = [ Praem|-iBlar @

one find the equation for the Fourier factors:

_ihv( v ax_'ayj(q’lj:g[q’lj. (24)
vy Jle,) "o,

Oy +i0y

The above equation describes dynamics and, in particular,
guantum tunnelling of quasi-particles between intersecting
energy bands in the vicinity of the point of degeneration.
This set of differential equations (with proper changes of
parameters) arises in all cases in which the unperturbed
energy spectrum has points of degeneration (or points of
close approach of energy bands), e.g., in graphene (see
review papers [6,7,13]), in the cases of Landau—Zener tun-
nelling (see Ref. 12 and references there) and the magnetic
breakdown — quantum tunnelling in metals under a strong
magnetic field (see Refs. 11, 14, 15). Note, that the tunnel-
ling transmission of electrons between intersecting energy
bands without back-scattering (“Klein tunneling” takes
place in many cases, in particular, in the cases of grapene
[6,7,13] (normal incident of the electron to barrier) and the
magnetic breakdown [11].

As it follows from the above derivation of Eq. (24) the
Dirac equation [6,13] is valid only in the limit of small and
smooth potentials (see Eg. (20) and the text around it) and
hence it can not be used for investigation of the problem of
electron scattering by sharp boundaries of the sample. In
the next section the Green function approach is developed
to solve this problem for the cases of 2D gas and graphene.
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4. Scattering of electros in lattice with abrupt edge
(Green function approach)

Boundary conditions for Dirac Fermions in graphene
were derived in Refs. 8, 9, 13 (see also, e.g., Review pa-
pers [6,7]) in the tight-binding model. In this section the
boundary conditions for two dimensional electron gas and
grapene are derived by use of the Green’s function tech-
nique in terms of the general properties of electron spectra
and proper wave functions.

Below a half infinite two dimensional sheet of 2D gas or
graphene in the half plane x > 0 with the edge line at x =0
is considered. In this case the Schrédinger equation is

n? o?

————+U (r)—¢|¥(r)=0, (25)
2m pr2

where U (r) is the periodic lattice potential. For the sake of

certainty the boundary conditions

Y(r)=0, x=0,
Y(r) = (p<'“ S0, x40 (26)

are assumed. Here (p('n) is the Bloch function (see
Eq. (3)) incident to the boundary and pg = (p ,q) where
q= p ) is the conserving momentum projection.

Below to investigate the problem of scattering by the
abrupt edge at x =0 Green’s function for the infinite lat-
tice is used, that is the needed Green function satisfies the
equation

ST
———+U(r) e |G(r,r')=93(r-r’) 27)
2m g

in which the lattice potential U (r) covers the whole plane
(X, y). Expanding G(r,r") in the series of wave functions of
electrons in the infinite lattice and using Eqg. (27) one finds

s p(Nes p (1’ )
)= ZI e—¢&5(p)+1i6 ap (28)

where § — +0

Below we also assume that along the edge line x=0
the lattice is periodic with the period @ and hence the mo-
mentum projection py conserves. Taking into account this
requirement and using Egs. (25), (27) together with Eq.
(28) and the boundary conditions for W(r) one finds the
wave function on the right half-plane x > 0 as follows:

(in) .
—oP0 I gy (-0,3)x

’Vx,so 2m -

(P;,p q (_OvV)QS,p .q (r)
3 ooy dy
s

8_gs(px'qy)+i6
where Uxsy < 0 is the x-projection of the velocity of the in-
cident electron that normalizes its wave function to the unity

P(r) =

(29)
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flux; qy = pg is the conserving y-projection of the momen-
tum p, of the incident electron; W' (-0,y) = 0¥(r)/ox at
x = —0; as the value of W -function in Eg. (29) exactly on the
boundary contour is a matter of convention (see Ref. 16) the
boundary contour is assumed to be shifted to x = -0=0-3,
& — 0 while W} (r) is defined on the half-plane x > 0.

It is now necessary to introduce the integral equation
for ¥(-0,y) solution of which completes the definition of
the wave function W¥(r):

(in) 2
' S0-P
¥ (0,y) = 0RO | 4o jdyw 0.9)%

X,SO

9500 0.9)9%,p, 0, 0.9)

e—gg(Py,0)+id (30)

X Zjdpx

Here f'(r) = of (r)/ox.

In the general case and without usage of an approximate
model this integral equation can not be solved. However,
important general features (in terms of ¥} (0,Y)) of the
quasi-particle scattering by the abrupt lattice edge follow
from Eq. (29).

Indeed, let us consider one-dimensional integrals in
Eqg. (29) presenting them in the form

by /2 U; Pty (01 y)us,pxyqy (r)elxpx/h

| = j _ dp,. (31)
by12 e—es(Py,dy) +i38

Here b, is the period of the reciprocal lattice in the X-di-
rection. In the complex plane the dispersion law &g (py,Q)
considered as a function of the complex variable z = p, +i&
is a multi-valued function which has branching points in the
complex plane and hence this integral is a sum of the resi-
dues minus sum of integrals along the brunch cuts in the
upper complex half-plane & > 0 inside the contour schemati-
cally shown in Fig. 1. The left and right vertical lines of the
contour are separated by the reciprocal period period b, and
hence the integrals along them cancel each other because the
integrands are periodic functions of the same period. The
integral along its upper horizonal part exponentially goes to
zero as this contour part goes to ico.

The poles and branching cuts of the integrand which con-
tribute to the integral Eq. (31) are separated in two types:

1. Poles lying on the upper side of the real axis

Py p(“)+l%a 1,2,..,8 >0,

where their real parts p(“) are determined by the equation
8:‘c;(x(pX’qy) (32)

while a defines the number of the band which are present
in the infinite lattice at the energy ¢ and the momentum
projection py =q (in Fig. 1 they are shown as pockets
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Fig. 1. (&) An example of the Brillouin zone with 5 contours of
equal energy of energy bands e, (p) =& with the band number
a =1, 2,3,4,5. The arrows show the directions of the velocities at
the points of intersections of the equal energy contours with the line
of the constant y-projection q. The incident electron has the con-
serving momentum projection ¢ = p('”) and the negative direction
of the velocity X-projection, vy. (b) Contour of integration of
Eq. (29), (31). Crosses on the real axis py and those in the upper
complex half-plane show positions of the poles corresponding to
two points with positive vy and to virtual states eg(p) #¢€; S # .
Thick vertical lines are brunch lines corresponding to the brunch-
ing points (thick dots) in the electron spectrum.

with the band numbers o =1,2). One easily sees that these
poles are inside the integration contour if the x-projections
of the velocity

_ %eq (Px.dy)
Opy

and, therefore, they correspond to the states of electrons
reflected back by the boundary.

2. Poles lying high in the upper complex plane
p§°> = p§+ib§0) which are determined by the equation
e =¢&s(Py.Gy), S#o where the energy bands &s(py,dy)
do not overlap bands o (in which the energy ¢ lies).

As the dispersion law e4(py,q) is a multi-valued func-
tions of p, (a circuit around the branching point changes the
band number s) there are branching cuts in the upper half
plane z = p, +i&, schematically shown in Fig. 1, which pass
from the branching points p{®") = p(br) +iglPr) p(br) +io0).

Taking into account the above-mentioned poles and
branch cuts one easily carried out integration in Eq. (31)
and, inserting the result in Eq. (29), one writes the required
wave function as follows:

(in)
.90 o (X Y)

ZC Yo, pX +
A Oxs0 xa

o) (%)
5,p{0)

| (@>0 (33)
Px

Y(r) =

_p®
+ D.Cq g s X,

S#OL Ux,s

+Zj Bs Q)0 on (V)AL (34)
(S)
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where summation § =s,a. (that is summation with respect
to S is over all electron bands including all a.-bands), the
integral is taken along the S-branching cut in which the
variable change C =i& has been done; the functions in
square brackets are

(s)
Xpx” +4y
Ps,p@ =Y ((»exp{ P }

xp{e) +ay

=u expsi———¢, 35
5o p - (35)

5000 )

where p®?(¢) = p{!) +¢; constants A, C, and Bg(5)
are presented in Appendix, Egs. (38), (39).

4.1. Scattering of electrons by abrupt edge in 2D electron
gas

As one sees from Eq. (34) the functions in square
brackets exponentially decrease with an increase of the x-
coordinate. In the general case the energy gaps between
non-overlapping electron bands are of the order of the band
widths AE ~ 1-10 eV and hence the imaginary parts of the
pole and branch momenta are of the order of the AE/vg that
is b(O) &,(S) hla where a is the atomic spacing.

From the above considerations and Eq. (34) it follows
that inside the layer x < a adjacent to the sample boundary
the electron wave function is a superposition of Bloch
wave functions ¢ of all energy bands including those vir-
tual which are above and below the band of the incident
electron (that is their band numbers s = o).

At the distances much larger than the atomic spacing,
x> a, all the virtual wave functions exponentially drop
out from the superposition and the electron wave function
Y reduces to

(ot) (x,y)

Zcm

According to the calculations the Bloch functions under
the summation sign belong to the states with the positive x-
projections of the electron velocity (see Eq. (33), Fig. 1(a)).
Therefore, they are the Bloch functions of the electron
scattered back by the sample boundary into all the availa-
ble energy bands at the energy of the incident electron ¢
and the conserving y-projection of the momentum while
constants C, are the amplitude probability of this many-
channel scattering (an example of such the two-channel
scattering is presented in Fig. 1(a)).

The above general scattering scenario requires a special
treatment in the case of the generation when the top and
the bottom of two energy bands are very close or coincide
in some point of the reciprocal space as it takes place in
graphene. In the next section the scattering of quasi-
particles by a sharp graphene boundary is considered.

w() =0l +0@e¥2). (36)
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4.2. Scattering of quasi-particles by abrupt edge
of graphene sheet

In this section scattering of quasi-particles in graphene
by an abrupt edge is considered. Graphene fills the half-
plane x>0 while the boundary condition for the quasi-
particle wave function is ¥(97 (0, y) = 0.

In the general approach to the scattering problem devel-
oped above, the only peculiarity of the scattering of quasi-
particles in graphene lies in their dispersion law whereas all
the equations of the previous section remain valid.

The incident electron in graphene with a negative x-

projection of the velocity in the Bloch state (p(g(r ')”) and the

energy € >0 belonging (for the sake of certainty) to the
electronic band ¢, (p) = +vp is considered (see Fig. 2(a)).

Inserting the graphene quasi-particle dispersion law
Eg. (8) in Eq. (34) one finds the electron wave function at
the distances much greater that the deBroglie’s wave
length x> Ag = fwwle as follows (details of calculations
are given in Appendix B):

ho
X>—,
€
i (gr +)
ol o (009
Uy  q=1,2 Oy,
_Xp(ln)/h
# 20 D BTy i — @
v=ta=1,2 Px ’p
(b)
(a)
: zm R

ATAE AT

Fig. 2. (a) Shematic representation of two equal energy contours

vy P)% + p$l =g and Vy/(py - pﬁleg)2 + p32, =¢. The arrows show

directions of the velocities at the points of intersections of the
equal energy contours with the line of the constant y-projection

g. The incident electron has the conserving momentum projec-
tion g = pg,in) and the negative direction of the velocity x-projec-
tion, vy = vpy/p. (b) Contour of integration of Egs. (29), (31).

Crosses on the real axis py and those in the upper complex half-
plane show positions of the poles corresponding to two points
with positive vy and to virtual states eg(p) #e; S#a. Thick

vertical lines are brunch lines corresponding to the brunching
points (thick dots) in the quasi-particle spectrum.
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Here Bloch functions (p(gr) (see Eq. (11)) are

pr p&gr) ) ° ( 1 j

(gr;3)
P (1) = Gy expi=r .
0 ut* )<gr) (1)

where go is the normalizing constant and pigr) =0 for
a=1 while for o =2, it is equal to the coordinate of the
second cone pgeg; note that p§}”) is the conserving y-
projection of the incident quasi-particle momentum.
Therefore, as it follows from Eqgs. (34), (37), near the
graphene lattice boundary, inside the layer x < a (a is the
atomic spacing), the quasi-particle wave function is a
superposition of Bloch wave functions belonging to all
energy bands (including those virtual). At the distance
much larger than de Brouglie’s wavelength Ag = fiv/e the
superposition reduces to the sum of the Bloch functions
of the reflected electron, Eq. (11), (note, it was assumed
that an electron was the incident quasi-particle) of the
infinite graphene sample plus additional terms propor-
tional to the graphene Bloch functions with the momen-
tum the both projections of which are equal to the con-
serving y-projection of the incident quasi-particle py (in),
The latter terms slowly decrease at the dlstances
X <Al | p('n) | < elv. If the normal incidence of the quasi-
article on the graphene boundary takes place, p( " = =0,
these terms decease as 1/X.

5. Conclusion

In this paper the problem of scattering of quasi-particles
by an abrupt edge in the 2D electron gas and in graphene
lattice is considered by the Qreen's function technique.
This approach allows to find the coordinate dependence of
the wave function of the quasi-particle reflected at such an
edge and the boundary conditions in a rather simple way.
In particular, it is shown that the wave function of the re-
flected quasi-particle in graphene contains terms slowly
decreasing with an increase of the distance to the edge. In
the case of the transverse incidence they are inverse pro-
portional to this distance.

For graphene the Dirac equation, the momentum de-
pendence of the wave functions near the conic points
and the dispersion law are derived by the perturbation
method with degeneracy in terms of the Bloch functions
the periodic factors of which are taken at the degeneracy
point (the conic point). This approach allows to formu-
late the lattice symmetry and external field properties
needed for validity of the Dirac equation in grahene and
other two-dimensional conductors with degenerated en-
ergy bands.

The author thanks A.F. Volkov for useful discussions.
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Appendix A

After taking the integral in Eqg. (31) and the use of
Eq. (29) one finds constants C,, Cs and function Bg (L) as
follows:

p2 % ©,y)
Cq —2nl2—700d_‘1’ (o y) \/— )
42 ng 75 0 ©.Y)
Cs _2m— dy¥;(0,y) Sﬁ (Al)
and
2 o \P;((OIV)(Pi (br)(g)(O,V)
Bs(Q)=—— | day. (A2)

2m ° g ee(pPD) +¢,q)) +i8

Appendix B. Coordinate dependence of the integral
along the cut for graphene

Using the grapene dispersion law Eq. (8) and Eqg. (A2)
one re-writes the terms in the last sum in Eq. (34) related to
the energy bands with the grapene dispersion laws,
a =1, 2, as follows:

2 @ (m)
e Ay, (0, —)e (y- y)/h
2m

o OV IS T, (B
where
® —XCIh
= € dc. (B2)
q s:uv\/—(;z +q% +i8
Changing the variables £ —q — £ one gets
® —xClh
3gr) = g=ax/n e—dg (B3)
* .(l; eFIV4/C(C+29

As one sees from Eq. (B3) the main contribution of the
integrand to the integral is at ¢ < 7/x. This inequality
means that the square root in the integral denominator is
much less than e/v (note that |p§,'”) < elv). Therefore,
neglecting the term with the square root one easily takes
the integral and obtains the result presented in Eq. (37) of
the main text in which constants B, are

B&g“i’— jcw N9 0, VY- (B9
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3agava po3cCisiHHA Ta rpaHUYHi ymoBM ans
OBOBUMIPHOrO eNeKTPOHHOro rasy i rpageHa

A.M. Kagurpobos

Buxopucrano texHiky ¢yHkuiii I'piHa 11t oTpUMaHHS TpaHUY-
HHX YMOB Ta IS aHAJNi3y KOOPAMHATHOI 3aJIKHOCTI XBIJIBOBOI
¢yHKUIT BiZOUTOT KBa3i4aCTUHKH y rpadeHi Ta JBOBUMIPHOMY €JIeK-
TPOHHOMY Ta3i y pasi, KOJIM KpHCTAJiYHa IpaTka Mae pi3Ky MEexy.
IToka3zaHo, 110 BiOMTa XBWIHOBA (YHKLISI MICTUTh JOJaHKH, BEIH-
YMHA SIKUX 00SpPHEHONPOIOPIIIHHA BIICTaHI 10 MeXi IpaTku rpade-
Ha. Ha ocHOBI Teopii 30ypeHb y BUPOKEHOMY BHIIAIKy BHUBEICHO
piBEsHHA [lipaKky Ta OTPHMAHO IMITyJIBCHY 3aJIe)KHICTh XBIJIBOBOI
¢GyHKUIT KBa3iYaCTUHKM TMOOJM3Yy KIHIEBOI TOYKM CIIEKTPY B
TepMiHax He30ypeHux ¢yHkuii bioxa B Toukax BupomkeHHs. Po3-
KpuTepii
CIIpaBeIMBOCTI PiBHAHHSA JlipaKy BiTHOCHO IIPOCTHM CIIOCOOOM.

BUHCHE  HAOMKEHHS  JO03BOJIAE  C(HhOpMyNOBaTH

KitouoBi cnoBa: 2D enekrponHuit ra3, piBHsHHsA [lipaka,

TpaHNYHI yMOBH, KpuTepii o0rpyHTOBaHOCTI, PyHKIIT ['prHa.
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Scattering problems and boundary conditions for 2D electron gas and graphene

3afaya paccesiHusi U rpaHnyHbIe YCIoBuS Ans
[IBYMEPHOro 3M1eKTPOHHOrO rasa 1 rpadpeHa

A.M. Kagurpo6os

Hcnonp3oBaHa TexHuka QyHKuuid ['puHa [Uisl MOIydeHHs
TPaHUYHBIX YCIOBHH U AJIS aHAJIN3a KOOPJUMHATHOM 3aBUCUMOCTU
BOJIHOBOW (DYHKLHM OTpPa)KCHHOI KBasM4acTHIBl B rpadeHe u
JIByMEpHOM JJICKTPOHHOM Tras3e B Cllyyae, KOrja KpHCTaluldde-
CKas peleTka MMeeT pe3Kyro rpaHuiry. Iloka3aHo, 4To oTpaxeH-
Hasl BOJIHOBast (DYHKIMS COJICPXKUT ClIaraeMble, BEIMYNHA KOTO-
pBIX 0OpaTHO MPOMOPLHOHANBHA PACCTOSHUIO [0 TPaHULBI

pemerku rpadena. Ha ocHOBe Teopuu BO3MYIIEHHMH B BBIPOXK-
JICHHOM CIIy4ae BBIBEJICHO ypaBHeHHUE Jlupaka W IOJIydyeHa HM-
My/lbCHAsl 3aBHCHMOCTb BOJHOBOH (DYHKIMHM KBa3HYaCTHIIBI
BOJIM3M KOHMYECKOH TOUYKHM CIIEKTpa B TEPMUHAX HEBO3MYIICH-
HbIX QyHKiui bioxa B Toukax BeIpokAeHMs. Pa3Buroe npubiu-
JKEHHE T03BOJISIET CHOPMYIUPOBATh KPUTEPHI CHPaBEIHBOCTH
ypaBHeHust Jlupaka OTHOCHTEIBHO MPOCTHIM CIIOCOOOM.

Kirouessre cnoBa: 2D snexTponHbIA Ta3, ypaBHeHme [lupaka,
TPaHUYHbIE YCIIOBHUS, KpPUTEPUH OOOCHOBAHHOCTH, (YHKIHH
I'puna.
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