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Quantum discretization of Landau damping 

S.G. Castillo-López and F. Pérez-Rodríguez 
Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. 72570, México 

N.M. Makarov 
Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., 72570, México 

E-mail: nykolay.makarov@correo.buap.mx; makarov.n@gmail.com 

Received July 3, 2018, published online October 26, 2018 

We derive and analyze analytical expressions for the quantum electron current density and electromagnetic field 
distribution inside a metallic nanoslab. Besides, we obtain general explicit expressions for the surface impedances 
of both metal slab boundaries. We found that the phenomenon of Landau damping manifests itself in the frequency 
dependence of the surface impedances as resonances associated with the discretization of the electromagnetic and 
electron wave numbers inside the metal nanoslab. In particular, the quantum nonlocal resonances of the surface im-
pedances are clearly discernible at slab thicknesses smaller than the electromagnetic skin depth. The predictions for 
the surface impedances in the quantum regime turn out to be radically different from those of the quantum local ap-
proach, the semiclassical Boltzmann kinetic equation formalism and the classical Drude–Lorentz local model. The 
analytical study completely agrees with the respective numerical calculations. 
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1. Introduction

As is well known (see, i.e., Ref. 1), there are three prin-
cipal mechanisms of electromagnetic absorption in metals: 
The first one is owing to the collisions of electrons in the 
sample, it is characterized by a relaxation frequency ν ; the 
second mechanism is also collisional, but it is connected 
with the dissipative properties of a metallic surface and is 
described by a surface relaxation frequency surfν ; the 
third mechanism turns out to be collisionless and is known 
as Landau damping [2]. The latter one describes the phe-
nomenon of direct absorption of electromagnetic radiation 
by the electrons moving in phase with the electromagnetic 
wave. Therefore, in metallic samples of very high quality 
and at sufficiently low temperatures, the remaining mecha-
nism of electromagnetic absorption is, precisely, the Lan-
dau damping. This phenomenon is well manifested under 
conditions of strong spatial dispersion, or nonlocality, of 
the metal. Particularly, it has been studied in bulk samples 
(see, for example, [1] and references therein), thin films [3] 
and metal-dielectric periodic heterostructures [4–6] within 
the framework of the semiclassical formalism of the 
Boltzmann kinetic equation for the distribution function of 
the conduction electrons. As was shown there, Landau 
damping always exists and considerably alters the absorp-
tion, reflection and transmission spectra of all those metal 

systems within the THz and near-infrared frequency range. 
Landau damping also influences upon optical spectra in the 
visible and ultraviolet ranges. Thus, for example, it con-
tributes to the attenuation of surface plasmons in a great 
variety of metallic nanostructures (see, e.g., [7–16]). How-
ever, because of the extremely-small size of the metallic 
samples (nano-thin films, nanotubes, and nanoparticles), 
the quantum phenomena emerge and the question about the 
physical interpretation of the classical phenomenon of 
Landau damping in the strong quantum regime arises. 
Clarifying this question, in our recently-published brief 
letter [17], the resonant quantization of Landau damping in 
far-infrared absorption spectra of metal nano-thin films 
was predicted within the Kubo formalism. It was demon-
strated that Landau damping clearly manifests itself as 
prominent resonances in the absorption spectra, which are 
associated with the discretization of the electromagnetic 
and electron wave numbers inside a metal nanofilm. 

In this work we shall present a detailed analysis of the 
quantum nonlocal electromagnetic response of a metal 
nanoslab and, particularly, we study the effect of Landau 
damping on it. Firstly (Sec. 2), we shall analytically calcu-
late the quantum current density of the conduction elec-
trons in the metal nanoslab by applying the Kubo's linear 
response formalism. Using this analytical result, we solve 
Maxwell equations by writing the electromagnetic field as 
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a superposition of discrete normal electromagnetic modes 
with quantized electromagnetic wave vector (Sec. 3). In 
Sec. 4, we obtain explicit expressions for the surface im-
pedances of both boundaries of the nanoslab in order to 
study its external response. Here, from the general expres-
sions for the surface impedances we derive asymptotic 
formulas for three limits of the electromagnetic response of 
the metal nanoslab: i) the quantum local regime, ii) the 
semiclassical nonlocal limit, which can also be described 
by the Boltzmann kinetic equation formalism, and iii) the 
regime corresponding to the classical Drude–Lorentz local 
approach. The Sec. 5 contains specific results obtained by 
numerical calculations of the surface impedances of silver 
nanoslabs having distinct thicknesses. On the basis of both 
analytical and numerical results, we shall explain the reso-
nances, appearing in the frequency dependence of the sur-
face impedances in the quantum regime, as an effect of the 
quantum discretization of the Landau damping. Finally, 
there is a section of Conclusions. 

2. Problem formulation: basic relations 

We examine an electromagnetic response of a quantum 
metallic flat layer confined to the space volume 

 0 , < , < ,x d y z− ∞ ∞   (2.1) 

with d  implying the slab thickness. The coordinate system 
is chosen in such a way that the x  axis is orthogonal to the 
layer interfaces = 0x  and =x d  while the y  and z  axes 
are parallel to them being found on the left metal boundary 

= 0,x  see Fig. 1. 
The single-particle quantum stationary states of the 

conduction electrons in the metal slab (2.1), unperturbed 
by the electromagnetic field, are characterized by the com-
plete set a  consisting of three electron quantum numbers, 

    = { , , }, = 1, 2, 3, ; < , < .y z y za n q q n q q− ∞ ∞  (2.2) 

The positive integer n  determines the discrete electron 
wave number xq  transversal to the metal slab, 

 = / .x nq q n d≡ π  (2.3) 

Two other, longitudinal, wave numbers, yq  and zq , are 
continuous quantities because of the free unconfined elect-
ron motion along y  and z  axes. 

The dependence of the eigenenergy a  of the unper-
turbed electron Hamiltonian on the quantum numbers (2.2) 
is defined by 

 
2

2 2 2= ( , ) ( ),
2a n y z n y zq q q q q

m
≡ + +
   (2.4) 

with m  being the effective electron mass. The ortho-
normalized wave function of the electron in the a-state in-
side the metal layer reads 

     2 1( , , ) = sin( ) exp( ).
2a n y zx y z q x iq y iq z

d
Ψ +

π
 (2.5) 

For simplicity, we assume the specular reflection of elec-
trons from the metal slab boundaries = 0x  and =x d . 

The exciting electromagnetic wave of frequency ω  
propagates along the x  axis perpendicularly to the metal 
layer. In view of the chosen coordinate system, this fact 
implies the electric ( , )x tE  and magnetic ( , )x tH  fields of 
the wave to be parallel to the y  and z  axis, respectively, 

 ( , ) = {0, ( ),0}exp( ),x t E x i t− ωE  (2.6a) 

 ( , ) = {0,0, ( )}exp( ).x t H x i t− ωH  (2.6b) 

From the Maxwell equations one can readily obtain the 
equation, which describes the electric field distribution 
inside the metal slab (2.1), 

 
2 2

2
2
( ) 4( ) ( ) = 0.d E x ikk E x j x

dx
π

+ +
ω

 (2.7) 

Here = /k cω  is the electromagnetic wave number in 
vacuum, the second term on the l.h.s. is originated from the 
displacement current, while the third one is due to the lon-
gitudinal current density ( ) exp( )j x i t− ω  of the conduction 
electrons. The magnetic field ( )H x  is associated with the 
derivative ( )E x′  over x  of the electric field ( )E x  by the 
Faraday law, 

 ( ) = ( ).E x ikH x′  (2.8) 

The quantum current density of the conduction elec-
trons, ( , ; ) = ( , ) exp( )x t x i t− ωj r j r , in linear approximation 
in the electric field ( , ; ) = ( , ) exp( )x t x i t− ωE r E r  can be 
derived with employing the standard Kubo’s linear re-
sponse theory developed for the weakly nonequilibrium 
isotropic Fermi-liquid model [18–20]. Thus, the starting 
point of our calculations is the general expression [21] 

 2( , ) = ( , ; , ) ( , )
V

j x dx d x x E xα αβ βχ′ ′ ′ ′ ′ ′∫r r r r r ; (2.9) 

 , = , , ; = { , };x y z y zα β r   Fig. 1. Sketch of the system. 
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where the integration runs over the metal volume V, see 
Eq. (2.1), and the summation over the twice-repeated vec-
tor index β  is implied. The response function αβχ  is de-
fined as  

 
,

( , ; , ) = 2
a aa a

x x ′
αβ

′′

−
χ ×′ ′

−∑r r 

a aF F

    

 
| ( , ) | | ( , ) |

.
( )a a

a I x a a I x a
i

α β

′

〈 〉〈 〉′ ′ ′ ′
×

ν + − − ω
r r

  
 (2.10) 

Here the factor 2 takes into account the electron spin de-
generation, the symbols a  and a′  stand for the complete 
set (2.2), (2.3) of the quantum numbers of the unperturbed 
electron state with the corresponding eigenenergies a  and 

a′ , Eq. (2.4). The sum-symbol implies summation over 
discrete quantum numbers and integration over continuous 
ones. The equilibrium Fermi distribution function aF  at 
the energy = a  , the Fermi energy F  and the tempera-
ture T  is 

 { } 1= 1 exp[( )/ ] .a F T −+ −aF    (2.11) 

The so-called adiabatic parameter ν  can be regarded as 
the effective scattering frequency of electrons caused by 
their collisions with scatters in metal. Then, 

 *| ( , ) | = [ ( , ) ( , )
2 a a
i ea I x a x x

mα α ′〈 〉 Ψ ∇ Ψ −′r r r   

 *( , ) ( , )]a ax xα′− Ψ ∇ Ψr r  (2.12) 

is the matrix element of the α-th component of the cur-
rent-density operator, where the asterisk “*”  means the 
complex conjugation, e  is the elementary charge, and 

( , )a xΨ r  stands for the unperturbed wave function (2.5) 
of the electron in the α-th stationary state. 

Since the electromagnetic field (2.6) does not depend 
on the radius-vector = { , }y zr , the electron current density 

( , ; )x tj r  should also be independent of = { , }y zr . In addi-
tion, it has the same polarization as the electric field (2.6a), 

 ( , ; ) = {0, ( ),0}exp( ).x t j x i t− ωj r  (2.13) 

In line with the general relation (2.9) one can readily obtain 

 
0

( ) = ( , ) ( ), 0 ,
d

j x dx x x E x x dχ′ ′ ′∫    (2.14) 

where the truncated response function ( , )x xχ ′  is de-
scribed by 

 2( , ) = ( , ; , )yyx x d x x
∞

−∞
χ χ′ ′ ′ ′∫ r r r . (2.15) 

By definition (2.12), the necessary matrix elements get 
the following explicit expressions: 

 2

( )
| ( , ) | = sin( )sin( )

(2 )
y y

y n n
e q q

a I x a q x q x
md

′
+ ′

〈 〉 − ×′
π

r


  

 exp[ ( ) ]exp[ ( ) ]y y z zi q q y i q q z× − − − −′ ′ , (2.16a) 

 2

( )
| ( , ) | = sin( )sin( )

(2 )
y y

y n n
e q q

a I x a q x q x
md

′
+ ′

〈 〉 − ×′ ′ ′ ′ ′
π

r


  

 exp[ ( ) ]exp[ ( ) ]y y z zi q q y i q q z× − −′ ′ ′ ′ . (2.16b) 

Being substituted into Eq. (2.10), they allow us to take 
the integral over = { , }y z′ ′ ′r  contained in Eq. (2.15), giv-
ing rise to the appearance of two Dirac delta-functions, 

( )y yq qδ − ′  and ( )z zq qδ − ′ . Using them, one can explicit-
ly take the integrals over yq′  and zq′  entering the sum-
symbol over a′  in Eq. (2.10) and eliminate the depend-
ence on the radius-vector = { , }y zr . As a result, we get the 
exact explicit quantum expression for ( , )x xχ ′ , 

 
2 2

2
2

, =1

2( , ) =
2 2

yz
y

n n

dqdqex x q
m

∞ ∞∞

′ −∞ −∞
χ ×′

π π∑ ∫ ∫
   

 
( , ) ( , )
( , ) ( , )

n y z n y z

n y z n y z

q q q q
q q q q

′

′

−
× ×

−
F F

 
 (2.17) 

 
2

2 2
(2/ ) sin( )sin( )sin( )sin( )

.
( ) ( )/2

n n n n

n n

d q x q x q x q x
i i q q m

′ ′

′

′ ′
×

ν − ω + −

  

It is important to emphasize that the truncated response 
function (2.17) is even and periodic one of period 2d  with 
respect to its arguments x  and x′ , 

 ( , ) = ( , ) = ( , ),x x x x x xχ χ − χ −′ ′ ′   

 ( , ) = ( 2 , ) = ( , 2 ).x x x d x x x dχ χ + χ +′ ′ ′  (2.18) 

The noted symmetries provide the adequate and physically 
reasonable type of the Fourier presentation in order to pro-
ceed further resolving the problem. 

3. Discrete electromagnetic modes 

Equation (2.7) with the current density ( )j x  determined 
by Eqs. (2.14), (2.17), presents an integro-differential equa-
tion for ( )E x , which is defined within the finite interval 
0 x d  . Due to symmetries (2.18), we can try to solve it 
by passing to the discrete Fourier transformations similarly 
as we did this in the classical case, see Ref. 3. 

Specifically, the electric current density ( )j x  defined 
inside the finite interval 0 x d  , on the other hand, is 
an even and periodic function of x  in accordance with 
Eqs. (2.14), (2.18), 

 ( ) = ( ); ( ) = ( 2 ).j x j x j x j x d− +  (3.1a) 

This parity-periodicity symmetry analytically continues 
( )j x  to the entire x  axis ( < < )x−∞ ∞ . The electric field 
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( )E x  in metal slab is also defined within the finite interval 
0 x d  . However, the connection ( )E x  with ( )j x  via 
Eq. (2.7), makes the former to be even and periodic too, 

 ( ) = ( ); ( ) = ( 2 ),E x E x E x E x d− +  (3.1b) 

that analytically continues the electric field ( )E x  to the 
entire x  axis ( < < )x−∞ ∞ . 

The parity-periodicity symmetry (3.1) inevitably dic-
tates the following Fourier transformations with the dis-
crete electromagnetic wave number 

 = / , = 0, 1, 2, 3, .sk s d sπ ± ± ±   (3.2) 

For the electric field we introduce  

 
=

1( ) = ( )cos( ),
2 s s

s
E x k k x

d

∞

−∞
∑   (3.3a) 

 
0

( ) = 2 ( )cos( )
d

s sk dxE x k x∫ . (3.3b) 

The similar for the electric current density  

 
=

1( ) = ( )cos( ),
2 s s

s
j x j k k x

d

∞

−∞
∑  (3.4a) 

 
0

( ) = 2 ( )cos( )
d

s sj k dx j x k x∫ . (3.4b) 

By definitions (3.3b) and (3.4b), the Fourier transforms 
( )sk  and ( )sj k  are even functions of the electromagnet-

ic wave number sk , 

 ( ) = ( ) = ( );s s sk k k−−    (3.5a) 

 ( ) = ( ) = ( ).s s sj k j k j k−−  (3.5b) 

Now, let us apply the integral operator  

 
0

2 cos( )
d

sdx k x∫   (3.6) 

to Eq. (2.7) with subsequent double integration by parts of 
the first (differential) term. After that, the initial equation 
(2.7) in kS-representation gets the form 

 { }
2

2 2 4( ) ( )s s s
ikk k k j kπ

− − =
ω

   

 = 2 [ ( ) cos( ) (0)].sik H d k d H−  (3.7) 

The integration constants (0)H  and ( )H d  are the magnet-
ic fields on the metal slab surfaces = 0x  and =x d . They 
are associated, respectively, with the derivatives (0)E ′  
and ( )E d′  of the electric field by the Maxwell equation 
(2.8). Depending on the method of the slab excitation, 

(0)H  and ( )H d  can be expressed via the amplitudes of 
the incident, reflected and transmitted waves with the use 

of continuity conditions for the electric and magnetic fields 
at the = 0x  and =x d  boundaries. 

In order to derive ( )sj k  we have to Fourier transform 
Eq. (2.14) for the current density ( )j x  as stated in defini-
tion (3.4b), 

 
0 0

( ) = 2 ( ) ( , ) cos( )
d d

s sj k dx E x dx x x k xχ′ ′ ′∫ ∫ . (3.8) 

Substitution of Eq. (2.17) for the truncated response func-
tion ( , )x xχ ′  into Eq. (3.8) gives 

 
2 2

2
2

, =
( ) =

2 24
yz

s y
n n

dqdqej k q
m d

∞ ∞∞

−∞′ −∞ −∞
×

π π∑ ∫ ∫
   

 
1

2 2( , ) ( , )
( ) ( )

( , ) ( , ) 2
n y z n y z

n n
n y z n y z

q q q q ii q q
q q q q m

−
′

′
′

−  × ν − ω + − × −  


F F

 
  

 
0

4 ( )sin( )sin( )
d

n ndx E x q x q x′× ×′ ′ ′ ′∫   

 
0

4 cos( )sin( )sin( )
d

s n ndx k x q x q x
d ′× ∫ . (3.9) 

Here we have taken into account that the summand in 
Eq. (2.17) is an even function of the summation indices n  
and n′ . Then, the summand vanishes as = 0n , or = 0n′ . 
These facts allowed us to make a helpful replacement, 

 
, =1 , =

1 .
4n n n n

∞ ∞

−∞′ ′
→∑ ∑   (3.10) 

Following definition (3.3b) and known integral expres-
sion for the Kronecker delta-symbol ,s s′δ , it is readily to 
realize that 

 
0

4 ( )sin( )sin( )
d

n ndx E x q x q x′ =′ ′ ′ ′∫   

 = ( ) ( );n n n nq q q q′ ′− − +   (3.11a) 

 
0

4 cos( )sin( )sin( )
d

s n ndx k x q x q x
d ′ =∫   

       , | | , | | , | | , | |= .n n s n n s n n s n n s+ − − + − −′ ′ ′ ′δ + δ − δ − δ  (3.11b) 

Substitute Eqs. (3.11) into Eq. (3.9). Then, in the third and 
fourth terms, containing, respectively, , | |n n s− +′δ  and 

, | |n n s− −′δ  change the summation index, n n→ −′ ′ . As a 
result, the third and fourth terms turn into the first and the 
second ones. So, we obtain 

 
2 2

2
2

, =
( ) =

2 22
yz

s y
n n

dqdqej k q
m d

∞ ∞∞

−∞′ −∞ −∞
×

π π∑ ∫ ∫
   
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1

2 2( , ) ( , )
( ) ( )

( , ) ( , ) 2
n y z n y z

n n
n y z n y z

q q q q ii q q
q q q q m

−
′

′
′

−  × ν − ω + − × −  


F F

 
  

   [ ] , | | , | |( ) ( ) ( ).n n n n n n s n n sq q q q + −′ ′ ′ ′× − − + δ + δ   (3.12) 

Now, carry out double replacement of the summation indi-
ces, n n→ −  and n n→ −′ ′ , in the second term with 

, | |n n s−′δ . This operation transforms , | | , | |n n s n n s+ −′ ′δ + δ →
, | |2 n n s+′→ δ . Perform the summation over n′  with the use 

of the Kronecker delta , | |n n s+′δ . All this algebra yields 

 
2 2

2
2

=
( ) =

2 2
yz

s y
n

dqdqi ej k q
m d

∞ ∞∞

−∞ −∞ −∞
×

π π∑ ∫ ∫


  

 | |

| |

( , ) ( , )
( , ) ( , )

n y z n s y z

n s y z n y z

q q q q
q q q q

+

+

−
× ×

−
F F

 
  

 
| |,

( ) (| | 2 )
.s s n

n s n

k k q
i+

− +
×

ω − ω + ν
 

 (3.13) 

When accomplishing the above calculations, we have ap-
plied the evenness of the quantum electron energy (2.4) as 
a function of the discrete quantum number n , the evenness 
of the electric field Fourier transform (3.5a), and the evi-
dent conservation law for the discrete transverse electron 
wave-number nq , 

 | | = | | .n s n sq q k+ +  (3.14) 

Additionally, in Eq. (3.13) we have introduced the quantum 
frequency | |,n s n+ω  of electron transition between (n + |s|)-th 
and n-th energy levels (2.4) because of absorption or emis-
sion of the electromagnetic quantum | |sk , 

 ( )2 2
| |, | | ,= = ;

2n s n n s n n s sq q
m+ +ω − ω + ω
  (3.15a) 

   
2

,
| |

= = | | , = ,
2

s n n s
n s s F s

F

k q q k
k V

m k m
ω ω

 

 (3.15b) 

with = 2 /F FV m  and = 2 /F Fk m   being the elec-
tron Fermi velocity and the electron Fermi wave number, 
respectively. Note that | |, | |,=n s n n s n− − − +ω ω . The quantum 

transition frequency (3.15a) consists of two terms: ,n sω  

represents the quasi-classical version of | |,n s n+ω , whereas 

sω  is known as the recoil frequency that cannot be intro-
duced within the quasi-classical approximation. Since sω  
does not have a classical counterpart, it should be omitted 
when passing to the classical limit. 

Further simplification of Eq. (3.13) is provided with the 
relation  

 | |

| |

( , ) ( , )
( ( , ) )

( , ) ( , )
n y z n s y z

n y z F
n s y z n y z

q q q q
q q

q q q q
+

+

−
≈ δ − =

−
F F

 
 

  

 2 2 2 2
2

2= ( [ ]).y z F n
m q q k qδ + − −


 (3.16) 

The Dirac delta-function describes the energy conservation 
law, which holds true in metallic solid-state media whose 
temperature is always much smaller than the electron Fer-
mi energy, FT  . Note that the main temperature de-
pendence of the metal conductivity is originated from the 
collisional relaxation rate ν  of conduction electrons. 
Therefore, 

     
2

2
| |,=

( ) (| | 2 )
( ) = ,s s n

s n
n s nn

k k qiej k I
imd

∞

+−∞

− +
ω − ω + νπ

∑  
 (3.17) 

where the integral nI  is defined by 

       2 2 2 2 2

0 0
= 2 ( [ ]).n z y y y z F nI dq dq q q q k q

∞ ∞
δ + − −∫ ∫  (3.18) 

Deriving the integral (3.18), we pass to the polar coordi-
nates, = cosy tq q ϕ , = sinz tq q ϕ , =y z t tdq dq q dq dϕ . Then, 

 
/2

3 2 2 2 2

0 0
= 2 [ ] cos( )n t t t F nI dq q q k q d

∞ π
δ − − ϕ ϕ =∫ ∫   

       
2 2( ) for | | = | | / < ,

= 4
0 otherwise.

F n n Fk q q n d kπ − π



 (3.19) 

Remarkably, Eq. (3.19) being substituted into Eq. (3.17), 
confines the variation of the summation index n  to the 
finite interval F FN n N−   , where 

 = [ / ].F FN k d π  (3.20) 

The number FN  is called total number of electron conduct-
ing channels in a metal slab of thickness d. It is defined by 
the integer part [ / ]Fk d π  of the channel parameter /Fk d π . 
Because of quantization (2.3) of the electron transverse 
wave number =x nq q  with simultaneous conservation of 
the electron energy ( ) =n t Fq  , the wave number tq  of the 
longitudinal wave vector = { , }t y zq qq  is also quantized, 

2 2=t F nq k q− . Evidently, the electron transport inside a 
metal slab is provided only by quantum states that can prop-
agate along the slab, i.e., have a real values of the longitudi-
nal wave number tq . This means that the quantum index 
| |n  of such a propagating state, or conducting channel, is 
restricted by FN . All other electron states with indices 
| | > Fn N  are known as evanescent since they have purely 
imaginary values of tq  and, consequently, do not contribute 
to the electron transport properties. 

Thus, the final expression for the Fourier transform 
( )sj k  of the electron current density ( )j x  reads 
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 (3.21) 

Here pω  is the plasma frequency, 

 2 2 3 2= 4 / , = /3 ,p FNe m N kω π π  (3.22) 

and N  is the classical density of the gas of conduction 
electrons in a bulk metal. 

The quantum current density (3.21) contains both diag-
onal and off-diagonal terms proportional to ( )sk  and 

(| | 2 )s nk q+ , respectively. As a consequence, the substi-
tution of Eq. (3.21) into Eq. (3.7) turns the latter into a set 
of equations that cannot give rise to relatively simple and 
easily appreciated (recognized) results. At the same time, 
the respective numerical simulations show that the princi-
pal contribution to Eq. (3.21) is provided by the diagonal 
part only. Therefore, to proceed further analytically, we 
omit the rapidly oscillating term with (| | 2 )s nk q+ . Fol-
lowing definition (3.3a) and the Faraday law (2.8), such a 
model allows us to readily obtain the compact and physi-
cally reasonable expressions for the electric and magnetic 
fields inside the metal slab (2.1), 0 x d  , 

   [ ]
2 2

=

( ) cos ( ) (0)cos( )
( ) = ,

( )
s s

s s s

H d k d x H k xikE x
d k k k

∞

−∞

− −

− ε
∑   

  (3.23a) 

   [ ]
2 2

=

( )sin ( ) (0)sin( )1( ) = .
( )

s s
s

s s s

H d k d x H k x
H x k

d k k k

∞

−∞

− +

− ε
∑   

  (3.23b) 

As one can see, the electromagnetic field distribution 
(3.23) restricted to the finite thickness of metallic slab, is 
formed by a superposition of discrete normal electromag-
netic modes with quantized electromagnetic wave number 

sk , Eq. (3.2). Each normal s-mode independently partici-
pates in the total electromagnetic response of a metal layer. 
The interaction of the conduction electrons with the given 
s-mode is described by its own permittivity ( )skε , 

 
2

2( ) = 1 ( ),p
s sk k

ω
ε −

ω
  (3.24) 

which is not a permittivity associated with the total elec-
tromagnetic field. The dependence of ( )skε  on the mode 
wave number sk , caused by both the quantum effects and 
the nonlocality, are incorporated into the quantum 
nonlocality factor ( )sk  defined by 

     
1 2 2

| |,=

1 /3( ) = .
4

NF
n FF

s
n s nn NF

q kk d
k

i

−

+−

−ω   ′  π ω − ω + ν∑  (3.25) 

Here the prime at the sum-symbol means the absence of 
the term with = 0n . The quantum nonlocality factor 

( )sk  and, as a consequence, the s-mode permittivity 
( )skε  are even functions of the mode wave number, 

 ( ) = ( ), ( ) = ( ).s s s sk k k k− ε − ε   (3.26) 

As is ascertained below, the representation of discrete 
normal electromagnetic modes (3.23)–(3.25) is the most 
relevant and adequate in modern metallic microstructures 
and, especially, in nano-thin films, due to the well pro-
nounced size effect and strong spatial dispersion. 

4. Surface impedances 

The external response of the metal layer to an electro-
magnetic excitation is completely determined by the sur-
face impedances 0ζ  and dζ  of the left-hand = 0x  and 
right-hand =x d  boundaries. They are defined by the 
transfer relation between the respective values of the elec-
tric and magnetic fields,  

 0

0

(0) (0)
= .

( ) ( )
d

d

E H
E d H d

ζ −ζ    
    ζ −ζ    

 (4.1) 

In line with the resulting formula (3.23a) for the electric 
field, the closed and explicit analytical expressions for the 
surface impedances 0ζ  and dζ  are given by 

 0 2 2
=

1= ,
( )s s s

ik
d k k k

∞

−∞
ζ −

− ε
∑  (4.2a) 

 2 2
=

cos( )
= .

( )
s

d
s s s

k dik
d k k k

∞

−∞
ζ −

− ε
∑  (4.2b) 

Both impedances are composed by different electromag-
netic s-modes characterized by their permittivities ( )skε , 
Eqs. (3.24), (3.25). 

Within the local regime, where the spatial variation 
scale 1| |sk −  of the contributive normal s-mode is much 
greater than the absolute value of the effective mean-free 
path of electrons = /( ),Fl V iω ν − ω  the transition frequen-
cy | |,n s n+ω  turns out to be negligible in comparison with 
the complex frequency iω + ν , 

 | |,| | 1 | | | | .s n s nk l iω +⇔ ω ω + ν   (4.3) 

In this case the quantum nonlocality factor ( )sk  is 
properly described by its value (0) , 

 ( )(0) = ,q
DLi

ω
ω + ν

   (4.4a) 

 
2

( )

=1

3 1= 1 .
2 / /

NFq
DL

F Fn

n
k d k d

   −  π π    
∑  (4.4b) 

In the factor ( )q
DL , the sum over the electron discrete quan-

tum number n  can be calculated explicitly. As a result, the 
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effective mode permittivity (3.24) loses the ks-dependence 
and transforms into the quantum version of the local permit-
tivity in the Drude–Lorentz model, 

 
2

( )(0) = 1 ,
( )

p q
DLi

ω
ε −

ω ω + ν
  (4.5a) 

 ( )( )
( )

( )
2

1 2 13 1= 1 .
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q F FF
DL

F F

N NN
k d k d

 + + −
π  π 

 (4.5b) 

Note that the quantum Drude–Lorentz permittivity (4.5) 
has a form similar to the conventional one, however, with 
the renormalized by the electron quantization plasma fre-

quency: ( )q
p p DLω → ω  . The transition to the classical 

Drude–Lorentz model is realized when the number FN  of 
the electron conducting channels becomes sufficiently 
great, and there is no significant distinction between the 
channel parameter /Fk d π  and its integer part FN . 
Therefore, 

     
2

(0) = 1 for / 1,
( )

p
DL Fk d

i
ω

ε → ε − π
ω ω + ν

  (4.6a) 

( )because 1.q
DL →   (4.6b) 

Within the local regime (4.3), the summation over the 
mode index s  in Eqs. (4.2) for the surface impedances can 
be explicitly performed, resulting in, see Refs. 4, 5, 

 (loc)
0 = cot( (0) ),

(0)
i kdζ ε

ε
 (4.7a) 

 (loc) / (0)
= .

sin( (0))d
i

kd
ε

ζ
ε

 (4.7b) 

For thick metal slabs, surface impedances (4.7) admit the 
asymptotics that are well known in the theory of the nor-
mal skin effect (see, e.g., Ref. 1), 

 (loc) (loc)
0 1/ (0), 0 as | (0) | .d kdζ → ε ζ → ε → ∞   

  (4.8) 

On the contrary, for extremely thin metal layers, both local 
impedances (4.7) almost compensate each other obeying 
asymptoitcs 

  (loc) (loc) 2
0 / (0) for ( ) | (0) | 1.d i kd kdζ ≈ ζ → ε ε   (4.9) 

In the most relevant and significant situation when the 
wave frequency ω  is found between the electron relaxa-
tion rate ν  and the plasma frequency pω , 

 ,pν ω ω   (4.10) 

Eqs. (4.5), (4.6) for the Drude-Lorentz permittivity (0)ε  
are simplified, and the estimations (4.8) and (4.9) for the 
surface impedaces take, correspondingly, simpler form, 

 (loc) (loc)
0

2 , 0, if ;
2 d

p

i dν − ω
ζ → ζ → δ

ω
  (4.11a) 

   
1(loc) (loc) ( ) 2 2

0 , ifq
DLd

p

i d
d

−δ ν − ω
ζ ≈ ζ → δ

ω
  . (4.11b) 

Here we introduced the minimal skin depth = / pcδ ω  of 
electromagnetic field penetration in a bulk metal ( dδ ), 
which is reached in the high-frequency range (4.10) in the 
classical Drude–Lorentz model, where 2(0) = ( / )pε − ω ω . 
As one can recognize, within the frequency range (4.10), 
all impedances (4.11) are mainly imaginary. Furthermore, 
the impedances (4.11b) of thin (quantum) metal layers get 
the value / 1dδ   times greater than that valid in the op-
posite case of thick slabs, Eq. (4.11a). 

In the context of the analysis performed above, we 
should address a remarkable feature of the general expres-
sions (4.2) for the surface impedances. These expressions 
contain the term with the electromagnetic mode index 

= 0s . It is strictly coincides with Eq. (4.9), thus, contrib-
uting to the impedance behavior of the metal thin films. 
Such a contribution of the only zero normal mode is spa-
tially dispersionless independently of either the other non-
zero ( 0)s ≠  modes are local (| | 1)sk lω   or nonlocal 
(| | > 1)sk lω . As stated above, the asymptotics Eqs. (4.9), 
(4.11b) defined by the term with = 0s , are really relevant 
when the nonzero modes are also spatially dispersionless, 
see requirement (4.3). However, as it follows from the nu-
merical study discussed in Sec. 5, for sufficiently thin met-
al layers ( < ),d δ  even in the case of strong nonlocality 
(| | > 1)sk lω  the local zero-mode can provide a noticeable 
contribution described by Eq. (4.11b), to the ω-dependence 
of the imaginary part of the surface impedances (4.2) with-
in the high frequency range (4.10). 

Our results (3.21), (3.23)–(3.25), and (4.2) give evidence 
that within the nonlocal quantum regime the electromagnetic 
response of the metal slab has resonant behavior provided by 
the quantization of transverse motion of the conduction elect-
rons. Specifically, in agreement with the structure (3.25) of 
the quantum nonlocality factor ( )sk , each nonzero ( 0)s ≠  
normal electromagnetic s-mode undergoes a set of quantum 
resonances. Due to parity (3.26) of ( )sk , every given reso-
nant set is equally contributed by two modes with indices 

| |s± . The resonances of the | |s -set occur at the values of 
wave frequency ω  equal to the electron transition frequency 

| |,n s n+ω , Eq. (3.15), 

 | |,= , = 1,2,3, , .n s n Fn N+ω ω   (4.12) 

The number of the s-resonances coincides with the total 
number = [ / ]F FN k d π  of the electron conducting chan-
nels. In view of the restriction on the electron quantum 
number n, the frequencies (4.12) of the resonant | |s -set 
are confined to the range 

     0 < < | | = | | ( / )( / ) .s s F F pk V s V c dω − ω π δ ω  (4.13) 
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Remarkably, this is exactly the range, where the strong 
spatial dispersion (nonlocality) condition | | > 1sk lω  is met 
for the respective normal | |s± -modes. The width of the 
nonlocality interval (4.13) is determined by value of the 
Fermi velocity FV  of conduction electrons and, for a spe-
cific metal, is expected to become broader when the slab 
thickness d  decreases. The higher modes with the greater 
| |s  get the wider nonlocality range and the higher thresh-
old frequency sω . Due to the latter, the resonances of the 
(| | 1)s + -set are always shifted to the higher frequencies 
with respect to the resonances of the | |s -set and cannot 
coincide with them. The resonances belonging to any fixed 
| |s -set, are equidistantly spaced inside the frequency 
range (4.13). Following definition (3.15), the resonant 
spacing ( )s d∆  reads 

 1
1, ,( ) = | | ( / ) .s n s n s s F Fd k V k d −

+∆ ≡ ω − ω π  (4.14) 

The spacing (4.14) of the resonant | |s -set with electromag-
netic mode index | | = 2, 3,s   is a multiple of the spacing 
of the first set with | | = 1s . The resonant amplitudes of 

( )sk  are modulated by the factor 2 2
| |, (1 / )n s n n Fq k+ω − ∝

2 2(1 / ) /n F n Fq k q k∝ − . Therefore, the amplitudes of the lateral 
resonances with small and large electron quantum indices n  
are smaller than the amplitudes of the intermediate resonanc-
es. Evidently, the electron relaxation rate 0ν ≠  broadens the 
resonances and decreases their amplitudes. This fact estab-
lishes the resolution condition for the resonances of the |s|-set 
constrained to the nonlocality interval (4.13), 

 < ( ).s dν ∆  (4.15) 

In other words, the resonances satisfied condition (4.15) 
turn out to be well resolved. 

As the electron-channel parameter /Fk d π  increases, 
the number FN  of |s|-resonances inside the frequency 
range (4.13) also increases, and the spacing (4.14) between 
them expectedly decreases. Therefore, for sufficiently 
great values of the electron-channel parameter / 1Fk d π , 
the resolution condition (4.15) can be broken. As a result, 
the resonances of a fixed |s|-set begin to overlap and even 
to coalesce giving rise to their disappearance. In addition, 
the relative distance 1( / )Fk d −π  between the neighboring 
electron conducting channels becomes extremely narrow. 
Due to all these reasons, in definition (3.25) for ( )sk , the 
summation over the electron quantum number n  can be 
changed into the integration over the transverse projection 

= / = /( / )x n F Fn q k n k d π  of the electron wave unit-vector. 
In such a way, the quantum nonlocality factor ( )sk  
achieves its classical counterpart, 

 
1 2

1

(1 )3( ) =
4 | |

x x
B s

s F x

n dn
k

k V n i
−

−ω
ω − + ν∫ , (4.16) 

which does not include quantum resonances discovered 
above. The electromagnetic field distribution (3.23) as well 
as the surface impedances (4.2) contributed by the discrete 

normal electromagnetic s-modes with the effective mode 
permittivity ( )skε  described by Eq. (3.24) which, howev-
er, contains the classical nonlocality factor ( )B sk , have 
been obtained in Ref. 3 with the use of the method of the 
Boltzmann kinetic equation. Remarkably, the integrand in 
Eq. (4.16) possesses the famous Landau singularity, the 
pole at | | =s F xk V n iω + ν , which transforms to its dis-
crete version, the resonance condition (4.12), within the 
quantum regime. Under the strong nonlocality (spatial dis-
persion), where | | > 1sk lω , this constitutive singularity 
turns out to be exactly within the integration interval, thus 
providing a positive imaginary part of the mode permittivi-
ty ( )skε , even in the case when the collisional relaxation 
rate vanishes, = 0ν . As a result, the related normal | |s± -
modes undergo the classical collisionless Landau damping 
(see, details in Refs. 3, 5). The condition | | > 1sk lω  of the 
strong nonlocality clearly attests: The frequency range, 
where the Landau damping appears in the electromagnetic 
response of two fixed normal | |s± -modes, coincides with 
the frequency range (4.13) of the corresponding resonant 
|s|-set (remember that the recoil frequency sω  should be 
omitted in the classical limit). Hereby, in the quantum non-
local regime (4.13), the Landau damping manifests itself as 
the |s|-set of resonances, which coalesce in the classical 
nonlocality and, in this way, shape the conventional Lan-
dau damping. 

With increase of the wave frequency ω , the effective 
mean-free path of electrons lω  decreases, and the transi-
tion to the local regime (4.3) is realized. The Landau 
damping vanishes since the classical nonlocality factor 
(4.16) approaches its asymptotics 

 ( ) (0) = for | | 1.B s B DL sk k l
i ω

ω
→ ≡

ω + ν
      

  (4.17) 

This conclusion is in agreement with that follows from the 
classical Drude–Lorentz model, compare Eqs. (3.24), 
(4.17) with Eqs. (4.4), (4.6). 

5. Numerical results 

Here we present the results of our numerical calcula-
tions of the surface impedances, derived analytically in the 
previous section, in order to analyze their behavior in both 
quantum and classical regimes. Specifically, Figs. 2–5 
show the frequency spectra of the real and imaginary parts 
of the surface impedances, 0 ( / )pζ ω ω  and ( / )d pζ ω ω , of 
silver (Ag) slabs with different normalized thicknesses 

/d δ . In the calculations, we use an electron relaxation rate 
4= 2.0 10 p

−ν ⋅ ω , which can be quite realistic for high-
quality silver films [22–24], even at room temperature. 

Each panel of Figs. 2 and 3 for the real parts of the surface 
impedances, 0Reζ  and Re dζ , displays a family of four 
curves. Two of them, dot-dashed green and dotted pink 
curves, were obtained within the quantum local approach and 
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classical local Drude–Lorentz model, i.e., by using Eqs. (4.7) 
with the dielectric permittivity (0)ε  taken from Eqs. (4.5) 
and (4.6), respectively. The dashed red curves depict the fre-
quency dependence of the real part of surface impedances 
obtained within the kinetic Boltzmann equation approach, 
where the dominant effect is the Landau damping. Here, fol-
lowing Refs. 3, 5, we have applied the general expressions 
(4.2) for the surface impedances complemented by the effec-
tive mode permittivity (3.24) with the classical nonlocality 
factor ( )B sk , Eq. (4.16). The real parts of the quantum 
nonlocal surface impedances are presented by the solid pur-
ple curves. The later results were obtained by two ways. The 
first one consists in numerically solving the initial system, 
Eqs. (3.3), (3.7), (3.21) and (4.1), while the second one is 
based on the examination of analytical results (4.2), (3.24) 
and (3.25). Both methods reveal an excellent mutual agree-
ment. The vertical blue straight lines denote the right border 
of Eq. (4.13), to the right of which the corresponding normal 

modes of given | |s  quit contributing to quantum/classical 
nonlocality. As a consequence, the maximal/minimal value 
of the curves is achieved to the left from the 1| | /F pk V ω  
line, where all the 0s ≠  normal modes contribute to the 
surface impedance. 

Panels (a) of Figs. 2 and 3 exhibit the spectra of 
0Re ( / )pζ ω ω  and Re ( / )d pζ ω ω  for nano-thin metal layers 

with / = 0.35d δ . In this case the number of quantum elec-
tron conducting channels is moderate, = [ / ] = 30F FN k d π  
and the frequency range (4.13) of nonlocality is wide enough 
to allow the fulfillment of the resolution condition (4.15): 

3< ( ) 1.4 10 | |s pd s−ν ∆ ≈ ⋅ ω  for all the nonzero normal 
electromagnetic | |s -modes. Consequently, the quantum 
regime is clearly realized. The spectrum of the real part of the 
surface impedances (solid purple curves) contains well-
pronounced resonances and drastically differs from the real 
part of the nonlocal surface impedances (dashed red curves) 
provided by the classical Landau damping [3,5]. It is note-
worthy that inside the frequency range 1 10 < < =Fk Vω − ω

Fig. 2. (Color online) Frequency dependence of the real part of the 
surface impedance ζ0 of a silver slab (VF = 1.39·108 cm/s, ωp = 
= 2.175·103 THz [22]) predicted by four distinct models. Each 
panel corresponds to a different value of the layer thickness d 
(marked in the panels). The electron relaxation rate ν = 2.0·10–4 ωp. 
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Fig. 3. (Color online) Frequency dependence of the real part of the 
surface impedance ζd at the right boundary x = d of a silver slab. 
The curves in panels (a), (b), and (c) were calculated for the same 
values of the slab thickness d as in the respective panels of Fig. 2. 
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/ ,FV d= π  where the prevailing resonances belong to the 
normal modes with | | = 1s , the resonance set with | | = 2s  
also gives an unusual contribution: While the maxima (min-
ima) of the resonant oscillations of 0Reζ  (Re )dζ  come 
from the | | = 1s  resonances, the minima (maxima) are, in 
fact, modulated by the | | = 2s  resonances, see the insets of 
panels. Moreover, Fig. 2 reveals that inside each nonlocality 
range (4.13), the resonance condition (4.12) for respective 
normal |s|-modes always gives rise to the maxima of the res-
onant oscillations of 0Reζ . In contrast, as can be seen from 
Fig. 3, the resonances (4.12) in odd (even) normal |s|-modes 
determine, respectively, the minima (maxima) of the Re dζ  
curve within the corresponding nonlocality intervals. The 
reason is the sign-alternating factor | |cos( ) = ( 1) s

sk d −  pre-
sent in the summands of definition (4.2b) for the surface im-
pedance dζ , whereas such a factor is absent in definition 
(4.2a) for the other impedance 0ζ . 

The intermediate situation between quantum and classi-
cal regimes is shown in panels (b), where / = 0.7d δ  and 

= 60FN . This case is close to the resolution limit 
1= ( )dν ∆  for the resonant (| | = 1)s -set, which is 

achieved when the slab thickness d δ . Then, the reso-
nances with | | = 1s  have almost coalesced. As a conse-
quence, the quantum (solid purple) and the classical non-
local (dashed red) curves have almost merged inside the 
interval 1 10 < < Fk Vω − ω . On the other hand, the reso-
nances of the sets with the electromagnetic mode indices 
| | = 2s  and | | = 3s  are still observed because they have a 
resonant spacing (4.14), respectively, two and three times 
larger than that for resonances with | | = 1s . 

Surface impedances in panels (c) have been calculated 
for a relatively-thick slab ( / = 3)d δ , having a very large 
number of electron conducting channels ( = 257)FN . For 
this reason, the set of resonances cannot be distinguished for 

Fig. 4. (Color online) Frequency dependence of the relative diffe-
rence between the imaginary parts of the nonlocal and local surface 
impedances at the left boundary x = 0 of a silver slab. The curves in 
panels (a), (b), and (c) were calculated with the same values for the 
slab thickness d as in the respective panels of Fig. 2. 
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Fig. 5. (Color online) Frequency dependence of the relative diffe-
rence between the imaginary parts of the nonlocal and local surface 
impedances at the right boundary x = d of a silver slab. The curves 
in panels (a), (b), and (c) were calculated with the same values for 
the slab thickness d as in the respective panels of Fig. 2. 
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the first normal modes with | | 10s  , for which the spacing 
( = 3 ) <s d∆ δ ν . Here the frequency dependence of the 

surface impedances is determined by the classical nonlocal 
Landau damping effect. The spectrum of the real part of 
surface impedances calculated within the quantum approach 
(solid purple curve) perfectly coincides with that obtained 
within the kinetic Boltzmann equation formalism [3]. 

Since the nonlocality factors, ( )sk  or ( )B sk , tend 
to the respective asymptotics (4.4) or (4.17) with the in-
crease of wave frequency ω , all the nonlocal (solid pur-
ple and dashed red) curves approach the corresponding 
(quantum or classical) Drude–Lorentz curves. As a result, 
the oscillations are naturally smoothed, decrease in am-
plitude, and disappear. On the other hand, obeying the 
same ω-dependence, the Drude–Lorentz quantum (dot-
dashed green) and classical (dotted pink) spectral curves 
exhibit different values in the quantum panel (a), then 
come closer together in the intermediate panel (b) and, 
subsequently, merge in the classical panel (c) as the slab 
thickness d  (or, the same, the number of electron con-
ducting channels )FN  increases. 

Due to the fact that the real part of surface impedances 
determines the electromagnetic losses in a metal, the effect 
of the resonant quantization of Landau damping should 
also manifest itself in the metal absorption spectrum ( ).A ω
The corresponding study was reported in our previous brief 
letter [17]. The direct comparison of the graphical presen-
tation given in Ref. 17 for the ω-dependence of the far-
infrared absorption of metal nanoslabs, displays that the 
line-shape of ( )A ω  exactly follows the resonant line-
shape of 0Re ( )ζ ω  discovered in Fig. 2. 

Quantum Landau damping also manifests itself in the 
frequency dependence of the imaginary parts, 0Imζ  and 
Im dζ , of the surface impedances (4.2). The characteris-
tic spectra and their dynamics realized with transition 
from the quantum to classical nonlocal regimes (with 
variation of the dimensionless slab thickness / )d δ  are 
shown in Figs. 4 and 5. As was revealed with the use of 
our numerical simulations, inside the high frequency 
range (4.10), the imaginary parts of the surface imped-
ances of the nano-thin metal layers ( < )d δ  possess a 
nonresonant term whose absolute value is great and line-
arly increases as the wave frequency ω  increases. In 
accordance with what was mentioned in Sec. 4 after 
Eqs. (4.11), this local term originates from the contribu-
tion of the local zero-mode (s = 0) in the sums (4.2) and 
is exactly described by Eq. (4.9) having the asymptotics 
(4.11b). Remarkably, the same expressions are also in-
herent for the local impedances (4.7). Therefore, in order 
to eliminate such a local contribution from our analysis of 
the quantum nonlocal effects, in Figs. 4 and 5, we present 
the difference between the imaginary part of the imped-
ance 0ζ  ( )dζ  and the imaginary part of its local coun-
terpart (loc)

0ζ  (loc)( )dζ  normalized to the respective imagi-
nary part of the local impedance from Eq. (4.7). 

6. Conclusions 

We have derived general analytical expressions for the 
quantum nonlocal electron current density in a metallic 
nanoslab within the Kubo’s linear response formalism. Us-
ing this result, we have analytically calculated the electro-
magnetic field distribution inside the metal nanoslab by ex-
pressing it as a superposition of discrete electromagnetic 
modes. To study the external response, we have obtained 
general explicit expressions for the surface impedances of 
both metal slab boundaries. It was found that the frequency 
dependence of the surface impedances has resonances, 
whose origin is owing to the discretization of the electro-
magnetic and electron wave numbers inside the nanoslab 
and is directly associated with the effect of the collisionless 
Landau damping in the quantum regime. The quantum non-
local resonances are well-resolved when the thickness of the 
metal nanoslab is smaller than the electromagnetic skin 
depth. It is noteworthy that the quantum resonant behavior 
of the frequency dependence of the surface impedances dif-
fers completely from that observed in other regimes, namely 
the quantum local regime, the regime described by the 
semiclassical Boltzmann kinetic equation formalism, and the 
classical local regime described by Drude–Lorentz model. 
The difference is due to the discretization of the Landau 
damping in the quantum nonlocal regime. 
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Квантова дискретизація поглинання Ландау 

S.G. Castillo-López, F. Pérez-Rodríguez,  
Н.М. Макаров 

Отримано та проаналізовано аналітичні вирази для кван-
тової густини електронного струму, а також для розподілу 
електромагнітного поля всередині металевої нанопластини. 
Виведено загальні точні вирази для поверхневих імпедансів 
обох границь металевої пластини. Показано, що явище без-
зіштовхувального поглинання Ландау виникає в частотній 
залежності поверхневих імпедансів у вигляді резонансів, 
пов'язаних з дискретизацією електромагнітних та електрон-
них хвильових чисел всередині металевої нанопластини. 

Встановлено, що квантові нелокальні резонанси поверхневих 
імпедансів добре помітні при товщинах пластини, менших 
глибини електромагнітного скін-шару. Передбачена пове-
дінка поверхневих імпедансів в квантовому нелокальному 
режимі радикальним чином відрізняється від такої, що 
проявляється в квантовому локальному наближенні, в напів-
класичному підході кінетичного рівняння Больцмана, а та-
кож в класичній локальній моделі Друде–Лоренца. Аналі-
тичне дослідження повністю узгоджується з відповідними 
числовими обчисленнями. 
Ключові слова: просторова дисперсія, поглинання Ландау, 
металеві наноструктури, оптичні властивості. 

 

Квантовая дискретизация поглощения Ландау 

S.G. Castillo-López, F. Pérez-Rodríguez,  
Н.М. Макаров 

Получены и проанализированы аналитические выражения 
для квантовой плотности электронного тока, а также для 
распределения электромагнитного поля внутри металличе-
ской нанопластины. Выведены общие точные выражения для 
поверхностных импедансов обеих границ металлической 
пластины. Показано, что явление бесстолкновительного по-
глощения Ландау возникает в частотной зависимости по-
верхностных импедансов в виде резонансов, связанных с 
дискретизацией электромагнитных и электронных волновых 
чисел внутри металлической нанопластины. Установлено, 
что квантовые нелокальные резонансы поверхностных импе-
дансов хорошо различимы при толщинах пластины, меньших 
глубины электромагнитного скин-слоя. Предсказанное пове-
дение поверхностных импедансов в квантовом нелокальном 
режиме радикальным образом отличается от того, которое 
проявляется в квантовом локальном приближении, в полу-
классическом подходе кинетического уравнения Больцмана, 
а также в классической локальной модели Друде–Лоренца. 
Аналитическое исследование полностью согласуется с соот-
ветствующими численными рассчетами. 

Ключевые слова: пространственная дисперсия, поглощение 
Ландау, металлические наноструктуры, оптические свойства. 
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