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Quantum discretization of Landau damping
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We derive and analyze analytical expressions for the quantum electron current density and electromagnetic field

distribution inside a metallic nanoslab. Besides, we obtain general explicit expressions for the surface impedances

of both metal slab boundaries. We found that the phenomenon of Landau damping manifests itself in the frequency

dependence of the surface impedances as resonances associated with the discretization of the electromagnetic and

electron wave numbers inside the metal nanoslab. In particular, the quantum nonlocal resonances of the surface im-

pedances are clearly discernible at slab thicknesses smaller than the electromagnetic skin depth. The predictions for

the surface impedances in the quantum regime turn out to be radically different from those of the quantum local ap-

proach, the semiclassical Boltzmann kinetic equation formalism and the classical Drude—Lorentz local model. The

analytical study completely agrees with the respective numerical calculations.

Keywords: spatial dispersion, Landau damping, metallic nanostructures, optical properties.

1. Introduction

As is well known (see, i.e., Ref. 1), there are three prin-
cipal mechanisms of electromagnetic absorption in metals:
The first one is owing to the collisions of electrons in the
sample, it is characterized by a relaxation frequency v ; the
second mechanism is also collisional, but it is connected
with the dissipative properties of a metallic surface and is
described by a surface relaxation frequency vg,.r; the
third mechanism turns out to be collisionless and is known
as Landau damping [2]. The latter one describes the phe-
nomenon of direct absorption of electromagnetic radiation
by the electrons moving in phase with the electromagnetic
wave. Therefore, in metallic samples of very high quality
and at sufficiently low temperatures, the remaining mecha-
nism of electromagnetic absorption is, precisely, the Lan-
dau damping. This phenomenon is well manifested under
conditions of strong spatial dispersion, or nonlocality, of
the metal. Particularly, it has been studied in bulk samples
(see, for example, [1] and references therein), thin films [3]
and metal-dielectric periodic heterostructures [4—6] within
the framework of the semiclassical formalism of the
Boltzmann kinetic equation for the distribution function of
the conduction electrons. As was shown there, Landau
damping always exists and considerably alters the absorp-
tion, reflection and transmission spectra of all those metal
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systems within the THz and near-infrared frequency range.
Landau damping also influences upon optical spectra in the
visible and ultraviolet ranges. Thus, for example, it con-
tributes to the attenuation of surface plasmons in a great
variety of metallic nanostructures (see, e.g., [7—16]). How-
ever, because of the extremely-small size of the metallic
samples (nano-thin films, nanotubes, and nanoparticles),
the quantum phenomena emerge and the question about the
physical interpretation of the classical phenomenon of
Landau damping in the strong quantum regime arises.
Clarifying this question, in our recently-published brief
letter [17], the resonant quantization of Landau damping in
far-infrared absorption spectra of metal nano-thin films
was predicted within the Kubo formalism. It was demon-
strated that Landau damping clearly manifests itself as
prominent resonances in the absorption spectra, which are
associated with the discretization of the electromagnetic
and electron wave numbers inside a metal nanofilm.

In this work we shall present a detailed analysis of the
quantum nonlocal electromagnetic response of a metal
nanoslab and, particularly, we study the effect of Landau
damping on it. Firstly (Sec. 2), we shall analytically calcu-
late the quantum current density of the conduction elec-
trons in the metal nanoslab by applying the Kubo's linear
response formalism. Using this analytical result, we solve
Maxwell equations by writing the electromagnetic field as
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a superposition of discrete normal electromagnetic modes
with quantized electromagnetic wave vector (Sec. 3). In
Sec. 4, we obtain explicit expressions for the surface im-
pedances of both boundaries of the nanoslab in order to
study its external response. Here, from the general expres-
sions for the surface impedances we derive asymptotic
formulas for three limits of the electromagnetic response of
the metal nanoslab: i) the quantum local regime, ii) the
semiclassical nonlocal limit, which can also be described
by the Boltzmann kinetic equation formalism, and iii) the
regime corresponding to the classical Drude—Lorentz local
approach. The Sec. 5 contains specific results obtained by
numerical calculations of the surface impedances of silver
nanoslabs having distinct thicknesses. On the basis of both
analytical and numerical results, we shall explain the reso-
nances, appearing in the frequency dependence of the sur-
face impedances in the quantum regime, as an effect of the
quantum discretization of the Landau damping. Finally,
there is a section of Conclusions.

2. Problem formulation: basic relations

We examine an electromagnetic response of a quantum
metallic flat layer confined to the space volume

0<x<d, —oo<y,z<0o,

(2.1)
with d implying the slab thickness. The coordinate system
is chosen in such a way that the x axis is orthogonal to the
layer interfaces x =0 and x =d while the y and z axes
are parallel to them being found on the left metal boundary
x =0, see Fig. 1.

The single-particle quantum stationary states of the
conduction electrons in the metal slab (2.1), unperturbed
by the electromagnetic field, are characterized by the com-
plete set a consisting of three electron quantum numbers,

a={n,q,.9.}, n=1,2,3,..; —0<q,,q. <eo. (2.2)

The positive integer n determines the discrete electron
wave number ¢, transversal to the metal slab,

q, =4q, =Tn/d. (2.3)

E

b

3> X

Fig. 1. Sketch of the system.
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Two other, longitudinal, wave numbers, q, and ¢, , are
continuous quantities because of the free unconfined elect-
ron motion along y and z axes.

The dependence of the eigenenergy €, of the unper-
turbed electron Hamiltonian on the quantum numbers (2.2)
is defined by

2
oo 2 2
€ =€,(9,.9.)=——(q, + 9, +42), (2.4)
2m
with m being the effective electron mass. The ortho-
normalized wave function of the electron in the a-state in-
side the metal layer reads

2 . 1 . .
Y, (x,y,2)= \/;sm(q,,x)ﬁexp(zqnyrzqzz). (2.5

For simplicity, we assume the specular reflection of elec-
trons from the metal slab boundaries x=0 and x=4d .
The exciting electromagnetic wave of frequency
propagates along the x axis perpendicularly to the metal
layer. In view of the chosen coordinate system, this fact
implies the electric E(x,7) and magnetic H(x,?) fields of
the wave to be parallel to the y and z axis, respectively,

E(x,?) = {0, E(x),0} exp(—imt), (2.6a)

H(x,?) = {0,0, H(x)} exp (—iot). (2.6b)

From the Maxwell equations one can readily obtain the
equation, which describes the electric field distribution
inside the metal slab (2.1),

2 22
TED) 2+ T =0,
(O]

- 2.7)
X

Here k=wm/c is the electromagnetic wave number in
vacuum, the second term on the Lh.s. is originated from the
displacement current, while the third one is due to the lon-
gitudinal current density j(x)exp(—i®t) of the conduction
electrons. The magnetic field H(x) is associated with the
derivative E’(x) over x of the electric field E(x) by the
Faraday law,

E’(x) = ikH (x). (2.8)

The quantum current density of the conduction elec-
trons, j(x,r;t)= j(x,r)exp(—imt), in linear approximation
in the electric field E(x,r;¢)=E(x,r)exp(—iwt) can be
derived with employing the standard Kubo’s linear re-
sponse theory developed for the weakly nonequilibrium
isotropic Fermi-liquid model [18-20]. Thus, the starting
point of our calculations is the general expression [21]

Jo(rr) = [ dx'dr g (x. 10 1) Eg (x'.1) 5 (2.9)
V
o,B=x,y,z; r={yz};
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where the integration runs over the metal volume V, see
Eq. (2.1), and the summation over the twice-repeated vec-
tor index {3 is implied. The response function ¥og is de-
fined as

Yap (15X, 17) = th 6,_36“&

(@l Ly | @)’ | Ty'.r) )

- (2.10)
nv+i(e, —€, —hw)

Here the factor 2 takes into account the electron spin de-
generation, the symbols a and a” stand for the complete
set (2.2), (2.3) of the quantum numbers of the unperturbed
electron state with the corresponding eigenenergies €, and
€, ,» Eq. (2.4). The sum-symbol implies summation over
discrete quantum numbers and integration over continuous
ones. The equilibrium Fermi distribution function F, at
the energy € =¢,, the Fermi energy €, and the tempera-
ture T is

5, = {1+expl(e, — €)1} @2.11)
The so-called adiabatic parameter v can be regarded as
the effective scattering frequency of electrons caused by
their collisions with scatters in metal. Then,

(a1, (xr)|a)—lh—e[‘{’ (x, 1)V P, (x,r)—

~ W, (5, 1)V ¥, (x,1)] (2.12)

is the matrix element of the o-th component of the cur-
rent-density operator, where the asterisk “*” means the
complex conjugation, e is the elementary charge, and
¥, (x,r) stands for the unperturbed wave function (2.5)
of the electron in the o-th stationary state.

Since the electromagnetic field (2.6) does not depend
on the radius-vector r = {y, z}, the electron current density
j(x,r;t) should also be independent of r = {y,z}. In addi-
tion, it has the same polarization as the electric field (2.6a),

§Ce,r50) = {0, j(x), 0} exp (—ier). (2.13)
In line with the general relation (2.9) one can readily obtain

d
J@) =[xy (e xVE), 0<x<d,
0

(2.14)

where the truncated response function 7(x,x”) is de-
scribed by

1) = [ dry, (xex) . (2.15)

By definition (2.12), the necessary matrix elements get
the following explicit expressions:

he(q, +q3,)

(a] ]y (x,r)|a") =~ 5 Sin(qnx) Sin(‘]n'x) X

md(2m)
xexp[-i(q, —q)ylexpl—i(q; —¢2)z], (2.16a)
h ’
(@ 11,00 | =~ 0 g, ) sin(g )
md (2T)
xexpli(q, —q;)y’lexpli(q, —q2)z’].  (2.16b)

Being substituted into Eq. (2.10), they allow us to take
the integral over r’ ={y’,z’} contained in Eq. (2.15), giv-
ing rise to the appearance of two Dirac delta-functions,
5(qy —q;) and 8(q, —q.). Using them, one can explicit-
ly take the integrals over q; and ¢, entering the sum-
symbol over a’ in Eq. (2.10) and eliminate the depend-
ence on the radius-vector r = {y, z}. As a result, we get the
exact explicit quantum expression for x(x,x"),

dCIz J qy 2X
Zn

n,n'=1_

Sn(qy,qZ)_gn'(anqz)
6}'l’(qy’qz)_en (qy’qz)

2.17)

(2/d) sin(g,,x) sm(qn/x)sm(qnx )sin(g,, x’ )
(v—im)+ zh(qn

—4qn )/2m

It is important to emphasize that the truncated response
function (2.17) is even and periodic one of period 2d with
respect to its arguments x and x’,

X(xa )C,) = X(_xax,) = X()C, _X,),

x(6,x7) = x(x+2d,x") = x(x,x’ +2d).  (2.18)

The noted symmetries provide the adequate and physically
reasonable type of the Fourier presentation in order to pro-
ceed further resolving the problem.

3. Discrete electromagnetic modes

Equation (2.7) with the current density j(x) determined
by Egs. (2.14), (2.17), presents an integro-differential equa-
tion for FE(x), which is defined within the finite interval
0 < x < d . Due to symmetries (2.18), we can try to solve it
by passing to the discrete Fourier transformations similarly
as we did this in the classical case, see Ref. 3.

Specifically, the electric current density j(x) defined
inside the finite interval 0 < x <d, on the other hand, is
an even and periodic function of x in accordance with
Egs. (2.14), (2.18),

J)=j(=x);  j(x)=j(x+2d).

This parity-periodicity symmetry analytically continues
j(x) to the entire x axis (—eo < x <eo). The electric field

(3.1a)
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E(x) in metal slab is also defined within the finite interval
0 < x<d . However, the connection E(x) with j(x) via
Eq. (2.7), makes the former to be even and periodic too,

E(x)= E(-x); E(x)=E(x+2d), (3.1b)

that analytically continues the electric field E(x) to the
entire x axis (—eo <x <o),

The parity-periodicity symmetry (3.1) inevitably dic-
tates the following Fourier transformations with the dis-
crete electromagnetic wave number

ky=ms/d, s=0,£1,£2,%£3,... (3.2)
For the electric field we introduce
E(x)= é Y E(ky)cos(kyx), (3.3a)
§=—00
E(ky) = 2.[ dxE(x)cos(kgx) . (3.3b)
0
The similar for the electric current density
Jo) =27 Y Jjitky)cos(k,x), (3.4a)
S§=—00
Jkg) = ZJ dx j(x)cos(kgx). (3.4b)

0

By definitions (3.3b) and (3.4b), the Fourier transforms
E(ky) and j(k,) are even functions of the electromagnet-
ic wave number £,

E(ky) = E(~k,) = E(k_); (3.59)
Jkg) = j(=k) = jk_y). (3.5b)
Now, let us apply the integral operator
d
2f dxcos(kyx)... (3.6)
0

to Eq. (2.7) with subsequent double integration by parts of
the first (differential) term. After that, the initial equation
(2.7) in kg-representation gets the form

4mik?

(k=) - k) =

= 2ik[H (d) cos(k,d) — H(0)]. (3.7)

The integration constants H(0) and H(d) are the magnet-
ic fields on the metal slab surfaces x =0 and x =d . They
are associated, respectively, with the derivatives E’(0)
and E’(d) of the electric field by the Maxwell equation
(2.8). Depending on the method of the slab excitation,
H(0) and H(d) can be expressed via the amplitudes of
the incident, reflected and transmitted waves with the use
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of continuity conditions for the electric and magnetic fields
atthe x=0 and x =d boundaries.

In order to derive j(k;) we have to Fourier transform
Eq. (2.14) for the current density j(x) as stated in defini-
tion (3.4b),

d d
Jlkg) = 2[ dx'E(x')[ duy(x. x)cos(h,x) . (3.8)

0 0

Substitution of Eq. (2.17) for the truncated response func-
tion y(x,x") into Eq. (3.8) gives

oo

dqz J dqy 2><
m

J (kg

}’ll’l =—00 —co

% 3rl(qy’qz)_gn’(q};an)
€n'(qysqz) —€ (qy,qz)

. -1
[(V_W%@g —qﬁ)} x

d
X 4J dx"E(x")sin(q,,x")sin(g,x") X
0

d
X %jdx cos(kgyx)sin(g,,x)sin(q, x) . (3.9)

0

Here we have taken into account that the summand in
Eq. (2.17) is an even function of the summation indices n
and n’ . Then, the summand vanishes as n=0, or n’=0.
These facts allowed us to make a helpful replacement,

L 1%
n,n’=1 4 n,n'=—oo

(3.10)

Following definition (3.3b) and known integral expres-
sion for the Kronecker delta-symbol 6 it is readily to
realize that

5,87

d
4f dv'E(x')sin(q,x")sin(q,x) =

0

=gy —qw)—E@n +qp); (3.11a)
44

Fi I dx cos(kyx)sin(q,x)sin(g, x) =

0

= 8n’,n+|s| + 8n’,n—\s\ - 6—n’,n+|s\ - S—n’,n—\s|~ (3.11b)

Substitute Egs. (3.11) into Eq. (3.9). Then, in the third and
fourth terms, containing, respectively, &_, 4, and
d_, n|s| change the summation index, n"— -n". As a
result, the third and fourth terms turn into the first and the
second ones. So, we obtain

oo

dQZ j dqy 2><
21 215

J(kg

}'l n'=— _co
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% gn(qysqz)_gn'(qy’qz)
6}1’(qyan)_En (qyan)

. -1
[(v —i®) +%(q3' ~q5 )] x

X [E(Qn —4) =€y + 4y )] (811',n+|s\ + an',n—\s\ ) (3.12)
Now, carry out double replacement of the summation indi-
ces, n—>-n and n’— —n’, in the second term with
8, u—js|- This operation transforms &,/ 45 +8,7 45 =
— 28, 45| Perform the summation over »n” with the use
of the Kronecker delta 8, .y - All this algebra yields

d dq
zqu,ifz,:ix

N=—00 _oo

lhe

Jkg )—

2 Sn (qyaqz) - Sn+\s| (anqZ) %
€n+|_§" (qy ’qz) - En (Qy ,qz)

> 5(ks)_£(| ks |+2Qn)

: (3.13)
+1v

o - mn+\s\,n
When accomplishing the above calculations, we have ap-
plied the evenness of the quantum electron energy (2.4) as
a function of the discrete quantum number 7, the evenness
of the electric field Fourier transform (3.5a), and the evi-
dent conservation law for the discrete transverse electron
wave-number ¢, ,

= qnt ks |- (.14

Dn+)s|

Additionally, in Eq. (3.13) we have introduced the quantum
frequency Oy 4s],n of electron transition between (7 + |s|)-th
and n-th energy levels (2.4) because of absorption or emis-
sion of the electromagnetic quantum 7| k |,

2 2
Optisln = E(qnﬂsl ~ 4y ) —0,,+0y;  (3.15)
hik k?
s — | S |qn |k | V qﬂ O)S — S , (3.15]3)
i m F 2m

with Vi = /2€p/m and kp =./2mé€g /h being the elec-
tron Fermi velocity and the electron Fermi wave number,

respectively. Note that ©_,_ g _, = @, , - The quantum
transition frequency (3.152) consists of two terms: ®,, ¢
represents the quasi-classical version of ®,,, ,, whereas

o, is known as the recoil frequency that cannot be intro-

S
duced within the quasi-classical approximation. Since

does not have a classical counterpart, it should be omitted
when passing to the classical limit.

Further simplification of Eq. (3.13) is provided with the
relation

Sn (('Iy: qZ) - 3n+\s\ (qyaqz)
€n+‘s| (qy ’QZ) —€n (qy 7qz)

= 6(en(qy’qz)_eF) =

=28(q2 + 42 [k} — 2. (3.16)
The Dirac delta-function describes the energy conservation
law, which holds true in metallic solid-state media whose
temperature is always much smaller than the electron Fer-
mi energy, T < €. Note that the main temperature de-
pendence of the metal conductivity is originated from the
collisional relaxation rate v of conduction electrons.
Therefore,

i62 i g(ks) - 5(| ks | +2qn)

Jlkg) =— 27, (3.17)
n°md f=—co w_mn+|s\,n T
where the integral 7, is defined by
1, =2 dg, [dq,q;8(q; + 4% ~[kf —qz]).  (3.18)

0 0

Deriving the integral (3.18), we pass to the polar coordi-

nates, ¢, =¢,c08¢, g, =q,sin@, dq,dq. = q,dg,d¢ . Then,
/2
I, —2_[61%% 8(q; ~lkp —451) J docos’e =
0 0

T
Z(k%—q,%) for |g,|=mn|n|/d<kp,

0 otherwise.

(3.19)

Remarkably, Eq. (3.19) being substituted into Eq. (3.17),
confines the variation of the summation index » to the
finite interval —Np <n < Np, where

Np =[kpd /7). (3.20)

The number N is called total number of electron conduct-

ing channels in a metal slab of thickness d. It is defined by
the integer part [krd/n] of the channel parameter kpd/m.

Because of quantization (2.3) of the electron transverse
wave number g, =gq, with simultaneous conservation of

the electron energy €, (q,) = €5 , the wave number g, of the

longitudinal wave vector q; = {qy,qz} is also quantized,

= «/k}: —q,% . Evidently, the electron transport inside a

metal slab is provided only by quantum states that can prop-
agate along the slab, i.e., have a real values of the longitudi-
nal wave number g,. This means that the quantum index

|n| of such a propagating state, or conducting channel, is
restricted by Np .
|n|> Ng are known as evanescent since they have purely

All other electron states with indices

imaginary values of ¢, and, consequently, do not contribute
to the electron transport properties.

Thus, the final expression for the Fourier transform
Jj(kg) of the electron current density j(x) reads
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3i0? (ked ) NE P
(k) =—2L| =£= -1 Ix

I’l=—NF kF

% g(ks) _5(‘ ks | +2qn)'

- (3.21)
- (Dn+\s|,n +1v
Here ®, is the plasma frequency,
o), =4nNe*/m, N =kp/3n%, (3.22)

and N is the classical density of the gas of conduction
electrons in a bulk metal.

The quantum current density (3.21) contains both diag-
onal and off-diagonal terms proportional to £(k,) and
E(| kg | +2q,,) , respectively. As a consequence, the substi-
tution of Eq. (3.21) into Eq. (3.7) turns the latter into a set
of equations that cannot give rise to relatively simple and
easily appreciated (recognized) results. At the same time,
the respective numerical simulations show that the princi-
pal contribution to Eq. (3.21) is provided by the diagonal
part only. Therefore, to proceed further analytically, we
omit the rapidly oscillating term with &(| k, |+2g,,) . Fol-
lowing definition (3.3a) and the Faraday law (2.8), such a
model allows us to readily obtain the compact and physi-
cally reasonable expressions for the electric and magnetic
fields inside the metal slab (2.1), 0 < x < d,

o * S H (d)cos[ky(d —x)|- H(0) cos(ksx)’
(== S:z_"w K2~ ek,
(3.23a)
1 & H(d)sin[ky(d —x)]+ H(0)sin(k,x)
H((x)=— k '
W s:z_; ) K2 —K2e(ky)

(3.23b)

As one can see, the electromagnetic field distribution
(3.23) restricted to the finite thickness of metallic slab, is
formed by a superposition of discrete normal electromag-
netic modes with quantized electromagnetic wave number
kg, Eq. (3.2). Each normal s-mode independently partici-
pates in the total electromagnetic response of a metal layer.
The interaction of the conduction electrons with the given
s-mode is described by its own permittivity e(ky),

0)2
e(ky) =1-—2-Q(k), (3.24)
()
which is not a permittivity associated with the total elec-
tromagnetic field. The dependence of €(k;) on the mode
wave number kg, caused by both the quantum effects and
the nonlocality, are incorporated into the quantum
nonlocality factor Q(k,) defined by

-1 N 22
30( kpd £, 1—-q;/k
k) = (—fc ] >

—. (325
}’l:—NF ®- (Dn+‘slan T

Here the prime at the sum-symbol means the absence of
the term with n=0. The quantum nonlocality factor
O(ky) and, as a consequence, the s-mode permittivity
€(k,) are even functions of the mode wave number,

Q(_ks) = Q(ks )5 8(_ks) = E(ks)'

As is ascertained below, the representation of discrete
normal electromagnetic modes (3.23)—(3.25) is the most
relevant and adequate in modern metallic microstructures
and, especially, in nano-thin films, due to the well pro-
nounced size effect and strong spatial dispersion.

(3.26)

4. Surface impedances

The external response of the metal layer to an electro-
magnetic excitation is completely determined by the sur-
face impedances {, and {; of the left-hand x=0 and
right-hand x=d boundaries. They are defined by the
transfer relation between the respective values of the elec-
tric and magnetic fields,

(E(O))_[co —cd)[Hm)J
Ed)) \& Lo )\H())
In line with the resulting formula (3.23a) for the electric

field, the closed and explicit analytical expressions for the
surface impedances {, and {; are given by

4.1

ik < 1
Co = T T3 (4.2a)
k2 —kPe(ky)
¢, = ik Z cos(kyd) (4.2b)

d 2k - ke(ky)
Both impedances are composed by different electromag-
netic s-modes characterized by their permittivities e(k;),
Eqgs. (3.24), (3.25).

Within the local regime, where the spatial variation
scale | kg |_1 of the contributive normal s-mode is much
greater than the absolute value of the effective mean-free
path of electrons [/, =V /(v—iw), the transition frequen-
Cy ©,, turns out to be negligible in comparison with
the complex frequency ®w+iv,

ksl | <1 & | Oy 11s),n |<lo+iv]. (4.3)

In this case the quantum nonlocality factor O(kg) is
properly described by its value Q(0),

__ o (9)
0)=—0— K9, 4.4a
Q( ) [ORFAY DL ( )
Ng 2
K9 _3 i . (4.4b)
2kpdin =\ \kpd/m

In the factor ICL()qL) , the sum over the electron discrete quan-
tum number n can be calculated explicitly. As a result, the
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effective mode permittivity (3.24) loses the kg-dependence
and transforms into the quantum version of the local permit-
tivity in the Drude-Lorentz model,

2

()
e(0)=1-—2— k), 45
© o(@+iv) Pk (4.52)
@ _3 Ng 1_1(NF+1)(2NF+1) . (4.5b)

DL —

2kpd/m 6 (de/n)Z
Note that the quantum Drude—Lorentz permittivity (4.5)
has a form similar to the conventional one, however, with
the renormalized by the electron quantization plasma fre-

quency: ®, - ®, ICI()qL) . The transition to the classical

P
Drude-Lorentz model is realized when the number Ny of
the electron conducting channels becomes sufficiently
great, and there is no significant distinction between the
channel parameter kpd/m and its integer part Np.

Therefore,
2
e(0) > e 1P o din>1, (4.6a)
bL (0 + V) F ’ ’
because /Cl(qu) —1. (4.6b)

Within the local regime (4.3), the summation over the
mode index s in Egs. (4.2) for the surface impedances can
be explicitly performed, resulting in, see Refs. 4, 5,

(loc) \/Ei(io)cot(kd [e(0)), (4.72)
Cc(iloc) _ i/\/ €(0) (4.7b)

sin(kd Je(0))

For thick metal slabs, surface impedances (4.7) admit the
asymptotics that are well known in the theory of the nor-
mal skin effect (see, e.g., Ref. 1),

W0 1/ Je0), C4°9 >0 as kd ()] - .
(4.8)
On the contrary, for extremely thin metal layers, both local

impedances (4.7) almost compensate each other obeying
asymptoitcs

09 =19 = iskde©) for (kd)?|e(0)| < 1. (4.9)

In the most relevant and significant situation when the
wave frequency ® is found between the electron relaxa-
tion rate v and the plasma frequency ®,,

VKoK, (4.10)

Egs. (4.5), (4.6) for the Drude-Lorentz permittivity €(0)
are simplified, and the estimations (4.8) and (4.9) for the
surface impedaces take, correspondingly, simpler form,
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(loc) N v—-2i®

( , 9 0, if 5<d; (4.11a)

2(op
—7 -1
g{loo) = g°°>_>g—v Pp@™ ifg> <82, (4.11b)
®

p

Here we introduced the minimal skin depth & = c/®@ » of
electromagnetic field penetration in a bulk metal (& < d ),
which is reached in the high-frequency range (4.10) in the
classical Drude—Lorentz model, where €(0)=—(® » /(0)2.
As one can recognize, within the frequency range (4.10),
all impedances (4.11) are mainly imaginary. Furthermore,
the impedances (4.11b) of thin (quantum) metal layers get
the value 8/d >>1 times greater than that valid in the op-
posite case of thick slabs, Eq. (4.11a).

In the context of the analysis performed above, we
should address a remarkable feature of the general expres-
sions (4.2) for the surface impedances. These expressions
contain the term with the electromagnetic mode index
s =0. It is strictly coincides with Eq. (4.9), thus, contrib-
uting to the impedance behavior of the metal thin films.
Such a contribution of the only zero normal mode is spa-
tially dispersionless independently of either the other non-
zero (s #0) modes are local (] k,/,|<1) or nonlocal
(| kly | >1). As stated above, the asymptotics Egs. (4.9),
(4.11b) defined by the term with s =0, are really relevant
when the nonzero modes are also spatially dispersionless,
see requirement (4.3). However, as it follows from the nu-
merical study discussed in Sec. 5, for sufficiently thin met-
al layers (d <), even in the case of strong nonlocality
(| k4ly | > 1) the local zero-mode can provide a noticeable
contribution described by Eq. (4.11b), to the w-dependence
of the imaginary part of the surface impedances (4.2) with-
in the high frequency range (4.10).

Our results (3.21), (3.23)3.25), and (4.2) give evidence
that within the nonlocal quantum regime the electromagnetic
response of the metal slab has resonant behavior provided by
the quantization of transverse motion of the conduction elect-
rons. Specifically, in agreement with the structure (3.25) of
the quantum nonlocality factor Q(k;) , each nonzero (s # 0)
normal electromagnetic s-mode undergoes a set of quantum
resonances. Due to parity (3.26) of Q(k) , every given reso-
nant set is equally contributed by two modes with indices
+|s|. The resonances of the | s |-set occur at the values of
wave frequency @ equal to the electron transition frequency

(,l)n_'_‘sl’n , Eq (315),

0=0 n=1,2,3,...,Ng. (4.12)

n-+ls|,n>

The number of the s-resonances coincides with the total
number Np =[kpd/r] of the electron conducting chan-
nels. In view of the restriction on the electron quantum
number n, the frequencies (4.12) of the resonant |s |-set
are confined to the range

0<0-0, <|k |V =|s|(Vp/c)@/d)o,.  (4.13)
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Remarkably, this is exactly the range, where the strong
spatial dispersion (nonlocality) condition |kl |>1 is met
for the respective normal % |s|-modes. The width of the
nonlocality interval (4.13) is determined by value of the
Fermi velocity Vy of conduction electrons and, for a spe-
cific metal, is expected to become broader when the slab
thickness d decreases. The higher modes with the greater
| s| get the wider nonlocality range and the higher thresh-
old frequency ®, . Due to the latter, the resonances of the
(Is|+1)-set are always shifted to the higher frequencies
with respect to the resonances of the |s|-set and cannot
coincide with them. The resonances belonging to any fixed
| s|-set, are equidistantly spaced inside the frequency
range (4.13). Following definition (3.15), the resonant
spacing A (d) reads

As (d)= Wpi1,s =0 = | ks | VF (de/n)_l- (4.14)

The spacing (4.14) of the resonant | s |-set with electromag-
netic mode index |s|=2,3,... is a multiple of the spacing
of the first set with |s|=1. The resonant amplitudes of
Q(ky) are modulated by the factor ®,,,(1—q; /kp) o

oc (1- q,% /k,2: )q,, 'k . Therefore, the amplitudes of the lateral
resonances with small and large electron quantum indices n

are smaller than the amplitudes of the intermediate resonanc-
es. Evidently, the electron relaxation rate v # (0 broadens the
resonances and decreases their amplitudes. This fact estab-
lishes the resolution condition for the resonances of the |s|-set
constrained to the nonlocality interval (4.13),

V<A (d). (4.15)

In other words, the resonances satisfied condition (4.15)
turn out to be well resolved.

As the electron-channel parameter kpd/m increases,
the number Ny of |sl-resonances inside the frequency
range (4.13) also increases, and the spacing (4.14) between
them expectedly decreases. Therefore, for sufficiently
great values of the electron-channel parameter kpd/m > 1,
the resolution condition (4.15) can be broken. As a result,
the resonances of a fixed |s|-set begin to overlap and even
to coalesce giving rise to their disappearance. In addition,
the relative distance (kpd /Tt)_1 between the neighboring
electron conducting channels becomes extremely narrow.
Due to all these reasons, in definition (3.25) for Q(k,) , the
summation over the electron quantum number » can be
changed into the integration over the transverse projection
ny =q,/kp =n/(kpd/m) of the electron wave unit-vector.
In such a way, the quantum nonlocality factor O(k,)
achieves its classical counterpart,

1

30 (1-n2)dn
QB(ks):__[ = + )
4 _10)_“‘5 |VEn, +iv

(4.16)

which does not include quantum resonances discovered
above. The electromagnetic field distribution (3.23) as well
as the surface impedances (4.2) contributed by the discrete
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normal electromagnetic s-modes with the effective mode
permittivity €(k;) described by Eq. (3.24) which, howev-
er, contains the classical nonlocality factor Op(k,), have
been obtained in Ref. 3 with the use of the method of the
Boltzmann kinetic equation. Remarkably, the integrand in
Eq. (4.16) possesses the famous Landau singularity, the
pole at | kg |Vpn, =®+iv, which transforms to its dis-
crete version, the resonance condition (4.12), within the
quantum regime. Under the strong nonlocality (spatial dis-
persion), where |k, |>1, this constitutive singularity
turns out to be exactly within the integration interval, thus
providing a positive imaginary part of the mode permittivi-
ty €(ky), even in the case when the collisional relaxation
rate vanishes, v=0. As a result, the related normal *|s |-
modes undergo the classical collisionless Landau damping
(see, details in Refs. 3, 5). The condition | &g/, |>1 of the
strong nonlocality clearly attests: The frequency range,
where the Landau damping appears in the electromagnetic
response of two fixed normal =*|s |-modes, coincides with
the frequency range (4.13) of the corresponding resonant
s|-set (remember that the recoil frequency ®, should be
omitted in the classical limit). Hereby, in the quantum non-
local regime (4.13), the Landau damping manifests itself as
the |s|-set of resonances, which coalesce in the classical
nonlocality and, in this way, shape the conventional Lan-
dau damping.

With increase of the wave frequency ®, the effective
mean-free path of electrons [, decreases, and the transi-
tion to the local regime (4.3) is realized. The Landau
damping vanishes since the classical nonlocality factor
(4.16) approaches its asymptotics

Qp (k) = Qp(0)=Qp, sﬁ for |kdy|<1.
4.17)

This conclusion is in agreement with that follows from the
classical Drude-Lorentz model, compare Eqgs. (3.24),
(4.17) with Egs. (4.4), (4.6).

5. Numerical results

Here we present the results of our numerical calcula-
tions of the surface impedances, derived analytically in the
previous section, in order to analyze their behavior in both
quantum and classical regimes. Specifically, Figs. 2-5
show the frequency spectra of the real and imaginary parts
of the surface impedances, {(®/®,) and {;(w/®,), of
silver (Ag) slabs with different normalized thicknesses
d/8 . In the calculations, we use an electron relaxation rate
V= 2.0-10_40)p, which can be quite realistic for high-
quality silver films [22-24], even at room temperature.

Each panel of Figs. 2 and 3 for the real parts of the surface
impedances, Ref, and Rel,, displays a family of four
curves. Two of them, dot-dashed green and dotted pink
curves, were obtained within the quantum local approach and
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Fig. 2. (Color online) Frequency dependence of the real part of the
surface impedance {y of a silver slab (Vg = 1.39-10° cm/s, o, =
=2.175-10° THz [22]) predicted by four distinct models. Each
panel corresponds to a different value of the layer thickness d
(marked in the panels). The electron relaxation rate v = 2.0 10 @p.

classical local Drude—Lorentz model, i.e., by using Egs. (4.7)
with the dielectric permittivity €(0) taken from Egs. (4.5)
and (4.6), respectively. The dashed red curves depict the fre-
quency dependence of the real part of surface impedances
obtained within the kinetic Boltzmann equation approach,
where the dominant effect is the Landau damping. Here, fol-
lowing Refs. 3, 5, we have applied the general expressions
(4.2) for the surface impedances complemented by the effec-
tive mode permittivity (3.24) with the classical nonlocality
factor Op(ky), Eq. (4.16). The real parts of the quantum
nonlocal surface impedances are presented by the solid pur-
ple curves. The later results were obtained by two ways. The
first one consists in numerically solving the initial system,
Egs. (3.3), (3.7), (3.21) and (4.1), while the second one is
based on the examination of analytical results (4.2), (3.24)
and (3.25). Both methods reveal an excellent mutual agree-
ment. The vertical blue straight lines denote the right border
of Eq. (4.13), to the right of which the corresponding normal
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Fig. 3. (Color online) Frequency dependence of the real part of the
surface impedance {y at the right boundary x = d of a silver slab.
The curves in panels (a), (b), and (c) were calculated for the same
values of the slab thickness d as in the respective panels of Fig. 2.

modes of given |s| quit contributing to quantum/classical
nonlocality. As a consequence, the maximal/minimal value
of the curves is achieved to the left from the |k |Vp/®,
line, where all the s# 0 normal modes contribute to the
surface impedance.

Panels (a) of Figs. 2 and 3 exhibit the spectra of
Rely(0/0,) and Rel,(0/®,) for nano-thin metal layers
with d/6=0.35. In this case the number of quantum elec-
tron conducting channels is moderate, Np =[kpd/n]=30
and the frequency range (4.13) of nonlocality is wide enough
to allow the fulfillment of the resolution condition (4.15):
V<As(al)zl.4-10_3 |s|w, for all the nonzero normal
electromagnetic | s |-modes. Consequently, the quantum
regime is clearly realized. The spectrum of the real part of the
surface impedances (solid purple curves) contains well-
pronounced resonances and drastically differs from the real
part of the nonlocal surface impedances (dashed red curves)
provided by the classical Landau damping [3,5]. It is note-
worthy that inside the frequency range 0 <@ -, < kVp =
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=7V /d, where the prevailing resonances belong to the
normal modes with |s|=1, the resonance set with |s|=2

also gives an unusual contribution: While the maxima (min-
ima) of the resonant oscillations of Rel, (Rel;) come
from the |s|=1 resonances, the minima (maxima) are, in
fact, modulated by the |s|=2 resonances, see the insets of
panels. Moreover, Fig. 2 reveals that inside each nonlocality
range (4.13), the resonance condition (4.12) for respective
normal |s|-modes always gives rise to the maxima of the res-
onant oscillations of Re{. In contrast, as can be seen from
Fig. 3, the resonances (4.12) in odd (even) normal |s|-modes
determine, respectively, the minima (maxima) of the Re{,

curve within the corresponding nonlocality intervals. The
reason is the sign-alternating factor cos(k,d) = (—1)'5‘ pre-
sent in the summands of definition (4.2b) for the surface im-
pedance {,, whereas such a factor is absent in definition
(4.2a) for the other impedance (.

a
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Fig. 4. (Color online) Frequency dependence of the relative diffe-
rence between the imaginary parts of the nonlocal and local surface
impedances at the left boundary x = 0 of a silver slab. The curves in
panels (a), (b), and (c) were calculated with the same values for the
slab thickness d as in the respective panels of Fig. 2.
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The intermediate situation between quantum and classi-
cal regimes is shown in panels (b), where d/6=0.7 and
Np =60. This case is close to the resolution limit
v=A(d) for the resonant (|s|=1)-set, which is
achieved when the slab thickness d ~ &. Then, the reso-
nances with |s|=1 have almost coalesced. As a conse-
quence, the quantum (solid purple) and the classical non-
local (dashed red) curves have almost merged inside the
interval 0 <®—-m; <k V. On the other hand, the reso-
nances of the sets with the electromagnetic mode indices
|s|=2 and |s|=3 are still observed because they have a
resonant spacing (4.14), respectively, two and three times
larger than that for resonances with |s|=1.

Surface impedances in panels (c) have been calculated
for a relatively-thick slab (/0 =3), having a very large
number of electron conducting channels (N =257). For
this reason, the set of resonances cannot be distinguished for
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Fig. 5. (Color online) Frequency dependence of the relative diffe-
rence between the imaginary parts of the nonlocal and local surface
impedances at the right boundary x = d of a silver slab. The curves
in panels (a), (b), and (c) were calculated with the same values for
the slab thickness d as in the respective panels of Fig. 2.
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the first normal modes with | s|< 10, for which the spacing
A (d =30)<v. Here the frequency dependence of the
surface impedances is determined by the classical nonlocal
Landau damping effect. The spectrum of the real part of
surface impedances calculated within the quantum approach
(solid purple curve) perfectly coincides with that obtained
within the kinetic Boltzmann equation formalism [3].

Since the nonlocality factors, Q(k;) or Qp(k,), tend
to the respective asymptotics (4.4) or (4.17) with the in-
crease of wave frequency ®, all the nonlocal (solid pur-
ple and dashed red) curves approach the corresponding
(quantum or classical) Drude—Lorentz curves. As a result,
the oscillations are naturally smoothed, decrease in am-
plitude, and disappear. On the other hand, obeying the
same ®-dependence, the Drude—Lorentz quantum (dot-
dashed green) and classical (dotted pink) spectral curves
exhibit different values in the quantum panel (a), then
come closer together in the intermediate panel (b) and,
subsequently, merge in the classical panel (c) as the slab
thickness d (or, the same, the number of electron con-
ducting channels N ) increases.

Due to the fact that the real part of surface impedances
determines the electromagnetic losses in a metal, the effect
of the resonant quantization of Landau damping should
also manifest itself in the metal absorption spectrum A(w).
The corresponding study was reported in our previous brief
letter [17]. The direct comparison of the graphical presen-
tation given in Ref. 17 for the ®-dependence of the far-
infrared absorption of metal nanoslabs, displays that the
line-shape of A(w) exactly follows the resonant line-
shape of Rely(w) discovered in Fig. 2.

Quantum Landau damping also manifests itself in the
frequency dependence of the imaginary parts, Im, and
Im{, , of the surface impedances (4.2). The characteris-
tic spectra and their dynamics realized with transition
from the quantum to classical nonlocal regimes (with
variation of the dimensionless slab thickness d/d) are
shown in Figs. 4 and 5. As was revealed with the use of
our numerical simulations, inside the high frequency
range (4.10), the imaginary parts of the surface imped-
ances of the nano-thin metal layers (d <d) possess a
nonresonant term whose absolute value is great and line-
arly increases as the wave frequency ® increases. In
accordance with what was mentioned in Sec. 4 after
Egs. (4.11), this local term originates from the contribu-
tion of the local zero-mode (s = 0) in the sums (4.2) and
is exactly described by Eq. (4.9) having the asymptotics
(4.11b). Remarkably, the same expressions are also in-
herent for the local impedances (4.7). Therefore, in order
to eliminate such a local contribution from our analysis of
the quantum nonlocal effects, in Figs. 4 and 5, we present
the difference between the imaginary part of the imped-
ance {, (C;) and the imaginary part of its local coun-
terpart Cgocfl (CSOC)) normalized to the respective imagi-
nary part of the local impedance from Eq. (4.7).
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6. Conclusions

We have derived general analytical expressions for the
quantum nonlocal electron current density in a metallic
nanoslab within the Kubo’s linear response formalism. Us-
ing this result, we have analytically calculated the electro-
magnetic field distribution inside the metal nanoslab by ex-
pressing it as a superposition of discrete electromagnetic
modes. To study the external response, we have obtained
general explicit expressions for the surface impedances of
both metal slab boundaries. It was found that the frequency
dependence of the surface impedances has resonances,
whose origin is owing to the discretization of the electro-
magnetic and electron wave numbers inside the nanoslab
and is directly associated with the effect of the collisionless
Landau damping in the quantum regime. The quantum non-
local resonances are well-resolved when the thickness of the
metal nanoslab is smaller than the electromagnetic skin
depth. It is noteworthy that the quantum resonant behavior
of the frequency dependence of the surface impedances dif-
fers completely from that observed in other regimes, namely
the quantum local regime, the regime described by the
semiclassical Boltzmann kinetic equation formalism, and the
classical local regime described by Drude-Lorentz model.
The difference is due to the discretization of the Landau
damping in the quantum nonlocal regime.
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KBaHTOBa AuckpeTusalia nornuHaHHs JlaHaay

S.G. Castillo-Lépez, F. Pérez-Rodriguez,
H.M. Makapos

OTpUMaHO Ta MPOaHAI30BAHO aHATITHYHI BHPa3u Ui KBaH-
TOBOI I'YCTMHH €JIEKTPOHHOIO CTPYMY, a TaKOX UIS PO3HOALIY
CJICKTPOMATHITHOTO I10JI1 BCEPEIHMHI MeTaueBOi HAaHOILUIACTHHH.
BuBeneHo 3aranbHi TOYHI BUpa3H ISl MOBEPXHEBHUX IMIIEIAHCIB
000X TpaHULb MeTaneBoi macTuHu. ITokasaHo, 110 siBHILEe Oe3-
3IIITOBXYBAJIILHOTO NOMIMHAHHA JlaHJay BMHMKAae B YaCTOTHIH
3aJIEKHOCTI MOBEPXHEBUX IMIIEJAHCIB y BUNIAI PE30HAHCIB,
MOB'SI3aHUX 3 JUCKPETH3ALICI0 €JICKTPOMArHiTHUX Ta EIEKTPOH-
HHX XBWJIbOBHX YHCEJI BCEPEIHMHI METaleBOi HAHOIUIACTHHH.

BcTaHOBIICHO, 1110 KBaHTOBI HEJIOKaIbHI PE30HAHCH MTOBEPXHEBUX
IMIIeJaHCiB 00pe MOMITHI MPU TOBIIUHAX IIACTHHU, MCHIIUAX
IMOMHU  eNeKTPOMarHiTHoro ckin-mapy. Ilepenbauena mose-
JIiHKa TIOBEPXHEBHX IMIICaHCIB B KBAaHTOBOMY HEJIOKAJIbHOMY
peXHUMi paguKalbHUM YHHOM BiIDI3HSETHCS BiA Takol, IO
MPOSIBISIETHCS. B KBAHTOBOMY JIOKJIbHOMY HaOJIMKCHHI, B HAIliB-
KJIaCHYHOMY MiIX0Xi KiHEeTWYHOro piBHAHHsA BosblimaHa, a Ta-
KOXX B KJIacCH4YHiH JokameHiH Moneni Jpyne—Jlopenma. Amnai-
TUYHE JOCITI/DKCHHS MOBHICTIO Y3TOMKYEThCS 3 BiANOBITHUMH
YHUCIOBUMHU OGUHCIICHHSIMH.

KurouoBi cnoBa: mpocropoBa aucriepcis, moriauHanHs Jlangay,
MeTaJIeBl HAHOCTPYKTYPH, ONTHYHI BIaCTUBOCTI.

KBaHTOBas AuckpeTMsaums nornowleHuns Jlangay

S.G. Castillo-Lépez, F. Pérez-Rodriguez,
H.M. Makapos

TlomydeHsl U IpoaHaTU3UPOBAHbI AHAIUTUYECKUE BBIPAXKECHUS
JUISL KBAHTOBOH IUIOTHOCTH 3NEKTPOHHOTO TOKA, a TaKkKe IS
pacipeencHus 3JIeKTPOMArHUTHOIO 0N BHYTPU MeTajlldde-
CKOI HAaHOTITACTUHBI. BbIBE/IeHBI 00IIMIE TOUHBIE BBIPAKEHUS IS
MIOBEPXHOCTHBIX HMIIEJAHCOB O0EMX TPaHUI] METAIUINIECKOH
miactuHbl. [loka3ano, 4To siBIeHHE GECCTOIKHOBUTENBHOTO IIO-
momeHus Jlannay BO3HHMKAaeT B 4aCTOTHOH 3aBHCHUMOCTU IIO-
BEPXHOCTHBIX HMIIEJJAHCOB B BHJE PE30HAHCOB, CBA3aHHBIX C
JUCKpeTU3alHed JICKTPOMArHUTHBIX U 3JICKTPOHHBIX BOJIHOBBIX
YHCeN BHYTPH META/UIMUECKOW HAHOIUIACTHHBI. Y CTaHOBIIEHO,
YTO KBAaHTOBBIC HEJIOKAJbHbIE PE30HAHCHI IOBEPXHOCTHBIX UMIIC-
JTAHCOB XOPOIIO Pa3IHIUMBI IIPU TOJIIHHAX MIaCTUHBI, MEHBIINX
TIIyOMHBI 2JIEKTPOMArHUTHOTO CKUH-ciIos. IIpenckazanHoe mose-
JIEHHE TOBEPXHOCTHBIX MMIIEJAHCOB B KBAHTOBOM HENOKAJILHOM
pexXHUMe pagUKaIbHBIM 00pa3oM OTIHYAeTCs OT TOTO, KOTOPOe
MPOSBIISAETCS B KBAHTOBOM JIOKAaJbHOM TNPUOIMKEHHHU, B MOIY-
KJIACCUYECKOM IOJX0Jl¢ KMHETUYECKOro ypaBHeHUs boiblmana,
a TaKKe B KJIACCHMYECKOM JIoKaibHOM mozenu [pyne—JlopeHua.
AHaIUTHYECKOE UCCIEJOBaHUE OJHOCTBIO COITIACYETCS C COOT-
BETCTBYIOLIMMH YHCIEHHBIMU PaccueTaMu.

KiroueBble cioBa: IpOCTpaHCTBEHHAs AUCIICPCHs, IOITIOLICHUE
Jlannay, MeTajuInuecKkue HaHOCTPYKTYPbl, ONTUYECKHE CBOMCTBA.
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