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On the basis of the continuum model for long-wavelength charge carriers, originating in the tight-binding ap-
proximation for the nearest-neighbour interaction of atoms in the crystalline lattice, we consider quantum
ground-state effects of electronic excitations in Dirac materials with two-dimensional monolayer honeycomb
structures warped into nanocones by a disclination; the nonzero size of the disclination is taken into account, and
a boundary condition at the edge of the disclination is chosen to ensure self-adjointness of the Dirac-Weyl Ham-
iltonian operator. We show that the quantum ground-state effects are independent of the disclination size and
find circumstances when they are independent of a parameter of the boundary condition. The magnetic flux cir-
culating in the angular direction around the nanocone apex and the pseudomagnetic flux directed orthogonally to
the nanocone surface are shown to be induced in the ground state.
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1. Introduction

A wealth of new phenomena in micro- and nanophysics,
suggesting possible applications to technology and indus-
try, is promised by a synthesis in this century of strictly
two-dimensional atomic crystals (for instance, a monolayer
of carbon atoms, graphene, [1,2]). The electronic states
near the Fermi level in these crystals are characterized by
the linear and isotropic dispersion relation, with the density
of states at the Fermi level being strictly zero. Condensed
matter systems with such a behavior of electronic excita-
tions are known as the two-dimensional Dirac materials
comprising a diverse set ranging from honeycomb crystal-
line structures (graphene [1], silicene and germanene [3],
phosphorene [4]) to high-temperature d-wave supercon-
ductors, superfluid phases of helium-3 and topological
insulators, see review in [5]. Using the tight-binding ap-
proximation for the nearest-neighbour interaction in the
crystalline lattice, an effective long-wavelength description
of electronic excitations can be given in terms of a contin-
uum model which is based on the Dirac-Weyl equation for
massless electrons in 2+1-dimensional space-time, with
the role of velocity of light ¢ played by Fermi velocity
v~c/300 [6,7].
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Freely suspended samples of crystalline monolayers are
not exactly plane surfaces, but possess ripples which are
due to the appearance of topological defects in a crystalline
lattice: disclinations and disclination dipoles (dislocations).
A single disclination warps a sheet of the crystalline lat-
tice, giving it the shape of a cone. The squared length ele-
ment of the conical surface is

ds? = dr? +v2rlde?, 0<¢<2m, 1)

where v = (1—n)’1, and 2nn is the deficit angle. Conical
spaces (i.e., 3-dimensional spaces with a 2-dimensional
section given by (1)) emerge in a field rather different from
condensed matter physics — in cosmology. The early uni-
verse in the process of its cosmological expansion is likely
to undergo a series of phase transitions with spontaneous
breakdown of continuous symmetries, and a vortex-like top-
ological defect which is formed in the aftermath of such a
transition is known under the name of a cosmic string, see
reviews in [8,9]. Starting with a random tangle, the cosmic
string network evolves into two distinct sets: the stable one
which consists of several long, approximately straight strings
spanning the horizon volume and the unstable one which
consists of a variety of string loops decaying by gravitational
radiation. A straight infinitely long cosmic string in its rest
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frame is characterized by an outer space with the transverse
section given by (1). Parameter n is related to the mass per
unit length of the cosmic string, hence it is positive, and the
present-day astrophysical observations restrict its values to
range 0 <n < 1076 (see, e.g., [10]).

On the contrary, in the case of conically-shaped crystal-
line monolayers, parameter n takes both positive and nega-
tive discrete values of order 1 and even larger: a disclination
obtained by deleting atoms from the crystalline lattice results
in the positive deficit angle, whereas a disclination obtained
by adding atoms into the crystalline lattice results in the
negative deficit (i.e., proficit) angle. For instance, in the case
of the honeycomb lattice of graphene, silicene, germanene
or phosphorene, a natural way of producing the apex of a
nanocone is by substituting some of hexagons by pentagons
(positive deficit angle) or heptagons (negative deficit angle);
thus, n = Ny /6, where Ny is an integer which is smaller
than 6. A general disclination in the honeycomb lattice is
obtained by substituting a hexagon by a polygon with
6— Ny sides; polygons with Ny >0 (N4 <0) induce lo-
cally positive (negative) curvature at the apex, whereas the
crystalline sheet is locally flat away from the disclination,
as is the conical surface away from the apex. In the case of
nanocones with Ny > 0, the value of Ny is related to apex
angle §,sind/2=1-Ngy /6, and Ny counts the number of
sectors of the value of ©/3 which are removed from the
crystalline sheet. If Ny <0, then —Ng4 counts the number
of such sectors which are inserted into the crystalline sheet.
Certainly, polygonal defects with Ny >1 and Ny <-1 are
mathematical abstractions, as are cones with a pointlike
apex. In reality, the defects are smoothed, and Ny >0
counts the number of the pentagonal defects which are tight-
ly clustered producing a conical shape; carbon nanocones
with the apex angles § =112.9°,83.6°,60.0°,38.9°,19.2°,
which correspond to the values Ny =1, 2, 3, 4,5, were ob-
served experimentally, see [11] and references therein. The-
ory also predicts an infinite series of the saddle-like nano-
cones with quantity —Ngy counting the number of the
heptagonal defects which are tightly clustered forming the
saddle centre. Saddle-like nanocones serve as an element
which is necessary for joining parts of carbon nanotubes of
different radii.

Another distinction from the case of cosmic strings is in
the intertwinement of valleys, as well as sublattices, in the
case of disclinations corresponding to odd values of Ny. It
seems reasonable to identify a matrix exchanging both the
sublattice and valley indices with ys. Hence, the relevant
bundle connection corresponding to the gauge axial vector
field appears, describing the pseudomagnetic vortex with
flux related to the deficit angle. This is in contrast to the
case of cosmic strings, where the relevant bundle connec-
tion correspond to the gauge vector field describing the
vortex with flux unrelated to the deficit angle.

In the present paper, we consider the quantum ground-
state effects of electronic excitations in honeycomb crystal-

line monolayer structures with disclinations corresponding
to Ny =41,+2,+3,4,5,-6. A crucial point is a choice of
the boundary condition at the location of the disclination.
The previous consideration [12-14] was neglecting the
transverse size of the disclination, treating it as a pointlike
one. We are now tackling the problem more carefully by
taking into account the finite size of the disclination, impos-
ing the most general boundary condition at the disclination
edge, and then going to the physically sensible limit of the
nanocone size exceeding considerably the disclination size.
This more physical approach allows us to specify the
boundary condition with more definiteness. We find out that
the pseudomagnetc field directed orthogonally to the nano-
cone surface is induced in the ground state, whereas the
electric charge is not; the magnetic field circulating in the
angular direction around the nanocone apex is induced in the
ground state in cases Ny = £2, —6 only.

2. Continuum model description of electronic
excitations in monolayer atomic crystals
with a disclination

Electronic excitations in a plane sheet of the honeycomb
crystalline lattice are described in terms of a four-component
wave function,

M M

T
\V:(‘VA VB ’

,\V(A"),\V(B")) @)
where subscripts A and B correspond to two sublattices
and superscripts (1) and (II) correspond to two valleys
(inequivalent Fermi points). As was noted in Introduction,
in the framework of the long-wavelength continuum mod-
el, the wave function of electronic excitations satisfies the
Dirac—Weyl equation,

(idg—H)y =0, H:—ihv(oc181+oc262). 3)

The generating elements of the Clifford algebra of
anticommuting matrices in 3+1-dimensional space-time
can be chosen as

yo =93 ol=z-%? o?2=:3ct of =il )
where o° and o/ (ro and rj) are the unity and Pauli matri-
ces with the sublattice (valley) indices, and j =1,2,3. De-

fining y5 = —iata o, one gets

v =—t?6?. 5)

A rotation by angle 3 in the plane of a honeycomb lat-
tice sheet is implemented by operator exp (i9), where

Y= —_ocloc2 = 31303 (6)
2

is the pseudospin playing here the role of the operator of
spin component which is orthogonal to the plane. The hon-
eycomb lattice is invariant under a rotation by 2, but is not
invariant under a rotation by =. The parity transformation
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can be introduced as a rotation by =, which is simultane-
ously supplemented by the exchange of both the sublattice
and valley indices [15],

Py = ( (“),\V&“),\V(BI),W(I)) @)
with

P=25R, [P,H], =[R,H]_=0; )
in representation (4) we obtain
P=a® R=v". 9)
The wave function is chosen as a section of a bundle with

spin connection —2%, i.e., it obeys condition
y(p+2m) = -y (9). (10)

If a defect with Ny =£1 is inserted at the origin, then
condition (10) is changed to the Mdbius-strip-type condition:

v(p+4rm) =-v(p). (11)

For a general defect with Ny < 6, the condition takes form

V(o +2m) = iRy (o),

v(p+2n) = _eXp(_igNd Rj\v(cp), (12)

while the Hamiltonian operator for electronic excitations in a
conical surface with the squared length element given by (1)

takes form
H=-im|a (6 +i]+oc"’6 (13)
"or el

2

af? = L5, o = r—za‘p. (14)
r v

where

a =a, = %7,

By performing a singular gauge transformation, we arrive at
the wave function obeying condition (10) and the Hamilto-
nian operator involving bundle connection CD(Zthw)_l [12]:

1 . O
= —|hv|: (Br +Ej+aq’ (Qp _IMJ}7 (15)

v=(1-Ng/6)7%;  (16)

where
® = 3nhv(l-v R,

note that in the case of cosmic strings quantity @ is the
flux of a gauge vector field corresponding to the generator
of a spontaneously broken continuous symmetry.

Next, by performing in addition a unitary transfor-
mation, we arrive at the representation with both R and P
diagonal,

P =R=", o¥=P=1%3 0=t @7)

while relations (6) and (14) are maintained. The initial repre-
sentation with diagonal yo, see (4), can be denoted as the

standard one, and it has been chosen to be diagonal in both
the sublattice and the valley indices, see (2). The final repre-
sentation with diagonal ys, see (17), can be denoted as the
chiral one, and it mixes up sublattices, as well as valleys.

Using the chiral representation, we decompose the solu-
tion to the stationary Dirac-Weyl equation, Hwyg (x) =
= Eyg (x), with H given by (15) and (16) as

fn +(|', E)el(n+1/2)(|)
gn +(r’ E)el(n+]./2)(p

Ve (X) = ' ,
E ré (T, E)el(n71/2)(p

gn _(r, E)ei(n—1/2)(p

: (18)

where the radial functions satisfy the system of first-order
differential equations

hv{—ar +%(ivn—v+1)} fo+(r,E)=Egp.(r,E)

hv[ar +%(J_rvn —Vv+ 2)} On+(r,E)=Efy L (r,E)

(19)
thus a component of definite chirality, + or —, is a super-
position of components with definite sublattice and valley
indices.

Quantum effects in the ground state of electronic exci-
tations comprise the induced electric charge density:

q00=-2 j TEVEQVEC). (O

the induced electric current density:

TE(x) ay g (X); (21)

J(X)———J. dEE

the induced parity-breaking condensate density:

w00=-2 [ EELeopyero, @

—00

and the induced R-current density:

dEE +

"0 = ——j S VEM aRvER).  (23)

The magnetic field strength, B(x), is also induced in the
ground state, as a consequence of the Maxwell equation,

0xB(9 = i(X) (24)

as well as does the pseudomagnetic field strength, BR(x),
which is a consequence of the analogue of the Maxwell
equation,

xBR(x) = %jR(x); (25)
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the use of term “pseudomagnetic” is justified because R
coincides with y5; due to this, also the R-current can be
regarded as an axial current.

Using (14), (17) and (18), one gets er = 0 immediately
and, with more careful analysis (see the beginning of Sec-
tion 4), j? =0, where

. 1% dEE
F)=-S [ == DI (nE)- g2, (rE)-
2,@ Lo nez

—f2_(r,E)+g2_(r,E)]. (26)

Thus, the only component of the induced ground-state R-
current,

0= [ 55 S (1B (B

0 U nez
+ fn,—(r: E)gn,—(r! E)]a

is independent of the angular variable. The induced
ground-state pseudomagnetic field strength is also inde-
pendent of the angular variable, being directed orthogonal-
ly to the conical surface,

(27)

. _Vrmax roR .
BE(N== [ —-if(r)+B (ma)  (28)
v e r
with total flux

(29)

where it is assumed without a loss of generality that a
nanocone is of a rotationally invariant shape with ry,ay
being its radius and r being the radius of a disclination,
max > Ip in the physically sensible case.

Turning to the induced ground-state electric charge and
parity-breaking condensate, their densities are also inde-
pendent of the angular variable:

dE
hz

E2 z[fnz,+(r, E)+ g§,+(r, E)+

e o0
ar)=--
2J;; U nez

+12_(r,E)+ g2 _(r,E)] (30)

and

BE S 112.(rE)- g2, (rE)+

l o0
= [ 55
2 e 2

—00

+12_(r,E)-92_(r,E)]. (31)

Appropriately, one can define total charge

'max

-2 j drrq(r) (32)
A% 0
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and total P-condensate

on 'max
c=" j drrp(r).
A%
o

(33)

Note that the induced ground-state condensate of
pseudospin X (6) is proportional to jaR (26) and, thus, is
vanishing.

As to the induced ground-state electric current, note an
evident relation, j, =0, and a less evident one (substanti-
ated in the beginning of Sec. 4), j(p =0, where

jo0=-5 | iETEZ[fn,+(r,E)gn,+(r,E)—

—o U nez
~f_ (1. E)gn (L E);
hence, the only nonvanishing component is directed or-

thogonally to the conical surface and is related to the P-
condensate:

(34)

J3(r) = evp(r). (35)
The total electric current,
o "max
3= [ drrja(n), (36)
A%
o
is appropriately related to the total P-condensate:
J; =evC. (37)

The induced ground-state magnetic field strength is also
independent of the angular variable, being directed in the
conical surface along a circle with an apex in its center,

f

l max
By () == j dr'rjg(r) + By (fmax)- ~ (38)
Its total flux is
Tmax
@, = J.drB(P(r). (39)
o

Concluding this Section, note that we are considering the
ground-state characteristics which are diagonal in chiralities.
The nondiagonal ones (for instance, the yo-condensate) are
proportional, as follows from (18), either to cos or to sin @
and, thus, vanish upon averaging over the angular variable.

3. Self-adjointness and choice of boundary conditions

Let us note first, that (15) is not enough to define the
Hamiltonian operator rigorously in a mathematical sense.
To define an operator in a unambiguous way, one has to
specify its domain of definition. Let the set of functions v
be the domain of definition of operator H, and the set of
functions \y be the domain of definition of its adjoint, op-
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erator H'. Then the operator is Hermitian (or symmetric in
mathematical parlance),

Ja®x g’ (Hy) = [a2xJa(H ) v, (40)
X X

if relation

- jdl ¥ ay=0 (41)
oX

is valid; here functions y(x) and \y(x) are defined in space
X with boundary 0X. It is evident that condition (41) can
be satisfied by imposing different boundary conditions for
y and . But, a nontrivial task is to find a possibility that a
boundary condition for \ is the same as that for ; then
the domain of definition of HT coincides with that of H,
and operator H is self-adjoint (for a review of the Weyl-von
Neumann theory of self-adjoint operators see [16,17]). The
action of a self-adjoint operator results in functions belong-
ing to its domain of definition only, and a multiple action
and functions of such an operator, for instance, the resolvent
and evolution operators, can be consistently defined. Thus,
in the case of a surface of radius ry,,, with a deleted central
disc of radius Iy, we have to ensure the validity of relations

=0, §lay =0, (42)

r=1o "="max

A

meaning that the quantum matter excitations do not pene-
trate outside. It is implied that functions y and  are differ-
entiable and square-integrable. As I, — o, they conven-
tionally turn into differentiable functions corresponding to
the continuum, and the condition at r = r,,, Yyields no re-
striction at Iy, — o, whereas the condition at r = 1 yields

v =K\v|r=r0. v =K\Tf|r=r0. (43)

r=r0 I’=I’0

where K is a matrix (element of the Clifford algebra in
2 +1-dimensional space-time) which obeys condition

K2 =1 (44)

and without a loss of generality can be chosen to be
Hermitian; in addition, it has to obey either condition

[K,a'], =0, (45)
or condition
[K,a']_=0. (46)

One can simply go through four linearly independent ele-
ments of the Clifford algebra in 2+1-dimensional space-
time and find that two of them satisfy (45) and two other
satisfy (46). However, if one chooses

fro ] 1 \ﬁ 1 [ [sin(uy_¢ )3 (kr) +Cos(iy_¢) I (k1)
9n, ) 2Vm JL+sin(uy_g)cos(Fr) (sgn(E)[sin(uy g )y g (k) —cos(uy_p)I g, ¢ (kr)]

K =cl +co0" (47)

to satisfy (46), then (44) is violated. There remains the
only possibility to choose

K = ¢y +¢,iyaf (48)
with real coefficients obeying condition
of + c% =1; (49)

then both (44) and (45) are satisfied. Using obvious pa-
rameterization

€, =sin6, ¢, =coso,

we finally obtain
in I
K =iylae70 (50)

Thus, boundary condition (43) with K given by (50) is the
most general boundary condition ensuring self-adjointness
of the Hamiltonian operator on a surface with a deleted disc
of radius 1y, and parameter 6 can be interpreted as the self-
adjoint extension parameter. Value 6 = 0 corresponds to the
MIT bag boundary condition which was proposed as the
condition ensuring the confinement of the matter field, that
is, the absence of the matter flux across the boundary [18].
However, it should be comprehended that a condition with
an arbitrary value of 6 is motivated equally as well as that
with 6 =0.

Imposing the boundary condition (43) with matrix K
(50) on the solution to the Dirac-Weyl equation, yg (X)
(18), we obtain the condition for the modes:

cos(ng%j fn+ (o, E) = —sin(%+%) On,+ (1o, E).

(51)

Let us consider nanocones with Ny =1,2,3,4,5
(I<v<7), as well as with Ny =-1,-2,-3 (g<v <1),
and introduce positive quantity

F= gv—%vsgn (v-1)-1, (52)
which exceeds 1 at Ny =3,45 (2<v<7) only; here
sgn(u) is the sign function, sgn(u)=1 at u>0 and
sgn(u) = -1 at u < 0. Define also

Ne = J_r%[sgn (v-1)-1], (53)

as well as

} , (54)
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[sin(uf) )3 () +cosuliy g )orp (k)|

{f}”]__lJ@'
9 ) 27| sgn()| sin(ufy )31 (kn)+cos(uliy ¢ Woroa (k)|

where | =n-ng, and

a

where I'=-n+n.; here J, (u) and Y; (u) are the Bessel

: (55)

{f n(”] W [sin(u )3 (k) + cos(uy, £ o (kD) | 56
o)) 23| —sgn(E)| sin(u} £)3ursr () + 005l ¢ Wors.r (k)|

It should be noted that, in the case of v = % (Ng =-6),

and Neumann functions of order A.
Inthe case of 2<v<7 (F=v-1, Ny =3,4,5), the
complete set of solutions to (19) is given by

(f] _{fw] [f] _[anJ
gn’i n=n.+1 gr(1A) gn’i n<ne gr(1V)

In the case ofg<v<2 (0<F<1, Ny=21,-1,-2-3),

(57)

the complete set of solutions to (19) is given by

[fj [f“J [f] {f}
Onx n2ng+1 gr(l/\) Onx n=ng gnc

f £
[ n,ij :[ '2 )], (58)
On. n<n.-1 gnv

F
: r (CR L
r“—rﬂl(rmax] COS[?JFZJ fre.+ (1 E) =~ lim

r—0

where @ is the self-adjoint extension parameter, F is given
by (52) for Ny =2,1, -1, -2, -3 and F =1/2 for Ny = -6,
while n; is given by (53) for Ny =2,1, -1, -2, -3 and
n. = F2 for Ny = —6. As follows from the present section,
in the case of a disclination of nonzero size, when the
boundary condition is imposed at its edge, the total Hamil-
tonian operator is self-adjoint extended with the use of one
parameter, see (51).

Value ©® of the self-adjoint extension parameter in the
case of a pointlike disclination can be fixed by the limiting
procedure Iy — 0 in the case of a nonzero-size disclination.
Namely in this way, the condition of minimal irregularity
[19,20] is obtained:

T 0<F<I,
2 2
1
®=40, F==, (60)
2
_E, 1<F<1
2
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the complete set of solutions to (19) is also given by (58)
with F =1/2 and n;, = F2.

Let us compare this with the case of an infinitely thin
(pointlike) disclination which was considered in detail in
[12-14]. In the latter case several partial Hamiltonian op-
erators are self-adjoint extended, and the deficiency index
can be (0,0) (no need for extension, all partial operators
are essentially self-adjoint), (1,1) (one partial operator is
extended with one parameter), (2,2) (two partial operators
are extended with four parameters), etc. In particular, in
the case of carbon-like nanocones, there is no need for self-
adjoint extension for Ny =3, 4, 5, there is one self-adjoint
extension parameter for Ny = 2,1, -1, -2, -3, 6, there
are four and more self-adjoint extension parameters for
Ng =—4,-5and Ny <-7. For the deficiency index equal
to (1,1), the boundary condition at the location of a
pointlike disclination (r = 0) takes form

r F ® x
[—j S'”(EJijg”ci(r’E)' (59)

Mmax

It should be noted that scale invariance is broken (condi-
tion (59) depends on Iy, ) unless ® =+m/2 at F #1/2
and F =1/2 at arbitrary ®. Thus condition (60) is the only
one that is consistent with scale invariance.

4. Induced ground-state effects

Using the explicit form of modes f, , and g, ., satisfy-

ing (19) and (51), we can calculate the induced ground-
state effects of electronic excitations in carbon-like
nanocones. Concerning the R-current component which is

orthogonal to the conical surface, jrf (26), and the electric
current angular component, j(p (35), they vanish due to the

cancellation between modes with + and — subscripts. The
calculation of the R-current angular component (27) and
the pseudomagnetic field strength (28) in the case of

§<v<2 (0<F<1)andv:% (F =1/2) yields:
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ING!

du sin(Fr) cosh KF +v —;ju} —sin[(F +v)mr)]cosh KF —;)u}

v 1
=_ +
F<%,9¢—g @n)? r {E[ cosh?(u/2) cosh(vu) —cos(vr)

(»)

+8J-dWWLZ:Cv|+1 F( L J vi+1-F WK g (W) - ZC$T+)F[ rl(,)JKvI+F(W)KvI—1+F(W):|}y
O =

(61)
=1

ING)

o 1 T du Sin(Fﬁ)COShKF—v—;Ju}—sin[(F—v)n)]coshKF—;Ju}_
F>2 9¢2 (27T)2 My cosh?(u/2)

cosh(vu) —cos(vr)

(62)
1=0

_deww{zcéle F( roj Kuts1—r WKy _g (W) - ZC&K)F[ rI(.))KvI+F(W)KvI—1+F(W):|}y
0 =1

. i . sin(Fn)coshKF—;ivju}—sin[(l: iv)n}cosh{(F—;ju}
J(p (r)‘F;ti 9:+E =+ J.
2" T2

+
2(2m)? 1 |3 cosh?(u/2) cosh(vu) — cos(vr)

| wW—
o %$(F—%) r
+8jdww

0 K wW—
el

Ke (W)Ky_p (W) +

r KvI+F (W)Kvl—1+F (W)) ) (63)
WT K 1 [woj

(64)
2

.R _vsin® I
J(P(r)‘F:;_ 2n® {r—l’o*- ‘([dWWZCV 1(W_)Kvl+;(W)Kv|—l(W)}’

B (r)

du sin(Fr) cosh KF +v —;ju}—sin[(F +v)m)]cosh KF —;ju}

__ v 1 J‘
F<%,e¢% @r)? r OcoshZ(U/Z)

+
cosh(vu) —cos(vr)

+8r I r—IdWW{ > Cith F( rj vi+i-F (WKyi-p (W) = ZC&.X’F[ :OijHF(w)KV._HF(w)H (65)
0 1=0

B (r)

. 1 . 1
v ET du sm(Fn)coshKF—v—zju}—sm[(F—v)n)]coshKF—zju}_
F>29 5 (2n)2 r

5 cosh?(u/2) cosh(vu) — cos(vr)

—8ff IdWW{ C5f31p( r] Kia-p () Ku-p (W)~ ZC&.X’F[ ?ijHF(w)KV._HF(w)}}, (66)
=1
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© sin(Fn)coshKF—1ivju}—sin[(Fiv)n]cosh[(F—1ju}
R _ v 1 du 2 2
B3 (r 1. o~ > I 2 +
F#E,G—ia (2m)~ T | cosh u/2) cosh(vu) —cos(vr)
fo
| w—
) i
+8r I e Idww K (WK_g (W) +
Ki o1 (W,
EI(F’EJ '
o o
) Ivl—F+%i% Wr’ IvI+F2$;[Wr'
+ Kuls1-r WKy _g (W) + Kuier WK1 (W) (67)
1,1 ; 1 ;
vI-F+=%+= r vI+F—=F= r
272 2
and
I,
sin@ AT &a I
Bg'?(r)‘ o :VT{ In ( J—s j —Zjdwac 1(w—°,j|< 1 (WK 1(w)], (68)
F== 21 r r' — v+ r vi+= vl-—=
2 r 0 =1 2 2 2
where
0 0 0 o o\
0= {1 tan| 35 -1y 0K et 545 ] kEtan( 32k sean( 947|160

1
Cév)(y):{lp(y)Kp(y)cot §+§j 1)K, 1(y)tan[9 Ej}[Ké(y)cot[g+§j+K§uwm@ﬁﬂ (70)

2 4
and
) ) KVH%(Y) I_%(Y)
Cv|+3(y) = v > ; (71)
cos?0 |<2|+1()/)+|<2 1()’)] +4S|n29K2|+1()/)K2I 1 (¥)
Vit 2 M) V2

I, (y) and K, (y) are the modified Bessel functions with the exponential increase and decrease, respectively, at large real
positive values of their argument.

Inthecaseof 2<v <7 (F =v-1)we obtain

du
coshZ(U/Z)

-R -
J(p (r) - (27'5)2 r

v g2 sin®(pn/v) = Oven +S|n(vn)j

v 1{2_[ 2 Usm(3pn/v) T

cosh( j
2 A f
Xcosh(vu)—cos(vn)+8dew{zcs(l) 1)+2( j v(i-n+2 (WK -2y (W) = ch(nl) 1[ Oj v(|+1)_1(W)KV(|+1)-2(W)}}

(72)
and
ST e 1 TLT00 B S I
> u2r|v 42 sin2(pn/v) v ) coshZ(u/2)
cosh(zuj dr
COSh(VU)—COS(Vn) .[ —zdeW{ZCSG)—M[ j Kva-1)+2 WKy -1)+2(W) -
_ZCv(m) 1( j v(1+1)-1 (WK 141)- 2(W)H (73)
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where [ |u[] is the integer part of quantity u (i.e., the inte- T
L - A=l O6#t—
ger which is less than or equal to u), p and N denote posi- 2 1 1
s . . _ y V= F= A (77)
tive integers, o, v is the Kronecker symbol (5, ., =0 at 1 o 2 2
o % and 3, , =1). —Elnln(r/ro), 0= iE
It should be noted that the integral over the w variable
in (61)-(64) and (72) vanishes in the limit of ry — 0. _Inin(r/r) _
Moreover, in the limit of r — oo, it decreases as (1 / r)zx’ 2In(r/ry) , F=v-1 (78)
where A=v-2, 2<v<7
T
_ 3 O<F<Z., 02 ) The latter circumstance has far-reaching consequences,
r=1-F, 5 <v<z, 1 + (74) " \when we turn to the total flux of the induced ground-state
2 <F<l 6=- pseudomagnetic field strength, see (29). Namely, the con-
tribution of the w-integral to q>|R is damped and the field
1 <F<1 0% ks s'_[rength is proportional to the current in the physically sen-
A=F, S<v<2, 2 . . (75) sible case, i.e. at g > Ip:
T
0<F<Z, 0=—2 : vdf 1 voR 1
2 2 jp(N=5——=, BfM=o——=, (79
27hmax T 27hmax T
A=v+— 6;«t+E 3 1 Where
21 c<v<2 F=2. (1)
A=v-=, 0=+
2
1 i du
CDP 1 = ‘DF 1 =—1I —_—X
0<F <027 S<F<L0=2 2n mex -([ cosh2(u/2)
. 1 . 1
sin(Fr)cosh|| F+v—=|u|-sin[(F +v)m)]cosh|| F—= |u
2 2 3
x —<v<2, (80)
cosh(vu) —cos(vm)
17 du
CDF 1 = (D:? 1 =—I —X
><F<L, 9;‘% 0<F<Z, ez-g 2n melXj.gcoshz(u/Z)
. 1 . 1
sin(Fr)cosh|| F—=v—=|u |-sin[(F —v)x)]cosh|| F—=|u
2 2 3
X , —<v<2, (81)
cosh(vu) —cos(vm)
sin@
CI)F‘ 1 = 7 Fmax (82)
F=> s
2
and
[[v/2] cosh(?’uj
\4 . o) ~
of S Sf”f’ﬂ—ﬁsvw +sin(vn) ‘;” 2 , 2<v<7. (83)
F=v-1 2n V. o= sin (pmc/v) v 0 cosh?(u/ 2) cosh(vu) —cos(vr)
The analysis of the induced ground-state electric charge q(r)=p(r)=0, F=v-1 (2<v<7). (84)

and P -condensate is performed in a similar way. Basing on
the acquired experience, the results in the physically sensi-

ble case (I > Iy) can be immediately obtained by em-
ploying the condition of minimal irregularity, see (60), in
the case of a pointlike disclination. Note that in the latter
case the contribution of modes (55) and (56) is canceled
upon summation over the energy sign, thus
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. 1
Otherwise, at 0< F <1 (g <v<2andv= E)' only

mode (54) contributes, and the appropriate results for arbi-
trary ® were first obtained in [21,22] and later generalized
tov=1in[12-14]:
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evsin(Fr)
q(r) = ————x
32
< K2 (w)— KZe (W
xJ.dWW F (W)~ Kir (W) 5 (85)
0 cosh[(z F—l)ln(wm) +Intan(— + “)}
r 2 4
and
vsin(Fm)
p(N=-———F5—
312
y J‘ dww KE (W) + Ki ¢ (W) . (86)
0 cosh{(ZF -1)In (wrm""xj+ Intan (®+“ﬂ
r 2 4
By appllying (60) to (85) and (86) we obtain
q(r)=0, 0<F<], (87)
O<F<%
p(r)=0, 1 (88)
—<F<l1
2
and
v oS0 1
r=- , F==. 89
p(r) N 5 (89)

Thus, the electric charge is not induced at all, while the
P -condensate is induced at F =1/2 only, with the total
value equal to

cos0
Cleoy, = —Tln(rmax I'1). (90)

Recalling the relation between the P-condensate and
the electric current, see (35) and (37), we get that the in-
duced ground-state electric current density is nonvanishing
at F =1/2 only, being directed orthogonally to the conical
surface:

. V‘J3|F—1/2 2
r =—==£ 1 91
(-2 21 IN(Fay /1) 1)
where
cos0O
\]3|F:1/2:—ev—TC IN(Fax / 1o) (92)

is the total electric current. The induced ground-state mag-
netic field circulating in the angular direction around the
apex of the conical surface, see (38), is presented as

eC|

_ - F=1/2 _

B(P(r)|F:1/2 B‘P(rmax)|F:1/2 2 In(Fgy / ro)ln(rmax 0
VR cos 0

=% n(lyay [F)=e———In(ra /1), (93
2nvln(rmaxlr0) (max ) 2n2 (max ) ( )

where it is plausible to put the constant of integration equal
to zero, B(P(rmax)|,:=]jz =0. Then the total magnetic flux,

see (39), is

cos 0
(D| |F=1/2 = eﬁrmax. (94)

5. Conclusions

On the basis of the continuum model for long-
wavelength charge carriers, originating in the tight-binding
approximation for the nearest-neighbour interaction of the
lattice atoms, we have studied quantum ground-state effects
of electronic excitations in crystalline monolayers warped
into nanocones by a disclination; the nonzero size of the
disclination at the apex of a nanocone has been taken into
account. Our main finding is that the physically sensible
limit of the nanocone size exceeding considerably the
disclination size fixes a boundary condition at the nanocone
apex as the scale invariant one ensuring the minimal irregu-
larity of the modes; consequently, quantum ground-state
effects are independent of the disclination size.

Restricting ourselves to the carbon-like nanocones, we
have considered all disclinations resulting in the conven-
tional nanocones, Ny =1, 2,3, 4,5, and several disclinations
resulting in the saddle-like nanocones, Ny =-1,-2,-3,-6.
As we have proved, the results obtained earlier in [12-14]
for the case of a zero-size disclination should be reduced to
the case obtained by imposing condition (60). In particular,
the ground-state electric charge is not induced at all. As to
the local density of states, it is defined as

o0
axE)= [ EELLeomE -£-ioty e,
S, Thoo
(95)

The density of the induced ground-state electric charge

is related to (95) as

q(x) = —g [ dE"A(x ") san (), (96)

and only the odd in E' piece of A(x; E") contributes to q(x).
In the case of planar crystalline monolayer (v =1), one
immediately gets
| E'

who?
and, as follows from the nullification of the charge,
disclinations leave relation (97) unchanged; this also follows
from expression (55) in [12] for the total density of states
(when condition (60) is imposed).

As to the nonvanishing ground-state effects which are in-
duced in carbon-like nanocones, they comprise two sets.
One includes the magnetic field circulating in the angular
direction around the nanocone apex, the electric current di-
rected orthogonally to the nanocone surface and the parity-
breaking condensate. In terms of the sublattice and valley
indices, this set corresponds to bilinear form

((IA)M(IBI)}[(IB)] [(IAI)]

A(X,E') =

(97)
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and emerges at F =1/2 only, i.e. at Ny =£2,—6. Another
set includes the pseudomagnetic field directed orthogonal-
ly to the nanocone surface and the R-current circulating in
the angular direction around the nanocone apex. In terms
of the sublattice and valley indices, this set corresponds to
bilinear form

(1 9 (7 3
sm(njcosh [u)—sm(njcosh (u)
5 10 5 10 N =1

(1
A

(M
B

(1)
B

SIEHE)

and emerges in all considered cases except v = 3, i.e. Ny = 4.
We summarize our results by presenting expressions for the
total magnetic and pseudomagnetic fluxes @, and (D'R:

of mx | . Ng =1, (%)
_n 2
0= “ o cosh (U/Z) cosh(gu)—cos(gn)
1 1\% q cosh@u)
@F‘ r =—Tmax SiN| =7 I - . Ng =1, (99)
=— 2n 5 )3 cosh?(u’2) 6
2 cosh 5 —C0S gn
. (5 9 . (1 3
© du sin ?n cosh ﬂu +sin ?n cosh ﬂu
CD'Reifﬁ x| — — . : . Ng=-1, (100)
2 o cosh“(u/2) cosh(7uj—cos(7n)
1 o du sin(? jcosh(u] sm(71 jcosh(uj
H = _rmaxj . Ng =-1, (101)
0="  2nm h2(u/2) 6
2 o COS cosh| —u |-cos o
cos 0 sin®
D, =~ Tnax. OR =——r., Ng=+2,-6, (102)
T
V307 du 1
o =-r , Ny =-3, 103
Mow-T ™ 4n maxj ¢ cosh(u/2) 2 d (103)
2 cosh 3 —C0s gn
5 1
cosh( j+cosh(uj
A<= :( j du - o 22 Ng=-3 (104)
= 4T pcosh 2u/2) cosh[3 J—cos(snj
1
of = fmax Ng =3, (105)
R 7
q)| = —Ermax, Nd = 5 (106)

We conclude that the induced ground-state effects
change drastically as N4 changes. The effects are absent in
the case of the four-heptagonal defect (N4 = 4), whereas
they appear of opposite signs as a heptagon is removed from
(Ng =3) or added to (Ny =5) this defect, see (105) and
(106). These cases are independent of the boundary parame-
ter, ©; note that namely these cases correspond to that situa-
tion with the zero-size defect when there is no need for self-

adjoint extension (the deficiency index is (0,0)). In all other
cases the results depend on 6. The most distinct depend-

1628

ence is characteristic for the cases of two-pentagonal, two-
and six-heptagonal defects, when the results coincide, see
(102). In the cases of one-pentagonal, one- and three-
heptagonal defects, the results are almost independent of 0

unless 6 = —g for Ng =1,-3 and 0 :g for Ng = -1, see

(98)-(101), (103) and (104).

Effective magnetic and pseudomagnetic fields which ap-
pear in corrugated crystalline monolayers produce strains
and scattering of electronic excitations in a sample [23]. As
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follows from our consideration, the ground-state magnetic
and pseudomagnetic fields can be induced in the locally
flat regions out of disclinations, and this may have observ-
able consequences in experimental measurements, likely
with the use of scanning tunnel and transmission electron
microscopy.
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BrnacTnuBoCTi OCHOBHOIO CTaHy €feKTPOHHMX
30ymKeHb Y ByrneLeBonoaibHMx HaHOKOHycax

KO.O. CuteHko, B.M. NopkaBeHKO

Ha ocHOBI KOHTHHYyaJIbHOI MOJENI IJIsI JOBFOXBHIILOBHX 3a-
PSLIOBUX HOCIIB, 1110 T0OYI0BaHa B HAOJIMKEHHI CHIIBHOTO 3B'SI3KY
y B3aeMogii HaliOMKYMX CyCiHIX aTOMIB KPUCTAJIIYHOI IpaTKy,
PO3IIITHYTO KBAaHTOBI €()EKTH OCHOBHOTO CTaHy EJIEKTPOHHHX
30y/KeHb B JIPaKOBUX Marepiaigax i3 JBOBUMIPHUMH OJHOIIA-
POBMMHU COTOBHUMH CTPYKTYPaMH, CKPYYCHUMH IUCKJIMHALIEIO Y
HaHOKOHYCH; BPaXOBYETHCSI HEHYJIBOBHH PO3Mip JUCKIMHALIL, a
rpaHUYHa YMOBa Ha Kparo AMCKJIUHALIT BUOMPAETHCS TAKOIO, IO
3abe3redye caMOCIIONIyYeHHsS TaMiIbTOHOBA omeparopa Jlipaka—
Beitns. Iloka3aHo, mo KBaHTOBI €()EKTH OCHOBHOIO CTaHy He
3a]eXaTh BiJ pO3Mipy OUCKIMHALI, Ta 3HalJEHO OOCTaBHHH,
KOJIM BOHH HE 3aJIe)KaTh BiJl mapaMerpa rpanudHoi ymoBu. [Toka-
3aHO, IO B OCHOBHOMY CTaHi iHAYKYIOTbCS MarHiTHHH MOTIK,
KOTPUH LHUPKYJIIOE€ B KyTOBOMY HANpSMKY HaBKOJIO BEPLIMHU
HaHOKOHYCA, Ta IICEBJOMATHITHUH TOTIK, SKHH CIIPSIMOBaHUI
OPTOTOHAJIBHO JI0 HOBEPXHI HAHOKOHYCA.

Kiro4oBi cnoBa: qupakiBChKi MaTepianu, HAHOKOHYCH, OCHOBHUH
CTaH, KBAHTOBI €()eKTH B OJHOLIAPOBUX KpUCTAaX.

CBolicTBa OCHOBHOMO COCTOSIHUS 3MNEKTPOHHbIX
BO30YXXAEHUI B Yrnepoaonogo0OHbIX HAHOKOHYCax

FO.A. CuteHko, B.M. 'opkaBeHKo

Wcxomst M3 KOHTHHYaJIbHOM MOJETH ULl [UTMHHOBOJIHOBBIX
3apsI0BBIX HOCUTEJICH, MMOCTPOCHHON B IPHOJIMKEHHN CHIBHOW
CBSI3M TS B3aMMOJCHCTBHS OMIDKAMIIMX COCEOHHX aTOMOB B
KPUCTAJUIMYECKON peLIeTKE, paCCMOTPEHBI KBaHTOBBIC 3 (EKTHI
OCHOBHOTO COCTOSIHHSI DJIEKTPOHHBIX BO30YXICHHH B AHUPAKOB-
CKHX MarepHallax C JBYMEPHBIMH OIHOCIOMHBIMH COTOBBIMH
CTPYKTypaMH, CKPYYCHHBIMH JUCKIHHALMEH B HAHOKOHYCHI,
YIUTBIBACTCS HEHYJICBOW pa3Mep IMCKIMHAIWH, a TPaHUYHOE
YCIIOBHE Ha KPAI0 TUCKIMHALMN BBIOUPACTCS TaK, 9TO oOecredn-
BAaeTCsl CaMOCONPSDKEHHOCTh FaMHJIBTOHOBA omneparopa Jupaka—
Beitnst. [Tokazano, 4To KBaHTOBBIE 3 (PEKTHI OCHOBHOTO COCTOSHUSI
HE 3aBHCAT OT pa3Mepa JMCKINHALMH, U HalIeHbI 00CTOSTENBCTBA,
IPU KOTOPBIX OHU HE 3aBUCAT OT TapaMeTpa IPAHHIHOTO YCITOBHSL
TToka3aHo, YTO B OCHOBHOM COCTOSHUHM HHIYLHPYIOTCS MarHHT-
HBIf MOTOK, LUPKYIMPYIOLIMHA B YIJIOBOM HAIMPABICHHU BOKDPYT
BEPLINHBI HAHOKOHYCA, M IICEBIOMArHUTHBIA IIOTOK, HAIPaBJICH-
HBIif OPTOTOHAIBHO K IIOBEPXHOCTH HAHOKOHYCA.

KitoueBsle cnoBa: AMpakoBCKHE MaTepHaibl, HAHOKOHYCBHI, OC-
HOBHOE COCTOSIHME, KBaHTOBBIC 3(()EKThl B OJHOCIOWHBIX KpH-
cTajIax.
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