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A survey is done on the effects of impurities in different types of superconductors, both conventional and un-
conventional, on their electronic spectra and physical properties. These effects can be generally divided on the 
base of validity (or not) for them of the known Anderson theorem, which is determined by the symmetries of the 
superconducting state vs those of the impurity perturbation. In this regard, the unconventional behavior can be 
naturally attributed to this theorem’s failure when the impurity effects are generally much stronger and more di-
verse. Specific forms of such perturbations in different superconducting systems are analyzed and they reveal a 
variety of possible scenarios for quasiparticle spectra modification, including formation of several super-
conducting phases, distinguished by the types of specific narrow bands within the main spectrum gap. These 
phases and transitions between them, including the transition to the normal metal state, present a lot of uncon-
ventional features that can be of interest for some practical applications. The concluded observable effects are 
compared to the available experimental data. 

PACS: 74.62.–c Transition temperature variations, phase diagrams; 
74.62.Dh Effects of crystal defects, doping and substitution; 
74.62.En Effects of disorder; 
74.70.Ad Metals; alloys and binary compounds; 
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1. Introduction 

Immediately with the rise of the microscopic theory of 
superconductivity (SC) [1,2], the interest of researchers 
was drawn to possible effects of impurities in SC systems. 
It was motivated by the already known importance of such 
effects in normal electronic systems, for instance, in semi-
conductors [3–5] where the impurity doping helps to 
strongly enhance and stabilize the performance of related 
devices. However, essential specifics of the SC case were 
recognized early by Anderson in his famous theorem on 
insensitivity of the SC order to impurity perturbations, 
unless they break the time-reversal symmetry of the host 
system, basic for the Cooper pairing [6]. It was then shown 
by Abrikosov and Gor’kov (AG) [7] that magnetic impuri-
ties, violating this symmetry, indeed can cause a strong 
suppression of SC order parameter ∆ and transition critical 
temperature cT  (though some deviations from the measured 
data [8,9] and certain inconsistencies in their Born approx-
imation treatment [10] were indicated later). Furthermore, 
going beyond the Born approximation for such impurities 
reveals excistence of bound exitation states at certain dis-
crete energy levels within the SC gap [11–14], in an analo-
gy with the dopant states in semiconductors. Following this 
analogy, the immediate effects of these states on such basic 
SC properties (beyond the above noted ∆ and cT ) such as 
the magnetic penetration depth, rf absorption spectra, spe-
cific heat, etc., were discussed [15–17], including the pos-
sibility for finite impurity bands to emerge from single 
impurity levels at high enough impurity concentrations 
[18,19]. The latter process also sets the principal issue of 
separation between the two alternative types of 
quasiparticle states, localized and band-like, in the spec-
trum of a disordered system [20,21]. This is usually esti-
mated through the known Ioffe–Regel–Mott (IRM) criteri-
on [20,22], namely, the state can be considered band-like 
with well enough defined wave vector k if its mean-free-
path  is long enough: 1k >> . From the point of view of 
this rich impurity-induced physics, the case of Anderson 
theorem violation in disordered SC systems can be as well 
referred to as unconventional. It should be noted that all 
the above considerations were still limited to the case of 
most conventional s-wave SC pairing in the host system. 

A new pulse for studies on such impurity effects was 
given in 1980-ies by the discoveries of new families of 
unconventional SC materials, beginning from the heavy 

fermion systems with triplet p-wave SC pairing [23–25] 
and then advancing to even more striking and rapidly ex-
panding field of high critical temperature SC (HTSC) sys-
tems including: d -wave cuprates [26–28], s-wave two-
band MgB2 [29–31], s± -wave iron pnictides [32,33], and, 
finally, the highest cT  record (201 K under 1.5 Mbar pres-
sure) holder H2S [34]. Those appeared unusual not only in 
their types of SC order parameter but also in a pronounced 
role of their reduced structural dimensionality (layered, 
interfacial, chain-like). Such diversity of relevant electron-
ic parameters of SC hosts leads to yet broader variety of 
impurity perturbations on them and to yet richer potentiali-
ty of resulting physical effects. 

Thus, the important manifestation of unconventional 
impurity behavior in HTSC cuprates with d -wave SC or-
der was found in formation of in-gap resonance states by 
non-magnetic Zn impurities [35,36]. Though looking simi-
lar to the resonances by heavy impurities in the acoustic 
spectra of crystals [37] or by isotopic impurities in the 
electronic spectrum of graphene [38], their too short life-
times [36] exclude the effect of resonance splitting in the 
quasiparticle spectrum at growing impurity concentration 
(as an alternative to the formation of impurity band around 
the localized level) known for the resonances in phonon 
and magnon spectra [39]. Nevertheless, pronounced physi-
cal effects of these impurities were observed, for instance, 
in the strong local suppression of SC order parameter [40]. 

The principal aim of the present article is to give a brief 
survey on various cases of unconventional impurity effects 
in HTSC materials, both conventional and unconventional, 
in order to characterize their general types and physical 
manifestations and to give some indications for possible 
further studies on their finer properties.* 

A special emphasis in this course is made on the distinc-
tion between localized and band-like quasiparticle states. 

It should be noted that formation of the latter type of 
states at energies close to single impurity levels is impossi-
ble within the simplest single-impurity approximation 
(considered for HTSC systems, e.g., in Ref. 41), so ac-
counting for inter-impurity correlations is needed. Besides, 
the common approaches to such collective impurity effects 
in SC systems, using either Born or self-consistent T-mat-
rix approximations for impurity scattering amplitude (see, 
for instance, the recent review article [42]), treat all the 
quasiparticle states as band-like and thus ignore this dis-

* Therefore we leave aside possible impurity effects in triplet p-wave SC systems where the known cT  values are restricted to ~1 K.  
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tinction in principle. Similar treatments are known to give 
a misguiding spectrum description, e.g., for narrow impuri-
ty bands in doped semiconductors [5,43], so we address 
this issue by using some properly adapted Green's function 
(GF) techniques [44] (even at the cost of limiting to sim-
pler two-time GF’s [45] instead of more thermally ad-
vanced Matsubara ones [46]). Also we limit the considera-
tion to the common BCS regime of relatively weak SC 
coupling, while the impurity effects under the opposite 
strong SC coupling limit were recently treated in the first-
principles approach [47]. 

The actual techniques are resumed in Sec. 2, and next 
they are applied in Sec. 3 for analysis of the known localized 
in-gap levels by magnetic impurities in common s-wave 
SC materials, including their possible extension into finite 
impurity bands with unconventional effects in SC thermo-
dynamics, optical, and transport properties. Then Sec. 4 
presents the alternative scenario of resonance states pro-
duced by non-magnetic impurities in d -wave SC systems, 
modeling the effects of Cu substitutes in SC cuprates, and 
compares them with the previous s-wave case. The further 
development of the method is done in Sec. 5 for the case of 
multiband electronic structure in order to consider a possi-
ble alternation of localized and resonance impurity states 
in the specific case of two-gap s-wave SC MgB2. Finally, 
yet another SC order symmetry, of the s±  type, such as that 
known in iron pnictide compounds, is considered in Sec. 6 
showing this case also to admit unconventional effects by 
non-magnetic impurities and discussing their observable 
effects. 

2. Green’s function methods for disordered 
superconductors 

As mentioned above, our main tool for the analysis of 
quasiparticle spectra in disordered many-electron systems 
and their related observable properties are the two-time 
(retarded, Fourier-transformed) GF’s [45]:  

 
0

( 0)| = e { ( ), (0)} ,i i ta b i a t b dtε−
ε

−∞

〈〈 〉〉 〈 〉∫  (1) 

where { ( ), (0)}a t b  is the anticommutator of fermion opera-
tors in the Heisenberg representation, 〈 〉  is the quantum 
statistical average with the system generalized Hamiltonian 
H N− µ  (at chemical potential µ, as a rule close to the 
Fermi energy Fε ), and the variables of energy ε and tem-
perature T  are defined in the units of = = 1Bk . The basic 
equation of motion for GF’s:  

 | = { (0), (0)} [ , ] | ,a b a b a H bε〈〈 〉〉 〈 〉 + 〈〈 〉〉  (2) 

involves the commutator [ , ]a H  and opens the way for their 
consequent calculation. The practical importance of GF's is 
in the possibility to obtain the related observable quantities 

(the averages of some Hermitian operators) using the spec-
tral theorem:  

 1= Im | ,ba d a b
∞

ε
−∞

〈 〉 ε 〈〈 〉〉
π ∫  (3) 

but without a detailed quantum-mechanical solution for the 
macroscopic Hamiltonian H . Despite the known re-
strictions on the GF’s version given by Eq. (1) (compared 
to their more advanced forms, such as those by Matsubara 
[46] or Keldysh [48]), it has an advantage of its simpler 
equation of motion, Eq. (2), which better fits just the spe-
cifics of disordered systems. In what follows, the energy 
argument ε of GF’s will be omitted as a rule. 

2.1. Green’s function description of pure superconductors 

Impurity effects in SC materials are essentially deter-
mined by the symmetries of the host band structure (in-
cluding the SC gap) and of the impurity perturbation po-
tential. The simplest band structure for normal electrons 
corresponds to a single band of the quasimomentum k  
eigenstates with the related Fermi operators ,ka σ (also la-
beled by the spin projection σ) and the dispersion law εk  
of total bandwidth W . It is linearized near the chemical 
potential (close to the Fermi energy Fε  chosen as the ener-
gy reference): ( )F F Fk kξ = ε − ε ≈ −k k v , to define the 

second quantization Hamiltonian †
0 ,,,=H a a σσσ

ξ∑ k kkk . 

Then the relevant GF’s are explicitly given as 

( ) 1†
, , ,,| =a a −

′ ′σ σ σ′ ′σ〈〈 〉〉 δ δ ε − ξk k k kk . 

For SC electrons, the main object of our study, we pass 
to the standard BCS Hamiltonian (in absence of impurity 
perturbation):  

 ( )0 , ,
,

= h.c. ,BCSH H a aσ − −σ
σ

+ ∆ +∑ k k k
k

 (4) 

with the SC gap function ∆k  to be specified below for its 
different symmetries. In the convenient basis of Nambu 
spinors: † †

,,= ( , )a a− ↓↑
ψk kk , the BCS Hamiltonian is pre-

sented as 

 †
3 1ˆ ˆ= ( ) ,BCS

k
H ψ ξ τ + ∆ τ ψ∑ k k kk  (5) 

with the Pauli matrices ˆlτ  ( = 1, 2, 3l ). Then the electronic 
dynamics follow from the respective GF matrices: 

†
,

ˆ = |G ′ ′〈〈ψ ψ 〉〉k k k k . Particularly important is the momen-
tum-diagonal GF, also called the propagator: ,

ˆ ˆG G≡k k k , 
that define the SC quasiparticle spectrum = Eε k  through 
the dispersion equation [49]:  

 1ˆRedet = 0.G−
k  (6) 

The propagator's diagonal elements (in Nambu indices) 
define the quasiparticle (global) density of states (DOS):  
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 1 ˆ( ) = ImTr ,G
N

ρ ε
π ∑ k

k
 (7) 

where N  is the number of points in the Brillouin zone (BZ) 
(not to be confused with the operator of excitation numbers 
mentioned after Eq. (1)). Evidently, the normalization con-
dition for DOS holds:  

 ( ) = 1.d
∞

−∞

ρ ε ε∫   

Next, the propagator’s Nambu-off-diagonal elements 
define the gap function ∆k  itself from the BCS gap equa-
tion:  

 , , 1
0

1 ˆ ˆ= tanh ImTr .
2

d G
N T

∞

′ ′ ′
′

ε ′∆ ε Λ τ
π ∑∫k k k k k

k
 (8) 

Here the SC coupling function , ′Λk k  is usually taken in the 
factorized form: , =′ ′Λ Λγ γk k k k , where the momentum 
dependent function = ( | |)D ϕγ θ ω − ξ γk k  includes the radi-

al restriction to the BCS shell of D±ω  (the Debye frequen-
cy) width around the Fermi surface, expressed by the 
primed sum in Eq. (8). Also the dependence of ϕγ  on an 

azimuthal momentum variable ϕk  defines the particular 
symmetry of SC order, =∆ ∆γk k . In what follows we 
adopt the usual BCS model hierarchy of energy scales: 

D F W∆ << ω << ε < , in conformity with the known exper-
imental data. 

Otherwise, the Nambu-diagonal elements of the mo-
mentum-off-diagonal GF’s define the local density of 
states (LDOS) on nth lattice site:  

 ( )
,

,

1 ˆ( ) = e ImTr ,i n G
N

′−
′

′
ρ ε

π ∑ k k
n k k

k k
 (9) 

effectively displayed by scanning tunneling microscopy 
(STM) studies on these systems. Eventually, the local de-
viation of the order parameter on nth site from its average 
∆ over the crystal results from both momentum- and 
Nambu off-diagonal GF’s:  

 ( – )
, 1

,0

ˆ ˆ= tanh e ImTr ,
2

id G
N T

∞
′

′ ′
′≠

Λ ε ′∆ − ∆ ε γ τ
π ∑∫ k k n

n k k k
k k k

  

  (10) 

it can be also measured by the STM techniques. In a simi-
lar way, other physical quantities can be expressed in terms 
of GF’s. 

Use of Eq. (2) for the unperturbed SC system with the 
Hamiltonian, Eq. (4), gives the explicit solution for related 
GF matrices as 

 (0) 3 1
,, 2 2 2

ˆ ˆˆ = ,G ′′
ε + ξ τ + ∆ τ

δ
ε − ξ − ∆

k k
k kk k

k k
 (11) 

whose denominator defines, accordingly to Eq. (6), the 
explicit dispersion law for unperturbed quasiparticles: 

2 2=E ξ + ∆k k k . 
Strictly speaking, the solution in the form of Eq. (11) is 

rigorous only at zero temperature but in what follows we 
shall also use it for finite (but low enough) temperatures, 
only considering the most pronounced temperature effect 
on the gap parameter ∆k . 

Then, for the conventional s-wave SC order: = 1,ϕγ

= s∆ ∆k  (implicitly temperature dependent, ( )s s T∆ ≡ ∆ ), 
Eq. (11) can be used in Eq. (7), with the sum in k  convert-
ed to integral in =ξ ξk  by the rule 

 1 ( ) = ( ) ,
W F

N

F

f f d
N

−ε

−ε

ξ ρ ξ ξ∑ ∫k
k

  

where Nρ  is the Fermi DOS of normal metal. This results 
in the BCS expression for DOS:  

 ( )(0) 2 2
2 2

( ) = .s N s
s

ε
ρ ε ρ θ ε − ∆

ε − ∆
 (12) 

Using of Eq. (11) in the gap equation, Eq. (8), permits to 
present it in the standard form:  

 (0)1 = ( , ),sS T∆
λ

 (13) 

with the dimensionless SC coupling parameter = Nλ Λρ  
and the (unperturbed s wave) BCS order function:  

 

2 2

(0)
2 2

1( , ) = tanh .
2

D s

s
ss

S T d
T

ω +∆

∆

ε
∆ ε

ε − ∆
∫   

In the limit of zero temperature, one has (0) ( ,0) =sS ∆  
= arcsinh[ / ]D sω ∆ , and then arrives at the known result 
for the (maximum) s-wave order parameter: 

1/(0) = / sinh(1/ ) 2 es D D
− λ∆ ω λ ≈ ω . Next, the critical tem-

perature for this case, sT , is found from Eq. (13) in the lim-
it of 0s∆ → :  

 (0) 21 = (0, ) ln ,D
s E

s
S T

T
ω

≈ + γ
λ π

 (14) 

as 1/(2/ ) e Es DT γ − λ≈ π ω  with the Euler constant 
0.5772Eγ ≈ , it assures the BCS universal ratio: 

= (0)/ e 1.76Es s sr T −γ∆ ≈ π ≈ . 
In the case of unconventional, d-wave SC order (actual 

for HTSC perovskites with quasi-2D spectrum), the non-
trivial symmetry factor = cos 2ϕγ ϕk  with the angular ar-
gument = arctan /y xk kϕk  provides the related angular 
dependent order parameter = cos 2d∆ ∆ ϕk k  (again imply-
ing its temperature dependence). Then, with the general-
ized integration rule 
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2

0

1 ( , ) = ( , )
2

W F
N

F

f d d f
N

−επ

−ε

ρ
ξ ϕ ϕ ξ ξ ϕ

π∑ ∫ ∫k k
k

  

the corresponding DOS takes the form 

 
2

(0)
2

2
( ) = N d

d K
 ρ ∆

ρ ε   π ε 
 (15) 

with the 1st kind full elliptic integral K  [50]. Its unconven-
tional behavior, compared to Eq. (12), is in reaching zero 
only at 0ε →  and having only logarithmic singularities at 

= dε ±∆  (as the line 2 in Fig. 2). Then the gap equation, 
Eq. (8), is presented at zero temperature as 

 
/2

2
2

0 0

1 4= cosd d
∞ π

ε ϕ ϕ×
λ π ∫ ∫   

 (0)
2 2 2 2

0

Im = ,
(0)(0)cos

D
D

dd

d D
ω

 ωξ
×  ∆ε − ξ − ∆ ϕ  

∫   

  (16) 

the latter function being also expressed as 

 
1 2

(0)
2

0

2( ) = arcsinh .
1

t xD x dt
ttπ −

∫   

For relevant big arguments, 1x >> , this function has the 
simple asymptotics: (0) 2( ) = ln 4 1/ 4 (1/ )D x x O x− + , 
providing the d-wave order parameter value:  

 2/ 1/2(0) 4 e .d D
− λ−∆ ≈ ω  (17) 

Otherwise, the critical temperature for this case is ob-
tained from:  

 
/2

2
2

0 0

1 4= tanh cos
2 d

d d
T

∞ π
ε

ε ϕ ϕ×
λ π ∫ ∫   

 2 2
0

21Im ln
2

D
D

E
d

d
T

ω
 ωξ

× ≈ + γ πε − ξ  
∫  (18) 

(its r.h.s. being exactly 1/2 of that in Eq. (14)), leading to 
2/(2/ ) e Ed DT γ − λ≈ π ω . Hence the resulting ratio:  

 
(0) 2= 2.14,

e
d

d s
d

r r
T

∆
≈ ≈  (19) 

is as universal as sr  but notably exceeds it, which can be 
seen as another unconventional feature of the d-wave case. 
Note a good agreement of the theoretical value given by 
Eq. (19) with the typical experimental value, 2.2dr ≈  for 
HTSC perovskites. 

The forthcoming analysis of impurity effects involves 
the correlator GF's, 1ˆ ˆ= eiG N G− ∑ kn

n k
k

, expressing corre-

lations between two lattice sites at separation n produced 

by quasiparticles with given energy ε. In particular, the 
locator =0 0

ˆ ˆG G≡n , important for single-impurity effects, is 
presented as a sum of three components:  

0 0 1 1 3 3
ˆ ˆ ˆ= ,G g g g+ τ + τ         0 2 2 2

1= ,g
N
ε

ε − ξ − ∆
∑
k k k

  

1 2 2 2
1= ,g
N

∆′
ε − ξ − ∆

∑ k

k k k
   3 2 2 2

1= .g
N

ξ

ε − ξ − ∆
∑ k

k k k
 (20) 

In the relevant low-energy range, | | ,Fε << ε  Dω , the dom-
inant BCS contributions into the 0Ĝ  matrix come from the 
vicinity of the Fermi surface and it will be shown below 
that these contributions (sensitive to a specific SC order) 
decide validity of Anderson’s theorem for a given SC ma-
terial in presence of impurities. Besides, there are some 
subdominant contributions into 0Ĝ , coming from the rest of 
BZ, that are insensitive to the SC order but sensitive to the 
overall (normal) spectrum. 

Thus, for the s-wave case, supposing the linearized dis-
persion = ( )F Fk kξ −k v  to be valid over the whole spec-
trum width W , we obtain 

 0 2 2
,

( )N
F Fs

Wg
W

 π ≈ ρ ε − +
 − ε ε∆ − ε 

  

 1 2 2

2 ,N s
Dss

g
 π ≈ ρ ∆ − +
 ω∆ − ε 

  

 3 ln 1,N
F

Wg ≈ ρ −
ε

 (21) 

where the dominant terms 2 2/ sπ ∆ − ε  are present in 0g  
and 1g  while the remaining parts of 0g , 1g  together with 3g  
are subdominant. The comparison between these two types 
of contributions is presented in Fig. 1. The same s-wave 
case, but supposing the free electron overall spectrum, 

2 2( )/2Fk k mξ = −k , differs from that only by a modifica-
tion of the subdominant terms:  

 0 2 2

1 ln ,F
N

F Fs

W
g

W

 + επ ≈ ρ ε − +
 ε − ε∆ − ε 

  

 1 22 2
,

2
D

N s
Fs

g
 ωπ ≈ ρ ∆ − +
 ε∆ − ε 

  

 3 ln .F
N

F F

WWg
W

 + ε
≈ ρ −  ε − ε 

 (22) 

In the d-wave case, the dominant terms are only present 
in 0g  as real and imaginary parts of 2 2( / )N di Kρ ∆ ε , while 

1 = 0g  and all the subdominant terms remain as those in 
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Eqs. (21) or (22) (see Fig. 2). Formally, this expression for 
0Ĝ  also holds for the p-wave case with = /p zk k∆ ∆k . 

General correlators 0Ĝ ≠n  are important for the analysis 
of the effects of impurity clusters. For the same low-energy 
range, their deviation from 0Ĝ  becomes notable at long 
distances =| |n n  compared to the lattice period, in which 
case only the dominant contributions can be taken into 
account. Their explicit calculation for the s-wave case re-
sults in 

 / cor0
sinˆ ˆ e ,n rF

F

k nG G
k n

−≈n  (23) 

presenting, besides the Friedel-like oscillating 
(sin )/( )F Fk n k n  term, also the exponential factor with the 

energy dependent correlation radius 2 2
cor coh= / .r πξ ∆ ∆ − ε  

It can be much longer than the BCS coherence length 
coh /( )Fξ = π∆v  for energies ε approaching the gap edge ∆ 

(here and in what follows, ∆ without subindices is under-
stood as ,s d∆  for the respective case). We notice that the 
spatial behavior of the correlator function, Eq. (23), also 
defines the wave function of a localized state (at an in-gap 
energy: 2 2<ε ∆ ), so corr  can be also considered its locali-
zation radius locr  [39]. For well known typical values of 

coh 100–1000ξ   nm in s-wave SC’s, this radius could be 
even much longer than that known for shallow donor and 
acceptor levels in normal semiconductors [51]. This 
would indicate even sharper impurity effects in SC mate-
rials than in doped semiconductors (provided the in-gap 
localized levels are permitted here by the system sym-
metry). However the exponential factor in Eq. (23) turns 
irrelevant for description of most important effects at 
high enough impurity concentrations c when the mean 
inter-impurity distance 1/3r c−

  is much shorter than locr . 

Otherwise, for higher energies, 2 2ε >> ∆ , relevant for 
calculation of local observables, the exponential factor in 
Eq. (23) becomes oscillating but much slower than the 
Friedel oscillations and can be also disregarded. 

The spatial structure of the general correlator for the 
d -wave (and 2D) case is more complicated, because of a 
specific interference between Friedel-like radial oscilla-
tions and fourfold azymuthal symmetry of SC dispersion 
law in its explicit expression:  

 
2

cos( ) 1 3
2 2 2 2

0

ˆ ˆcos 2ˆ = e ,
2 cos 2

W F
iknN

F

G d d
−επ

ϕ−θ

−ε

ρ ε + ∆ ϕτ + ξτ
ϕ ξ

π ε − ∆ ϕ − ξ∫ ∫n   

  (24) 

where = arctan /x yn nθ . Generally it does not permit fac-
torization like in Eq. (23). Here, this simple form is only 
achieved in the high-energy limit, 2 2ε >> ∆ , with the 
Friedel oscillation factor (sin )/( )F Fk n k n  changed to 

0 ( )FJ k n  (see Fig. 3). Otherwise, for low energies, 2 2 ,ε ∆  

Fig. 1. Comparison between two types of contributions to the 0Ĝ  
locator GF in function of energy for the case of s-wave SC: the 
dominant (1 to 0g  and 2 to 1g ) and subdominant (3 to 0g , 4 to 1g  
and 5 to 3g ). The latter ones are presented as given by Eq. (21) 
for the fully linear dispersion law at the choice of parameters: 

/ (0) 100F sε ∆ = , / (0) 30D sω ∆ = , / 3FW ε = . 

Fig. 2. The dominant (1 for 0Re g  and 2 for 0Im g ) and subdom-
inant (the same as those in Fig. 1) contributions to 0Ĝ  for the 
case of d-wave SC. 

Fig. 3. (Color online) Comparison of correlators Ĝn for the s-wave 
and d-wave SC’s (in the high-energy limit 2 2ε >> ∆ ) vs distance n 
(in units of the Fermi wavelength 1/ Fk ). 
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its spatial behavior is only obtained from numerical calcu-
lation in Eq. (24) and displays fourfold azymuthal anisot-
ropy. In particular, it consists in variation of the oscillating 
function argument from Fk n along the nodal directions, 

2 2=x yn n , to / 2Fk n  along the antinodal directions, = 0xn  
or = 0yn . 

2.2. Impurity perturbations in superconductors 

After having defined the basic parameters of pure s- 
and d -wave SC systems, we can pass to their modification 
under the effects of impurity perturbations. Those for an 
SC system are most simply modeled by identical scatterers 
located in random lattice sites p, in addition to the BCS 
Hamiltonian, Eq. (4). For the case of spin-independent 
(non-magnetic) scattering, it can be presented as 

 †( )
imp 3

, ,

1 ˆ= e .iH V
N

′−
′ ′−

′
ψ τ ψ∑ k k p

k k kk
p k k

 (25) 

Here the Fourier image V ′−k k  of the impurity perturbation 
potential ( )V r  can be generally expanded into a sum of 

factorable terms: , ,
=1

=
m

l l l
l

V V ∗
′ ′− α α∑k k k k , each related to l th 

representation of the local symmetry group for the cluster 
of m sites affected by the impurity. From the general theo-
ry [52], the coefficients ,lαk  satisfy the relations of 

orthogonality: , , ,=l l l l
∗

′ ′α α δ∑ k k
k

, and completeness: 

, , =l l
l

m∗α α∑ k k , but the simplest case of point-like poten-

tial, ( ) = ( )V V δr r , yields an obvious constant: =V V′−k k , 
reducing the above expansion to the single trivial represen-
tation with = 1l , ,1 = 1Vα

k
. 

For the case of magnetic impurities, the perturbation 
potential 3ˆV ′− τk k  in Eq. (25) is modified by addition of the 
magnetic exchange term J ps τ  with the impurity spin ope-

rator ps , resembling the Kondo problem in normal metals 
[53]. Then the equation of motion, Eq. (2) produces, aside 
from the simply scattered GF’s †|a a′〈〈 〉〉k k , also some new 

composite GF's: †|l l l a a′ ′′
′ ′′ ′〈〈 〉〉p p p k ks s s , where , , ,l l l′ ′

  
are the Cartesian indices for respective spins. In the same 
analogy with the Kondo problem and supposing the impu-
rity spins fully uncorrelated (paramagnetic), a reasonable 
simplification is then obtained by decoupling such compo-
site GF’s as  

 † †2 | ( 1) | ,s a a s s a a′ ′〈〈 〉〉 ≈ + 〈〈 〉〉p k kk k  (26) 

together with respective powers of ( 1)s s +  from multiple 
products 2 2s s ′p p , while omitting contributions from all 
other spin compositions.* 

In presence of impurity disorder that breaks the transla-
tional symmetry of the system, quasimomentum is no 
longer an exact quantum number for its states, and the 
spectrum is generally divided into alternative ranges of 
band-like states (approximately described by quasimomen-
tum) and localized ones (whose quantum numbers have no 
relation to quasimomentum), separated by the so-called 
mobility edges [20]. Then the solution for GF matrix is 
modified vs Eq. (11) by introduction of a self-energy ma-
trix, in a form appropriate for the particular spectrum range 
[54]. Thus, for the band-like states, this form reads 

 ( )
11(0)ˆ ˆ ˆ= ,G G

−− 
− Σ 

 
k kk  (27) 

while for the localized states it is 

 (0) (0) (0)(0)ˆ ˆ ˆ ˆˆ= .G G G G+ Σk k k k  (28) 

As seen from Eq. (27), its structure permits to define both 
the dispersion law by Eq. (6) and DOS by Eq. (7), while 
that in Eq. (28) only applies for DOS. Both types of self-
energy matrices are generally expanded in the above re-
ferred local symmetry representations: ,ˆ ˆ= llΣ Σ∑k k  and 

(0)(0)ˆ ˆ= llΣ Σ∑ , and their partial terms can be then present-

ed in form of group expansions (GE’s), in groups of inter-
acting impurity centers at given relative impurity concen-
tration c (supposedly low, 1c << ) [39]. Thus, for the case 
of Eq. (27), its construction is 

 ( ), , , ,
ˆˆ = 1 e i

l l l l lcT c Â Â Â−
−


Σ + + ×


∑ kn

k n n n
n

  

 ( ) 1
, ,1 ,l lÂ Â

−
−


× − + 


n n   (29) 

called the fully renormalized expansion (FRE), while that 
for Eq. (28) 

( ) 1(0) (0) (0) (0) (0) (0)
, , , , ,

ˆˆ = 1 1l l l l l lcT c Â Â Â Â
−

− −

 
Σ + − + 

  
∑k n n n n
n

  (30) 

is called the non-renormalized expansion (NRE). General-
ly, some other GE types are also possible [39], one such 
example to be considered in Sec. 3.2 below. 

For FRE, its constituents are the single-impurity (par-
tial) T-matrices:  

* Generally, Eq. (2) for this case produces yet another set of composite functions of † †|l l ls s s a a a a′ ′′
′′ ′′′′ ′′ ′〈〈 〉〉p k k kp p k  type, but they can 

be neglected beside the above considered ones because of additional small thermal occupation factors †=n a a′ ′′〈 〉 〈 〉k kk  emerging 
at their decoupling. 
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1

2
3 ,

1 ˆˆ ˆ= 1 | | ,l l lT V G
N

−

′ ′
′≠

 
τ − α  

 
∑ k k

k k
 (31) 

and the related indirect inter-impurity interaction matrices:  

 2
, ,

1 ˆˆ= e | | ,i
l l lÂ T G

N
′

′ ′
′≠

α∑ k n
n k k

k k
 (32) 

with the additional restriction of summing to only non-
coincident quasimomenta in the products like , ,l lÂ Â−n n . 

Analogous elements (0)
l̂T  and (0)

,lÂn  for NRE differ from 

these in Eqs. (31), (32) only by Ĝk  replaced for (0)Ĝk  and 
by no restrictions in quasimomentum sums. The sums in 
separation vectors n (next to unity in the brackets of 
Eqs. (29) and (30)) describe the effects of quasiparticle 
interference in pairs of impurities, the omitted higher 
order GE terms correspond to such effects from impurity 
triples, etc. [39]. 

Using these GE’s, we can evaluate the important pa-
rameters of band-like (coherent) and localized states in the 
spectrum of a disordered crystal. Thus, the inverse lifetime 
of a band-like state with given quasimomentum k is de-
fined as 1 1ˆ= Im det / | 2 |G E− −τk k k  and it can be used in the 
IRM criterion presented as 

 1.E −∇ >> τk k kk  (33) 

Then, the approaching of a mobility edge is manifested by 
the failure of this criterion (that is, when the strong ine-
quality “>>” passes to the “~” relation). This indicates a 
limit of the band-like range, either of a host band (modified 
vs its non-perturbed spectrum) or a new, impurity band of 
coherent states, near a single-impurity level loc,lε  (a pole of 
some (0)

l̂T ). This condition is also accompanied by the loss 
of FRE convergence, while the NRE can still remain con-
vergent and then it describes DOS of localized states. Fi-
nally, the NRE convergence can be also lost at sufficient 
proximity to a single-impurity level, giving an estimate for 
its concentrational broadening. 

Presence of two qualitatively different types of 
quasiparticle states in the spectrum with their proper GF 
forms requires reformulation of the gap equation, Eq. (8). 
Now, the energy integration over each range should be 
done using the respective (FRE or NRE) GF form. Then 
two different mechanisms for the impurity-induced gap 
reduction should be distinguished: (i) due to modification 
of the host bands, a more conventional one, and (ii) due to 
emergence of in-gap impurity levels or impurity bands. 
The latter can be considered an unconventional mechanism 
and, as will be seen below, it can strongly enhance the im-
purity effect and provide some new qualitative features to 
the system. 

Now we proceed to the particular cases of SC systems 
with impurities, starting from the simplest point-like scat-
terers in an s-wave BCS host. 

3. Impurity levels and impurity bands in s-wave 
superconductors 

3.1. The case of non-magnetic impurities 

In an s-wave SC system with non-magnetic point-like 
impurities, calculation of the self-energy matrices given by 
Eq. (31) and simplified to the single trivial representation 
of the point symmetry group, results in the single-impurity 
T-matrix for NRE:  

 ( ) 1(0)(0)
3 0

ˆˆ ˆ= .T V VG
−

τ −  (34) 

Next, in terms of the decomposition, Eq. (20), it is ex-
pressed as 

 
( ) ( )

( ) ( )
0 1 1 3 3(0)

2 2 2 2
3 0 1

ˆ ˆ1ˆ = ,
1

V g g Vg
T V

Vg V g g

− τ + − τ

− − −
 (35) 

and possible localized in-gap levels would be given by its 
poles. But if the 0Ĝ  components presented by Eqs. (21) or 
(22) are restricted only to their dominant terms, it is readily 
seen that the denominator of Eq. (35) becomes a positive 
constant: 2 2

3(1 ) (1 )Vg− + v , with the dimensionless impu-
rity perturbation parameter 3= /(1 )NV Vgπρ −v . This con-
stancy prevents quasiparticle localization by a single impu-
rity center and related restructuring of the spectrum at 
finite impurity concentrations. Then, approximating the 
self-energy matrix by its T-matrix term in Eqs. (29), (30) 
and using the result of Eq. (35) in the gap equation, Eq. (8), 
we get the modification of Eq. (13) in that the order func-
tion (0) ( , )S T∆  is replaced for 

 1 1= ( , ) = ( , ) tanh ,
2 2

S T s d
T

∞

−∞

ε
∆ ε ∆ ε

λ π ∫   

 with   2 2 2
0

( , ) = Im .
D ds

ω
∆ ξ

ε ∆
∆ ε − ∆ − ξ∫






 (36) 

Here the renormalized energy and gap variables are de-
fined by the relations 

 22 2
= = 1 with = ,

1
i cVε ∆ ζ

− ζ
ε ∆ +ε − ∆



 v
v

  

and the uniform shift of the dispersion law ξ  by /ζ v is im-
plicitly accounted for. The gap parameter results from Eq. 
(36) as a function of temperature and impurity concentra-
tion: = ( , )T c∆ ∆ , though in this case the impurity parame-
ters c and v enter it only through their single combination 
ζ . In what follows, we denote 0 (0, 0)∆ ≡ ∆  the maximum 
possible (for given λ) gap value.  

Next we notice that the function ( , )s ε ∆  in Eq. (36) is 

only non-zero at 2 2>ε ∆ . Then, passing to the complex 

variable 2 2= /( )z iξ ε − ∆ − ζ , it is transformed to 
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 22 2

1( , ) = Im ,
1

z

z

dzs
z

+

−

 
 ε ∆  − ε − ∆ 

∫   

with 2 2/( – – )Dz i± = ±ω ε ∆ ζ . Taking the standard in-
tegral  

 2 = arctanh
11

z

z

z zdz
z zz

+
+ −

+ −
−

−
−−∫   

and separating its imaginary part, one has explicitly 

 2 2 2 22 2

21( , ) arctan D

D
s

 ζω
ε ∆ = π −  ω − ε + ∆ − ζε − ∆  

.  

  (37) 
The next integration in Eq. (36) is done over the energy 
range of 2 2 2 2 2

D∆ ≤ ε ≤ ω + ∆ − ζ , and for low enough im-
purity concentrations, such that Dζ << ω , the arctan argu-
ment in Eq. (37) can be reasonably approximated by 
2 / 1Dζ ω <<  over all the relevant range of 2 2

Dε ω , which, 
for the case of = 0T , results finally in 

 1 21 arcsinh .D

D

  ωζ
≈ − λ πω ∆ 

  

Comparing this to Eq. (13) for the unperturbed gap 0∆ , we 
obtain its relative decay as 

 
0

21 ,
D

∆ ζ
− ≈

∆ πλω
 (38) 

that is linear in concentration c of non-magnetic impurities 
(shown by the line 2 in Fig. 4). We notice that even in the 
limit of strong perturbation, → ∞v , its slope stays finite: 

2
01 / 4 /( )N Dc− ∆ ∆ → π λρ ω , and always much slower of the 

simplest mean-field expectation: 0 01 / = | | /c V− ∆ ∆ ∆  
(shown by the line 3 in Fig. 4). With further growing c, 
this decay gets even slower, as seen from the numerical 
treatment of Eq. (36) with the full form of Eq. (37) (the 
line 1 in Fig. 4) going formally to zero only at unphysically 
high impurity concentrations. 

The local effect of a non-magnetic impurity on SC or-
der is most simply obtained considering = 0n  a single im-
purity site in the crystal (actually non-random in this limit). 
Then the momentum-off-diagonal GF’s are ,

ˆ =G ′k k  
(0) (0)1 (0)ˆ ˆˆ= N G T G−

′k k  and their summation over , ′k k  in 
Eq. (10) gives  

 (0)(0) (0)
1

0

ˆ ˆˆ ˆ= tanh ImTr .
2

d G T G
T

∞

′
Λ ε

∆ − ∆ ε τ
π ∫n n k  (39) 

Next, using of Eqs. (20), (23), (35) leads to the explicit 
distance dependence 

 
22

2
sin

1 ,
1

F

F

k n
k n

 ∆
= −  ∆ +  

n v
v

 (40) 

shown in Fig. 5.  

These results provide a more detailed insight on the sta-
bility of SC order to non-magnetic impurities, concluded to 
be absolute in Anderson’s theorem, only from global sym-
metry reasons. But the account taken of the specific dynam-
ics of impurity perturbation on SC quasiparticles permits a 
finite suppression of the global SC order parameter even by 
those impurities (namely, produced by the arctan term in 
Eq. (36)). Though the symmetry protection (expressed in the 
constancy of T-matrix denominator in Eq. (35)) makes this 
suppression much weaker than it could be expected from 
simple mean-field reasoning, it is not zero at all and natu-
rally grows with growing impurity parameter ζ  (combined 
from c and v). Also the local SC order at impurity site by 
Eq. (40) for = 0n : 2

=0 = /(1 )∆ ∆ +n v , is increasingly sup-
pressed with growing v. 

It can be yet noted that the above results can be slightly 
modified if the subdominant terms in Eqs. (21) or (22) are 

Fig. 4. (Color online) The gap parameter at finite impurity con-
centration c , ( )c∆ , relative to its non-perturbed value 0∆  for the 
s -wave SC at the choice of / 30D sω ∆ =  and = 0T  in function of 
the concentration c  of non-magnetic impurities with the perturba-
tion parameter = 1v . The numerical solution of Eq. (36) (line 1) 
and its linear approximation given by Eq. (38) (line 2) decay 
much slower than the simple mean-field expectation (line 3). 

Fig. 5. The local s -wave order parameter ∆n in function of the 
distance from a single non-magnetic impurity center at = 0n  (in 

1
Fk−  units). The Friedel-like oscillations described by Eq. (38) 

decay well before Fk n  reaches values / 1F Dε ω >>  where the 
exponential factor in Eq. (22) could be felt. 
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also considered. Those will permit a very shallow localized 
level locε  to emerge near the SC gap edge: 3 2

loc / D∆ − ε ∆ ω  
(for the case of Eq. (21)) or 3 2/ F∆ ε  (for the case of 
Eq. (22)). Nevertheless, related straightforward calcula-
tions show that presence of such levels can not sensibly 
modify the impurity effects on the SC order. 

3.2. The case of magnetic impurities 

A very different situation takes place for magnetic im-
purities first studied by Abrikosov and Gor’kov [7]. In this 
case, neglecting for simplicity the non-magnetic part of 
impurity perturbation, Eq. (25), beside the magnetic term 

mag =V J ps τ , with the parameter J  of exchange coupling 
between host carriers and impurity spin ps , we obtain the 
equation of motion for the Ĝk  matrix in the form 

 (0) (0)( )
; ,

, ,

ˆ ˆ ˆ ˆˆ= e .i l
l

l

JG G G G
N

′−
′

′
+ τ∑ k k p

k p k kk k
p k

 (41) 

Here the composite GF matrix †
; ,

ˆ = |l l
kG s′ ′〈〈 ψ ψ 〉〉p k p k kk  

presents one of those mentioned at the end of Sec. 2. The 
equation of motion for this composite GF:  

 (0)( ) ,
; , , ; ,

, ,

ˆ ˆ ˆˆ= e ,l i l l
l

l

JG G G
N

′′ ′ ′ ′−
′ ′ ′ ′

′ ′′ ′
τ∑ k k p

p k k k p p k k
p k

 (42) 

gives rise to the 2nd order composite GF ,
, ; ,

ˆ =l lG ′
′ ′p p k k  

†= |l ls s′
′ ′〈〈 ψ ψ 〉〉p p k k . But, for the case of =′p p , it can be 

reduced to simpler ones with use of the identity 

 ( )2

,
ˆ ˆ ˆ ˆ ˆ= = ( 1)l l l l l l
l l l l l

l l l l l l
s s s s s s s s′ ′

′ ′
′ ′≠
τ τ τ τ + τ + +∑ ∑ ∑ ∑p p p p p p   

  (43) 

(also allowing the decoupling rule, Eq. (26)). Then, substi-
tuting Eq. (43) into Eq. (42), we arrive at 

 (0) (0)2 (0)ˆ ˆ ˆ ˆ ˆ= ( 1)G G cJ s s G G G+ + +k kk k   

 
2

(0)( ) (0)
; ,

, ,

ˆ ˆ ˆˆe .i l
l

l

J G G G
N

′−
′

′
+ τ +∑ k k p

p k kk
p k

  (44) 

The omitted terms in Eq. (44) involve the composite GF’s 
,

, ; ,
ˆ l lG ′

′ ′≠p p p k k  that serve to generate the indirect interaction 

matrices Â ′−p p , like those in Eq. (29). The resulting non-
trivial T-matrix for this case is 

 
12 (0) 2 (0) 2

mag
ˆ ˆˆ = ( 1) 1 ( )T J s s G J G

−
 + − =    

 
( )2 2

loc 1
ex 2 2

loc

ˆ
= ,h

∆ − ε ε + ε τ

ε − ε
 (45) 

with the energy scale of exchange nature  

 ex
ex 2

ex
= ( 1) ,

1
j

h Js s
j

+
+

  

and the dimensionless parameter ex = Nj Jπρ . The two 
symmetric poles of this matrix at loc=ε ±ε  are mainly de-

fined by the dominant parts of (0)G  as  

 
2
ex

loc 2
ex

1
.

1
j
j

−
ε ≈ ∆

+
 (46) 

These are just the known Shiba levels for single magnetic 
impurity [11–14], whose position varies with 2

exj  (that is, 
regardless of the J  sign), from the very gap edges (at 

2
ex 1j << , the weak coupling limit) to its center (at 2

ex 1j → , 
the strong coupling limit). The following consideration is 
only limited to the range of 2

ex 1j ≤  since the case of 
2
ex 1j ≥  gets reduced to that with the effective value 
2 2
eff ex= 1/ 1j j ≤ . We notice that, for typical values of 
2
ex 1,j   the above defined scale exh  is 1

N F
−ρ ε  . 

At finite impurity concentrations (but 1c << ), one can 
consider the quasiparticle spectrum (in neglect of 1−τk ) 
derived from the dispersion equation, Eq. (6), with use 
of Eqs. (27), (29) (only reduced to the T-matrix term) 
and Eq. (45):  

 2 2 2 = 0.kε − ∆ − ξ

  (47) 

Here, unlike the non-magnetic case, Eq. (35), the modifica-
tion is expressed in the energy dependencies:  

 
2 2

ex 2 2
loc

= 1 ,ch
 ∆ − ε ε − ε
 ε − ε 

   

 
2 2

ex loc2 2
loc

= .ch ∆ − ε
∆ ∆ + ε

ε − ε
  (48) 

Though looking similar to many known cases of impu-
rity band formation, for instance, in doped semiconductors 
or in magnetic crystals with magnetic impurities [39], this 
situation has important specifics. First of all, the presence 
of anomalous , ,a aσ − −σk k  terms in the BCS Hamiltonian, 
Eq. (4), implies particle-antiparticle hybridization in the 
resulting eigenstates, also in those from impurity bands (to 
generalize the concept of Bogolyubov quasiparticles in 
pure SC systems). On the other hand, this hybridization has 
a feedback from the SC order parameter ∆, sensible to the 
impurity effect on the gap equation. We note that, in con-
trast to the previous case of non-magnetic impurities, here 
this effect depends on two impurity parameters exj  and c 
separately and is defined by the gap equation and disper-
sion equation mutually. The resulting interplay between 
the dynamics of the main band gap (that defines also the 
impurity level position by Eq. (45)) and of the impurity 
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band can produce a number of peculiar features in the 
overall spectrum and in respective observable properties of 
the system that are analyzed in more detail below. 

Starting from the limit of lowest impurity concentra-
tion, when its effect on ∆ is yet negligible, we find the 
formal solutions to Eq. (47) for the in-gap range, 2 2<ε ∆ , 
that describe two symmetric impurity bands extended from 
each localized level towards the gap center (shown for the 

> 0ε  part in Fig. 6). Their bandwidth is imp loc= gw ε − ε , 
where the band inner edge gε  is defined from Eq. (47) at 

= 0kξ : 2 2=ε ∆ . In this limit, impw  grows with c linearly: 
imp ex ex/w ch j≈ .  

Such band structure resembles the above mentioned 
cases of normal systems with impurities and, alike them, 
the next question is to verify whether impurity bands really 
exist. For this, first of all, the impurity band width should 
exceed the concentration broadening of localized level 

locΓ , defined by the NRE convergence criterion. The latter 
is estimated by the comparison between unity and the se-
cond term in the brackets of Eq. (30):  

 ( ) 1(0) (0) (0) (0)ˆ ˆ ˆ ˆˆ = 1 .cB c A A A A
−

− −−∑ n n n n
n

  

At not too long distances, cor loc( )n r<< ε , when the expo-
nential factor in Ĝn  given by Eq. (23) can be set to unity, 
the interaction matrix (0)

mag
ˆ ˆˆ=A T Gn n  is simplified as 

 (0)
1ˆ(1 ) sin ,F

r
Â k n

n
ε≈ + τn   

with the energy dependent characteristic radius:  

 
2 2
ex loc

2 2 2
ex loc

( 1) .
1F

js sr
k j

ε
ε+

=
+ ε − ε

  

This is valid for calculation of ˆcB at wide enough ener-
gy separation loc| |ε − ε , actual for impurity band states 
emerging at high enough c (but, as seen below, low 
enough to consider ∆ unreduced). Then, doing the spatial 
integration in two steps, first taking residues in each period 
of fast oscillating sin Fk n and then summing the obtained 
slow envelope function [55], we arrive at the estimate: 

3
1

ˆ ˆ( / ) (1 )cB c r aε≈ η + τ , where a is the lattice period and 
1 2= iη η + η  with 1 2 1η η  . Then, from the NRE con-

vergence condition, 3| | ( / ) 1c r aεη  , the respective esti-
mate follows for the broadening of localized level and also 
for the mobility edge position near locε  as 

 
2

1/3 ex
loc mob loc loc2

ex

( 1)= .
1F

js sc
k a j

+
ε − ε Γ ε

+
  (49) 

Comparing this to the above estimate for impw , we express 
the necessary condition for impurity band existence, 

imp locw Γ , as 

 
3/2

ex
0 loc .N

F

j
c c

k a
 

= πρ ε 
 

  (50) 

For a typical case of ex 0.5j  , 2Fk a  , and 2
loc 10 ,N

−πρ ε   
the estimated characteristic concentration 4

0 10c −
  is low 

enough to assure that ∆ is still unreduced vs 0∆ . 
Once the condition, Eq. (50), is fulfilled, the next step is 

to check the proper IRM criterion for the impurity band 
states. To this end, the inverse lifetime 1−τk  in Eq. (32) is 
evaluated, beyond the T-matrix approximation, by the 
main contribution to ˆIm Σk  from the FRE pair term in 
Eq. (29). For the most important vicinity of the impurity 
band edge gε , where we can set 2

ex/(1 )jε ≈ ∆ ≈ ∆ +

  and  

 
2/3 2 2
0 ex

2
ex

(1 )
( ),

( 1)(1 )
F

g
c k a j
cs s j

+
ε − ∆ ≈ ε − ε

+ −


   

the FRE is suitably approximated by its partial version, the 
so-called 1st order renormalized expansion (FORE). The 
latter reproduces the genuine NRE structure by Eq. (30) 
but with the changes ε → ε  and ∆ → ∆  in all its elements 
(labeled correspondingly by tildes). The relevant FORE 
pair term is 2

mag 1
ˆ ˆ ˆIm (1 )c T B ε≈ Γ + τ  , where 

 ( )
3/2 2

2 ex ex
loc1/3 2 2

0 ex

4 (1 ) ( 1) ,
23 (1 )

g
F

c j j s s
k ac j

ε
πη + +

Γ ≈ ε ε − ε
−

  

just gives the estimate for quasiparticle inverse lifetime. 
Then the position of the respective mobility edge near gε  
is evaluated from the IRM criterion as 

 
2 2 3

ex
mob imp imp2 4

ex

(1 )4 ,
3 2(1 )

g
jc w w
j

+π ′ε − ε << 
  −

  (51) 

this separation being practically negligible. Thus Eq. (50) 
is also the sufficient condition and 0c  can be really consid-

Fig. 6. (Color online) DOS at = 0T  in an s -wave SC where the 
localized level locε  by a magnetic impurity is expanded at finite 
impurity concentration c  into an impurity band of width impw  (at 
the choice of ex = 0.5j  and 3= 5 10c −⋅ ). Notice the reduced main 
band gap ∆  vs its unperturbed value 0∆ , the broadening locΓ  of 
the impurity level, and also mobility gaps mob mob mob, ,′ ′′ε ε ε , 
separating the band-like (grey) and localized (pink) ranges. This 
spectrum is mirrored at < 0ε . 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 1 13 



Yu.G. Pogorelov and V.M. Loktev 

ered the characteristic concentration of magnetic impurities 
for onset of in-gap impurity bands within the ranges of 

mob mob< <′ε ε ε  and its mirror for < 0ε . Also the separa-
tion of the mob′′ε  mobility edge from the main band edge ∆ 
is evaluated from the simple T-matrix approximation as 

 
22

ex
mob 2/3 2

0 ex

( 1)(1 )
,

(1 )F

cs s j
c k a j

 + −
′′ε − ∆ ∆ 

+  
   

being wider than for mob′ε , Eq. (51), but narrower than for 
mobε , Eq. (49). 

The 0c  value, even that low as above estimated, is much 
bigger of the value 3 2

cor cor 0= ( / )c a r c , marking the 
crossover from almost isolated to correlated impurity states 
and so assuring collective character of impurity band 
states. On the other hand, it is much smaller than the esti-
mated maximum admissible impurity concentration for the 
SC state, 2/3

max 0c c  (see below). So, the concentration 
range for impurity bands to coexist with the SC order re-
sults quite broad. Note also that the relevant inter-impurity 
distances for calculation of the above B -terms: intn r , are 
much shorter than corr  in Eq. (23) for the indicated band-
like range, and this justifies the assumed irrelevance of 
Ân  exponential decay. In this condition, the system ener-
gy spectrum mostly consists of the band-like states, re-
sulting either from the modified main bands or from the 
impurity bands. 

3.3. Magnetic impurities at = 0T  

In the limit of zero temperature, the use of Ĝk  given by 
Eq. (27), within the T-matrix approximation of Eq. (45), in 
the gap equation, Eq. (36), permits to find the numerical 
value of ∆ for given parameters c and exj . It should be not-
ed that the order function ( , )S T∆  resulting from Eq. (36) 
with use of the renormalized variables, Eq. (48), unlike its 

0c →  limit, Eq. (13), can be a non-monotonous and even 
non-analytic function of ∆ (with possible jumps and breaks 
of derivative) and hence can generate multiple roots. A 
particular case of this function is presented in Fig. 7, dis-
playing its peculiar “rhinoceros” shape. This results from 
the interchange of solutions for the dispersion equation, 
Eq. (46) with Eq. (47), depending on the relation between 
its parameters c, exj  and the gap parameter ∆ (considering 
it an independent variable in ( , )S T∆ ). 

Namely, the common (or normal) type of dispersion 
for impurity bands, like that shown in Fig. 6, only holds 
for cr ex> ( , )c j∆ ∆  where the critical gap value for given 
c and exj  is 

 
3
ex

cr ex 2
ex

( 1)
( , ) = .

(1 )N

s s j
c j c

j
+

∆
πρ −

 (52) 

Physically, the normal dispersion corresponds to impurity 
band states at > 0ε  (eigenvectors of Ĝk  matrices for given 
ε) that present Bogolyubov quasiparticles (specific by their 

Bloch amplitudes enhanced on impurity sites) while those 
at < 0ε  are the related antiparticles. But if the inverse ine-
quality, cr ex< ( , )c j∆ ∆ , holds, the impurity bands obtain 
anomalous type of dispersion, being expanded from loc±ε  
towards the main gap edges. In this case, the impurity 
states at > 0ε  would mostly refer to antiparticles and those 
at < 0ε  to particles. 

Finally, the threshold condition between the two disper-
sion types, cr ex= ( , )c j∆ ∆ , allows for a highly peculiar 
dispersionless solution with 2 2

loc=ε ε  for any ξ  value (that 
is, collapsed impurity bands), and it can be shown that the 
related impurity states are “compensated” particle-
antiparticle hybrids. It is just this condition that generates 
the vertical rear face of the “rhinocero horn”, joining the 
normal (back) and anomalous (front) segments of ( , )S T∆ . 
This resulting function can have multiple intersections with 
the 1/λ  level as seen in Fig. 7, unlike the unique unper-
turbed solution 0=∆ ∆  produced by the monotonous 

(0) ( ,0)S ∆ . Then, as usual in thermodynamics, the choice of 
a single non-trivial solution should provide the maximum 
possible value of the order parameter, that is the highest 
root of the gap equation. This choice, even at continuous 
variation of impurity parameters c or exj , can lead to dis-
continuous jumps in physical ∆. 

Next, the found ∆ can be used in Ĝk  to specify DOS 
from Eq. (7), displaying the restructured quasiparticle 
spectrum as in Fig. 6 (limited at this first step to the case of 

= 0T ). With further growing c, the extension of impw  
comes to interplay with the initial decay of ∆ (and of re-
spective locε ) and generates peculiar dynamics in the in-
gap spectrum structure, qualitatively different for different 

exj  values. Then all possible scenarios for SC system evo-
lution in the considered model of magnetic impurity at 

= 0T  are suitably resumed as an “impurity coupling–impu-

Fig. 7. The graphical solutions for the gap equation, Eq. (36), at 
= 0T  for the choice of ex = 0.5j  and = 0.0133c . The physical 

solution (dark circle) is chosen from 4 crossings of the 1/λ  level with 
the “rhinocero-like” function S  to provide the maximum value of 
the order parameter ∆ . For comparison, the unperturbed solution 

0=∆ ∆  is produced by the monotonous (0)S  function, Eq. (13). 
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rity concentration” phase diagram. It attains a universal form 
in the reduced variables: exj  and 0= ( 1)/ Nc cs s + πρ ∆  (nor-
malized to the above mentioned scale 0Nρ ∆  of maximum 
impurity concentration admissible for SC), and this exj – c  
diagram is shown in Fig. 8. Besides the normal phase (N) 
attained at high enough c , it presents up to four different 
SC phases, distinguished by specific types of ∆ and impw  
evolution with c at given exj . Their general configura-
tion is characterized by the nodal points , , ,α β γ δ  with 
the exj – c  coordinates given in Table 1. Thus, in the initial 
stage of spectrum evolution with c , the main band gap ∆ 
always decreases (together with locε ) while the impurity 
band impw  expands from locε  towards the gap center, as 
shown in Fig. 8. This “gap decrease–band expansion” 
mode agrees with conventional dynamics of the gap equation 
and dispersion equation (even in neglect of their coupling). 
The whole area presenting such behavior in the exj – c  
plane is denoted as the S1 phase in the diagram. In its part 
of weak coupling (to the left from the α node), ∆ eventual-
ly reaches a finite minimum value 1 ex( )j∆  at some 

1 ex= ( )c c j  (both dependent of exj ), attaining a vertical 
slope at this point, and there remains only the trivial = 0∆  
solution at 1 ex> ( )c c j . This is illustrated in Fig. 9 for the 
case of ex = 0.35j  (along the line 1 in Fig. 8) where 
1 ex( ) 1.983c j ≈  and 1 ex 0( ) 0.424j∆ ≈ ∆ . Such discontinuous 

drop of the order parameter ∆ can be considered a 1st kind 
transition from the S1 SC phase to the N phase, unlike the 
conventional 2nd kind transition in BCS theory for pure SC 
materials.* This type of SC/N transition will be shown be-
low to occur also from other SC phases in the diagram and 
to hold at finite temperatures, as a universal feature for SC 
criticality under magnetic impurities. 

Another SC phase is detected when tracing the spec-
trum evolution with c  for stronger impurity coupling (to 
the right of the α node). Here the initial decrease of ∆ with 
c attains vertical slope at 1c  and again drops from corre-
sponding 1∆  but now to the finite value 1 cr 1 ex= ( , )c j′∆ ∆ , 
that is, precisely to the intercept with Eq. (52) linear law. 
This law generates a strikingly unconventional posterior 
evolution where the gap ∆ increases with growing c while 
the impurity band impw  stays collapsed to localized impuri-
ty level locε  of width locΓ , which advances also linearly in 
c along Eq. (52) inserted in Eq. (46). This “gap increase–
band collapse” mode is realized within the SC phase de-
noted as S2 in Fig. 8. For the coupling range between the α 
and β nodes, the cr ex= ( , )c j∆ ∆  evolution ends with the 
next discontinuous drop, now to zero, at some 2 ex( )c j  
(e.g., 2 ex( ) 1.34c j ≈  for ex = 0.5j  in Fig. 10). This whole 
process can be already seen as a sequence of two 1st kind 
phase transitions, one between the 1S  and 2S  SC phases, 
and another from the S2 to the N phase.  

For yet stronger coupling, to the right of the β node, the 
above sequence of 1S  and 2S  phases is followed by a tran-
sition from 2S  to the next SC phase, denoted as 3S  in the 
diagram of Fig. 8. This transition, continuous in the order 
parameter ∆ but with a finite break of the derivative /d dc∆  
(unlike its divergence in common 2nd kind transitions), 
can be referred to as “semi-continuous”. In the 3S  phase, ∆ 

Fig. 8. (Color online) The phase diagram in reduced variables 
“impurity coupling–impurity concentration” for an s -wave SC 
with magnetic impurities at = 0T . 

Table 1. Node coordinates in the diagram of Fig. 8 

Node  exj  c  

α 0.393 1.62 
β 0.584 1.37 
γ 0.651 0.61 
δ 1 1.065 

 

* In fact, if the finite lifetime τk  for impurity band states is also accounted for, this transition is not exactly 1st kind but "quasi-1st 
kind", extended over a very narrow finite range of concentrations of relative width 3/c c cδ  .  

Fig. 9. (Color online) Dynamics of SC gap ∆  and impurity band 

impw  (shaded beneath the impurity level locε ) with c  through the 
S1 phase and their final drop to the N phase, traced along the line 1 

ex( = 0.35)j  in Fig. 8. 
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returns from expansion to decay, like that in the 1S  phase, 
and the impurity bands revert from collapse to expansion, 
but in an anomalous inverse way: from loc±ε  towards the 
main gap edges, since the inequality cr ex< ( , )c j∆ ∆  holds 
here and defines particle-to-antiparticle inversion. This 3S  
mode follows to a final 1st kind drop into the N phase, as 
shown in Fig. 11. 

Finally, in the range of strongest coupling, to the right of 
the γ  node, there appears one more SC phase, in between the 

1S  and 2S  phases, denoted as 4S  in the diagram. This occurs 
when the expansion of impurity bands with c ends with their 
merger in the gap center (at 0.385c ≈  in Fig. 12).  

There a discontinuous drop of ∆ and locε  indicates a 1st 
kind transition from 1S  to 4S , and the latter phase is peculi-
ar in its anomalous contraction of impurity bands with fur-
ther growing c, due to growing rate of antiparticles in the 
particle states (and vice versa). This ends by their complete 
compensation and related collapse of the impurity bands at 

the 4 2S /S  boundary. The following 4 2S /S  transition is again 
of “semi-continuous” type and can be seen as a “double mir-
ror” image of the 2 3S /S  transition (having inverted both the 
sign of imp /dw dc and impw  relative position vs locε ).  

Summarizing, the considered phase diagram amounts 
up to 5 discontinuous and 2 “semi-continuous” transitions 
between 4 SC phases and the N phase. They present a va-
riety of reentrant dynamics, as well for the SC order as for 
localization vs banding of quasiparticle spectra, obtained at 
continuous variation of external parameter (such as impuri-
ty concentration c) and being a direct effect of narrow im-
purity bands formed within the SC gap. All the unusual 
features observed in Figs. 9 to 12 are lost in the former 
theoretical scenarios shown in Fig. 13: by the simple Born 
approximation [7], with SC monotonous decay into the 
gapless phase, or by the self-consistent approximation [13], 
with a very broad impurity band expanding to fill com-
pletely the main band gap. 

Fig. 10. (Color online) Dynamics of ∆  and impw  with c  through 
the S1 and S2 phases, traced along the line 2 ( ex = 0.5j ) in Fig. 8. 
After the 1st kind S1/S2 transition at 1 1.015c ≈ , ∆  increases by 
the linear law, Eq. (52) (dash-dotted line), while impw  gets col-
lapsed to the respective line of locε . The next S2/N 1st kind tran-
sition occurs at 2 1.34c ≈ . 

Fig. 11. (Color online) Dynamics of SC spectrum with c  along 
the line 3 ( ex = 0.62j ) in Fig. 8 presents S1/S1 and S3/N 1st kind 
transitions together with the “semi-continuous” S2/S3 transition. 
The dash-dotted line follows the linear law defined by Eq. (52). 

Fig. 12. (Color online) Dynamics of SC spectrum with c  through the 
S1, S4, S2 and S3 phases along the line 4 ( ex = 0.775j ) in Fig. 8. 
Besides the 1st kind, S1/S2 and S3/N transitions, two “semi-
continuous” S4/S2 and S2/S3 transitions are present. The dash-
dotted line is for the linear law defined by Eq. (52). 

Fig. 13. (Color online) SC spectrum variation under magnetic 
impurities as obtained within the simplest Born approximation 
(AG [7], dashed line) or within the self-consistent approximation 
(Shiba [13], blue area). 
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3.4. Finite temperatures 

Since the order parameter also decreases with tempera-
ture, the above indicated transitions could be more suitably 
observed by raising temperature at given fixed impurity 
concentration c (but below its maximum admissible value 
for chosen exj  and = 0T ). Here also a discontinuous drop 
of the gap equation solution ( )T∆  takes place at reaching a 
certain critical temperature value ( )cT c  (see in more detail 
below), and it could be an alternative to the “gapless SC 
state” concluded from the Born approximation in Ref. 7 or 
from the self-consistent T-matrix approach in Ref. 13. But 
before this, yet other non-trivial phenomena can be ob-
served, induced by the above described restructuring of the 
SC state at zero temperature. Not attempting to provide here 
a complete description of overall inter-coupled exj –c–T  
dynamics, we indicate some of its notable features which 
appear when going to finite T  from special areas in the 

exj –c  diagram, Fig. 8, namely, from the vicinities of its 
phase boundaries.  

To this end, we take some values of exj  and c , close to 
such boundary, and solve numerically the gap equation, 
Eq. (36), at finite temperatures to define the gap parameter 
and spectrum structure in function of T . Thus, for the 
choice of ex = 0.5j  and = 1c  (close to the S1/S2 transition 
at 1 1.025c ≈ , on line 2 in Fig. 8), the resulting ( , )c T∆  in 
Fig. 14 starts from the 1S  phase value 0( ,0) 0.506c∆ ≈ ∆  to 
slowly decrease with T  but almost immediately reaches 
the 1st kind 1 2S /S  transition (here in temperature) at 
1 00.021T ≈ ∆ . Thus obtained 2S  phase presents a tempe-

rature independent gap value 2 0= /12∆ ∆  (as given by 
Eq. (52)) kept until the next transition, now semicontinu-
ous, to the 4S  phase at 2 00.067T ≈ ∆ . With further growing 
temperature, ( , )c T∆  goes non-monotonously, returning 
from 4S  to 2S  by another semicontinuous transition at 

3 00.25T ≈ ∆  where it keeps the same constant 2∆  gap value 
until the final 1st kind drop from 2S  to N at the SC critical 
temperature 00.313cT ≈ ∆ . 

When tracing ( , )c T∆  at the same exj  but with = 0.9c  
(that is, farther from 1c  on the same line 2 in Fig. 8), its 
temperature evolution reveals both quantitative and quali-
tative changes. Namely, the initial S1 phase does not expe-
rience in this case any low temperature transitions but only 
a slight depression remaining in this range (see Fig. 15), 
while, at going higher on, there are semicontinuous transi-
tions, 1 2S /S  at 1 00.275T ≈ ∆  and S4/S2 at 2 00.295T ≈ ∆ , 
and the final 1st kind S2/N at 00.343cT ≈ ∆ . These and sim-
ilar estimates permit to recover a section of the exj –c–T  
phase diagram, tentatively sketched in Fig. 16. It displays 
many peculiar features, most notably, the specifically 
curved S2 phase boundary giving a possibility for multiple 
transitions between localized and different types of delo-
calized impurity states at varying temperature. 

Similarly, the temperature effect on SC phase configu-
rations can be traced in other ranges of impurity coupling 

exj  and, as shown in Fig. 17, they also include peculiar re-
entrant phase transitions of variable steepness and depth 
characteristics. Such behaviors can effectively serve for 
many non-trivial practical applications. For instance, at 
properly adjusted concentration c of impurities with given 

exj , Mott-like “localization-delocalization” transitions in 
impurity bands can be realized by driving temperature 
through 2T  or 3T  points, resulting in very sharp changes of 
related rf conductivity. 

But in a more traditional aspect, tracing the critical tem-
perature vs impurity concentration, ( )cT c , we only observe 
its common monotonous decay, which is the faster the 
stronger the impurity coupling exj  is, as shown in Fig. 18. 
However, since all this critical line already corresponds to 
the 1st order SC/N transition (except the single = 0c  
point), it could be accompanied by such known phenomena 
for 1st kind phase transitions as formation and coexistence 
of metastable phases, irreversibility at temperature cycling, 

Fig. 14. Dynamics of SC gap with T  at the choice of ex = 0.5j  and 
= 1c  (close to the S1/S2 boundary on line 2 in = 0T  in Fig. 8). 

Note the sequence of 1st kind S1/S2 transition at 1 00.021T ≈ ∆  and 
“semi-continuous” S2/S4 transition at 2 00.067T ≈ ∆  followed by a 
reentrant S4/S2 at 3 00.25T ≈ ∆  and by the final 1st kind S2/N transi-
tion at 00.313cT ≈ ∆ . Also constancy of 2 0( ) = = / 12T∆ ∆ ∆  
along the S2 ranges should be noted. 

Fig. 15. The same as in Fig. 14 but with a slightly decreased c to 
0.9. This results in the loss of low temperature S1/S2 and S2/S4 
transitions (only leaving a shallow depression of ( )T∆ ) and in an 
upshift of two final transitions. 
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etc., where these thermodynamical inhomogeneities can 
yet interfere with the static inhomogeneities of Bloch-like 
quasiparticle states within the impurity bands [39,54]. 

3.5. Local SC order 

Finally, the analysis of the local SC order in the vicinity 
of a magnetic impurity site can be done in analogy with the 
previous case of Sec. 3.1 but with use of modified varia-
bles, Eq. (47). The resulting analytical form,  

 
( )

2 2 2
=0 ex ex ex

ex32 ex
ex

1 1
= 1 | | arctan ,

2 2 | |1

j j j
j

jj

 ∆ − −
+ +  ∆ λ +

n   

  (53) 

is presented in Fig. 19. It can be considered unconven-
tional in its non-monotonous dependence on the perturba-
tion parameter exj , passing from a smaller maximum at 
weak, ex < 1j , to a deeper minimum at stronger, ex > 1j , 
perturbation and finally tending to the bulk value in the 
limit of exj → ∞. This mainly results from the competi-
tion between the impurity effects on the lifetime of the 

main band quasiparticles (the arcsinh and arctan terms in 
Eq. (53)) and on the depth of local level locε  (the last 

/2∝ π  term in Eq. (53)).  
Though the above description has certain similarity 

with the commonly accepted picture of impurity-induced 
decay of the s-wave SC state through a gapless phase, it 
indicates a very different physics of the in-gap states and a 
different, 1st kind-like phase transition, mostly excluding 
the gapless SC phase (though some its kind is discussed 
below in Sec. 6). This could produce some new observable 
properties of such systems, for instance, in their magnetic 
penetration depth, specific heat, normal (rf) conductivity, 
optical absorption. It shows that even the well explored 
field of conventional SC materials still admits some un-
conventional impurity effects that require a special atten-
tion. In some more detail, the corresponding effects will be 
considered in the last section of this paper. 

Now we pass to the impurity effects on the d -wave SC 
order, actual for HTSC cuprate systems, especially taking 
into account that the impurity disorder is an almost univer-
sal condition there. 

Fig. 16. (Color online) A sketch of a c /T  section of the 3D 

exj –c –T  phase diagram, taken at ex = 0.5j , based on the data 
in Figs. 14, 15 (indicated by dots, together with the = 0T  points 
from line 2 in Fig. 8). 

Fig. 17. A similar analysis to Fig. 14 at the choice of ex = 0.577j  
and = 0.75c  (close to the S1/S2 boundary on line 3 in Fig. 8). A 
narrowing of the T1–T2 range, relative to that in Fig. 14, can be noted. 

Fig. 18. The “critical temperature–impurity concentration” de-
pendencies for an s -wave SC with magnetic impurities at two 
choices of their perturbation parameter exj . The 0c →  limit cor-
responds to the BCS ratio following from Eq. (13).  

Fig. 19. The local order parameter at magnetic impurity site relative 
to the bulk value in function of the perturbation parameter exj . To 
compare with its monotonous 21/(1 )+ v  decay at non-magnetic 
impurity, resulting from Eq. (40). 
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4. Impurity resonances in high-Tc superconducting 
cuprates 

We start from the above referred structure of the non-
perturbed locator GF matrix for the d -wave case with the 
smallest subdominant terms neglected for simplicity: 

(0)
0 3 3

ˆ ˆG g g≈ + τ , where 2 2
0 ( / )Ng i K≈ ρ ∆ ε , and 3g  is the 

same as in Eqs. (21) or (22). Consider again the case of 
non-magnetic point-scattering perturbation 3ˆ=V V′− τk k  in 
Eq. (14). Then the reformulated single-impurity T-matrix 
formally differs from that for the s-wave case, Eq. (33), 
only by the absence of 1g  terms:  

 
( )

( )
0 3 3(0)

2 2 2
3 0

ˆ1ˆ = .
1

Vg Vg
T V

Vg V g

+ − τ

− −
 (54) 

But now, unlike that case, the real part of its denomina-
tor can be already zero at some energies res±ε , the roots of 

the equation 0 res| Re ( ) | = 1V g ε  with the effective perturba-

tion parameter 3= /(1 )V V Vg− , analogous to the known 
Lifshitz equation in a normal metal [43]. They formally 
appear near the gap edges: 2 2 2

res∆ − ε << ∆ , provided the 

perturbation parameter modulus, | |V , exceeds the thresh-

old value: 2/( )Nπρ , and goes deeper with growing | |V . 
However, since the denominator has a finite imaginary part 
within the gap range (due to the finite in-gap DOS by 0g ), 
the roots res±ε  generally correspond to impurity resonanc-
es, like those for heavy impurities in acoustic spectra [37] 
or for impurities in graphene [38], instead of localized 
levels. For the considered SC systems with impurities, 
such resonances are best resolved in the STM local con-
ductivity proportional to LDOS, Eq. (9). Their broaden-
ing is estimated as 

 0
res

0 res

Im
,

Re /
g

d g d ε

Γ ≈
ε

 (55) 

and, for perturbation near the threshold, it turns out to be 
2 2 2

resln /( ) ∆ ∆ ∆ − ε  , which is larger of resε  itself. But 
for strong enough perturbation, such that the dimension-
less parameter = | | 1N Vρ >>v , the resonance energy es-
timated from the logarithmic low energy asymptotics: 

0Re ( / ) ln(4 / )Ng ≈ ρ ε ∆ ∆ ε , is low: res /[ ln (4 )]ε ≈ ∆ << ∆v v  
[35,36]. Then the level broadening is estimated as 

res res( /2) / ln (4 )Γ ≈ π ε v , that is, smaller (though not too 
much) than resε  itself. 

From a more detailed treatment of Eq. (55) at inter-
mediate perturbations, the condition for this resonance 
to be practically resolved, res res<Γ ε , is satisfied if 

/2e /4 1.2π ≈v  and its resolution is the better the greater 
v is. It should be noted that, for the effective parameter 
| |V  to be great, the initial perturbation parameter V  does 
not need to be too great but close enough to the “critical” 
value 31/g , and this condition does not look hard. 

The related resonance effects in the quasiparticle spec-
trum can appear both in the energy dependent DOS, 
Eq. (7), and in LDOS, Eq. (9), with use of Eq. (54), but 
with a striking difference in their relative amplitude as seen 
in the upper panel of Fig. 20. Experimental evidence for 
such behavior is presented, for instance, by the case of Zn 
impurity in the Bi2Sr2CaCu2O8+δ HTSC compound where 
a sharp resonance was observed in the STM local conduct-
ance at res 0.03ε ≈ ∆  [40] (that corresponds to 6.65≈v  or 

3.1/ NV ≈ ρ ) shown in the lower panel of Fig. 20. Compared 
to the situation for non-magnetic impurities in s-wave sys-

Fig. 20. Upper panel: huge resonance peaks near res±ε  in the cal-
culated LDOS (dashed line) on a non-magnetic impurity site in a  
d-wave SC at impurity perturbation parameter = 6.65v  

res( = 0.03 )ε ∆ . In contrast, very weak resonances near res±ε  in 
DOS (solid line) for this system at impurity concentration 

3= 2 10c −⋅  are only seen in the inset. Lower panel: STM conduct-
ance vs sample bias in superconducting Bi2Sr2CaCu2O8+δ with 

3= 2 10c −⋅  of Zn impurities that produce an in-gap resonance at 
≈1.5 meV from the Fermi level (adapted from Ref. 40): LDOS is 
reflected in the data taken on Zn impurity site (open circles) while 
DOS does in those taken far from impurity (solid circles). 
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tems from Sec. 3, this resonance can be also considered an 
unconventional impurity effect, essentially due to the dif-
ferent symmetry of SC order. 

The impurity effect on the uniform order parameter can 
be considered similarly to the s-wave case treated in Eq. (36), 
using an analogue to Eq. (16) but with the modified varia-
bles in the denominator of its integrand: 

 
2 2

2 2 2 2
( / )= ,

1 ( / ))
KicV
K

∆ ε
ε ε −

+ ∆ ε




v
v

  

 2 2 2 2
1= .

1 ( / )
cV

K
ξ ξ +

+ ∆ ε
 

v
 (56) 

We note the difference of these variables from those in 
Eq. (48), particularly in the change of ∆  for ξ . Though, as in 
the case of Eq. (36), there is no analytic solution available 
for the resulting modified gap equation, the uniform d-wave 
gap parameter in function of the impurity concentration, 

( )c∆ , can be again obtained from its numerical solution for 
given impurity perturbation parameter v. Such solutions 
shown in Fig. 21 display a very low sensitivity of ∆ to reso-
nant impurities up to their strongest perturbation levels and 
this insensitivity mainly results from the strong damping 
effect of finite in-gap DOS of d-wave quasiparticles on im-
purity resonances. 

Calculation of the local SC order in the d-wave case 
differs from the previous scheme of Eq. (39) by presence 
of the non-trivial symmetry factor in the integrand, like 
that in Eq. (16), and results in 

 
( )

( )

2 2 2 2 2 2
=0

2 2 2 2
0

/
= 1 Im

1 /

D K
d

K

ω +∆ ∆ ε∆ λ
− ε ×

∆ π + ∆ ε
∫n

v

v
  

 2 2 2 2[ ( / ) ( / )],K E× ∆ ε − ∆ ε  (57) 

involving the 2nd kind full elliptic integral E  [50]. 

The value =0 /∆ ∆n  for the very impurity site, numeri-
cally calculated from Eq. (57), decays with the perturba-
tion parameter v in a very similar way to that for the s-wave 
case by Eq. (40), as shown in Fig. 22. Further on, the 
Friedel-like oscillations in the impurity neighborhood: 

2
=0 0/ = 1 (1 / ) ( )FJ k n∆ ∆ − − ∆ ∆n n , presented in Fig. 23, are 

visibly more pronounced than those for the s-wave case 
in Fig. 5. 

We can summarize the impurity effects in the d-wave 
SC systems as mostly expressed in local suppression of the 
SC order parameter, even stronger than in the s-wave case, 
and in enhanced local quasiparticle density near impurity 
centers, though not producing their true localization. Phys-
ically, this is caused by the specifics of SC symmetry with 
vanishing SC gap along the nodal directions, 2 2=x yk k , pre-
venting quasiparticles from complete localization in the 
impurity potential but permitting their longer stay near 
impurity sites. 

Fig. 21. (Color online) The d-wave relative gap parameter 0/∆ ∆  
in function of the concentration c of impurities according to the 
numerical solution of Eq. (28) at 0/ = 30Dω ∆  and different values 
of impurity perturbation parameter v (marked by colors). 

Fig. 23. (Color online) The d-wave relative local order parame-
ter in function of distance n from the impurity site (in 1

Fk −  units) 
at the choice of v = 1. When compared to Fig. 5 for the s-wave 
case, a stronger initial suppression and more pronounced Friedel-
like oscillations are observed. 

Fig. 22. (Color online) The relative local order parameter at the 
impurity site, =0∆n , in function of the non-magnetic perturba-
tion parameter v. Comparison is shown between the s-wave and 
d-wave cases. 
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The following consideration is given to the impurity ef-
fects in more general SC systems with multiband 
quasiparticle spectrum in their normal state that provides 
even more complex scenarios for their restructuring under 
impurity perturbations. 

5. Impurity effects in two-gap superconductor MgB2 

Shortly after the basic theoretical concept of supercon-
ductivity as the onset of anomalous averages , ,{ }a a↑ − ↓k k  

at k  near the Fermi surface and of the related gap ∆k  in the 
quasiparticle spectrum was elaborated [1,2], its generaliza-
tion was proposed for the case of multiband normal elec-
tronic spectrum [56,57] with dispersion laws ,lε k  for each 
lth subband. Here the most significant new element com-
pared to the above single-band case of Sec. 2.1 is in possi-
ble formation of each particular SC gap l∆  by a combined 
effect of several anomalous averages, either , , , ,l la a↑ − ↓〈 〉k k  

and , , , ,l la a′ ′↑ − ↓〈 〉k k  with l l′ ≠ . The subsequent treatments 
of such SC systems with impurities mostly generalized the 
initial AG approach (in the Matsubara formalism) by in-
troducing specific SC coupling matrices ll′Λ  and multiple 
Born relaxation time constants lτ  to find the impurity con-
centration dependencies for the SC critical temperature, 

( )cT c , and for all particular gaps, ( )l c∆  [58,59]. 
These issues gained a new interest after experimental 

discovery of HTSC in the multiband electronic system of 
magnesium diboride MgB2 [30,31]. Its crystalline structure 
consists of interchanged hexagonal layers of boron and 
magnesium (see Fig. 24) with the principal contribution to 
the Fermi states coming from boron atoms [60]. Therefore, a 
simplified model for description of impurity effects in this 
system is based on consideration of only two boron 
sublattices in the vertically stacked hexagonal layers. The 
related electronic spectrum defined both in the most rigorous 
first principle treatment [61,62] and in the simpler tight-

binding approximation [63] presents two almost cylindrical 
Fermi surfaces formed by σ-subbands formed from ,x yp -
orbitals and two tubular ones by π-subbands from zp -
orbitals (Fig. 25(a)). In this course, the interband hopping 
processes can be neglected as was suggested from symmetry 
reasons [61,64]. This topology can be qualitatively modeled 
by a combination of two bands [65], here simplified to an 
equivalent σ-cylinder and a π-torus (Fig. 25(b)). Their prop-
er dispersion laws ,lε k , = ,l σ π  can be linearized in cylin-
drical coordinates for quasimomentum 

= ( cos , sin , )zk k kϕ ϕk : , , ( )F k kσ σ σ σξ = ε − ε ≈ −k k v  and  

2 2
, ,= ( )F M zk k k kπ π π π

 ξ ε − ε ≈ − + −  k k v . 

Here Mk  is the distance between the Γ  and M points of the 
hexagonal prism Brillouin zone (see Fig. 25(b)), and the 
particular Fermi velocities lv  and quasimomenta lk  are 
then adjusted to fit the 4-subband parameters obtained 
from first-principle calculations.  

The corresponding two-band BCS Hamiltonian 

 ( )†
2 , 3 , 1 ,,

= ,
ˆ ˆ=BSC l l ll

l
H

σ π
ψ ξ τ + ∆ τ ψ∑ ∑ k k kk

k
 (58) 

contains the Nambu spinors † † †
, , , , ,= ( , )l l la a

↑ − ↓
ψ k k k  for 

each l th subband and realizes an extension of the single 
band Hamiltonian by Eq. (5). While it is reasonable to ne-
glect the σ − π interband transitions in the MgB2 normal 
state [61], there appears an implicit correlation between 
both bands resulting from the above referred interconnec-
tion of SC order parameters. This is expressed in the exten-
sion of single SC coupling parameter λ, as introduced in 
Sec. 2.1, to the 2×2 matrix λ̂ in ,σ π-indices and the related 
set of two coupled gap equations (cf. to Eq. (36) for the 
single-band case): 

 = ( , ) ( , ) ,S T S Tσ σσ σ σ σπ π π∆ λ ∆ ∆ + λ ∆ ∆   

 = ( , ) ( , ) ,S T S Tπ πσ σ σ ππ π π∆ λ ∆ ∆ + λ ∆ ∆  (59) 

Fig. 24. Crystalline structure of the MgB2 compound. 

Fig. 25. Structure of normal state Fermi surfaces for MgB2 by 
first-principle calculations (a) and its simplification to a minimal 
two-band model (b). 
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equivalent to the known expressions by Refs. 56, 57, 59. 
Its numerical solution at the choice of λ̂ matrix elements: 

, = 0.28,σ σλ  , = 0.05,σ πλ  , = 0.07,π σλ  , = 0.06π πλ , 
results in the temperature dependencies of two gap pa-
rameters (in absence of impurities) shown in Fig. 26, in a 
fair agreement with their experimental measurements for 
MgB2 [60]. 

Next, the impurity perturbations on this system can be in-
troduced in a similar way to the considerations in Sec. 3, in 
order to analyze the difference between their non-magnetic 
and magnetic types. For simplicity, this consideration will 
be limited to zero temperature, though its generalization to 
finite temperatures, like that in Sec. 3, does not present 
much problems. 

5.1. The case of non-magnetic impurities 

Here, the effect of non-magnetic impurity is modeled 
by the two-band extension of the perturbation Hamiltonian, 
Eq. (25): 

 †( )
imp2 3 ,,

= , , ,

1 ˆ= e ,i p
l ll

l
H V

N
′−

′
′σ π

ψ τ ψ∑ ∑ k k
kk

p k k
 (60) 

where the interband scatterings are also neglected by the 
same symmetry reasons as above. Then the concentration 
dependence of gap parameters follows from the modifica-
tion of Eq. (59), analogous to that of Eq. (13) into Eq. (36), 
resulting in the specific forms for the S-functions to be 
used in Eq. (59) 

( 2 2 2 22 2

21( , ) arctan ,l D
l

D l ll

S
ζ ω

ε ∆ = π − ω − ε + ∆ − ζε − ∆ 
 (61) 

with 2= /(1 )l l l lcVζ +v v , a partial analogue to Eq. (37) for 
the single-band s-wave case. The numerical solution of the 
system, Eqs. (59), (61), is presented in Fig. 27, displaying 
the qualitative similarity with the single band case in 
Fig. 4. It can be noticed that while both gaps decay with 

impurity concentration, their ratio /σ π∆ ∆  stays almost 
unchanged (within to about a percent).  

A more detailed picture of the quasiparticle spectrum is 
given by the respective DOS function, obtained from the 
general Eq. (7) where the quasimomentum sum is naturally 
divided into σ- and π-parts with corresponding partial 
Fermi densities ,π σρ  and, after using the renormalized 
GF’s Ĝk  with the impurity partial parameters ,π σζ , it is 
well approximated (within to subdominant terms, like 
those in Eqs. (21), (22)) as 

 
2 2= ,

( ) .l
l lσ π

ε
ρ ε ≈ ρ

ε − ∆
∑  (62) 

Thus, it is nothing more then a weighted sum of two partial 
BCS functions by Eq. (12) but with the modified gaps 

( )l l c∆ ≡ ∆  (as shown in Fig. 27), the only impurity effect 
occurring in this case. The resulting behavior of two-band 
DOS at the choice of / = 3π σρ ρ  (to fit the experimental 
estimates of these weights for pure MgB2 [60]), 

= = = 1σ πv v v  (as in Fig. 27) and = 0.01c  is presented in 
Fig. 28, only differing from the unperturbed MgB2 case by 
the (unequal) shifts of σ- and π-band edges. 

Fig. 26. Decrease of π- and σ-gaps in pure SC MgB2 with 
temperature. 

Fig. 27. Decrease of π- and σ-gaps in SC MgB2 with concentra-
tion c  of non-magnetic impurities at the choice of dimensionless 
perturbation parameters = = = 1σ πv v v . 

Fig. 28. Calculated DOS for SC MgB2 with non-magnetic impu-
rities differs only in the shifts of σ- and π-band edges from that 
for pure MgB2 (dashed lines). 
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5.2. The case of magnetic impurities 

As it could be expected, a much more diversified spec-
trum modification is obtained for the case of magnetic im-
purities. Here we again employ the model perturbation of 
the kind used in Sec. 3.2 but with two exchange operators: 

mag, =l lV J spτ , each acting on a respective spectrum 
branch. Then, evidently, a single impurity produces two 
Shiba levels: 2 2

imp, ex, ex,= (1 ) / (1 )l l l lj jε ∆ − + , located 
within each l th gap. So, at least one localized level imp,πε  
always exists in the spectrum. As to the second level, 

imp,σε , it can also correspond to a localized state (if it oc-
curs inside the π-gap), or otherwise to a resonance.* 

The condition for existence of the second localized lev-
el is that the impurity exchange parameter ex,j σ should 
surpass the critical value:  

 (cr)
ex = ,j σ π

σ π

∆ − ∆
∆ + ∆

 (63) 

and, for instance, with the experimental l∆  values for pure 
MgB2, this value amounts to (cr)

ex 0.7j ≈ .  
Next, in the same way as for the single band case, we 

define the dependencies of two gaps on concentration of 
magnetic impurities at different values of the parameter 

ex,j λ . The calculation using Eqs. (58), (59) with modified 
variables lε  and l∆ , analogous to those in Eq. (47) but us-
ing respective parameters ex,lh  and imp,lε , involves two 
corresponding order parameters l∆  and two order functions 

( , )lS T∆  weighted with the SC coupling parameters ,l l′λ . 
The resulting evolution of ( , )l c T∆  is affected by the inter-
play between possible "rhinocero-like" singularities in both 
order functions, as illustrated in Fig. 29 where the two 
lines in the –σ π∆ ∆  plane present graphical solutions of the 
gap equations system, Eq. (59), resolved for the two S-fun-
ctions through the inverse λ̂ matrix:  

 1 1
, ,( , ) = ( ) ( ) / ,S T − −

σ σ σ σ π π σ∆ λ + λ ∆ ∆   

 1 1
, ,( , ) = ( ) ( ) / .S T − −

π π π π σ σ π∆ λ + λ ∆ ∆  (64) 

For the adopted λ̂ matrix elements, we have 
1

,( ) 0.365−
σ σλ ≈ , 1

,( ) 17−
π πλ ≈ , 1

,( ) 0.304−
σ πλ ≈ − , 

1
,( ) 0.426−

π σλ ≈ − . Some examples of resulting two-gap 
evolution in function of reduced impurity concentration c , 
as defined in Sec. 3.2 (here, for simplicity, we take both 

ex,lj  values as equal), at = 0T  are presented in Fig. 30. 
Comparing them to the single band cases in Figs. (9)–(12), 
we observe similar discontinuous drops of both l∆  at 1st 
kind transitions (including that to the normal state) and 
emergence of ranges of their anomalous growth with grow-
ing c at strong enough exj . However the two-gap situation 

has also its own specifics. Thus, the range between 
1.27c ≈  and 2.2c ≈  in Fig. 30(c) where both σ∆  and π∆  

gaps are growing with c  corresponds to a collapsed state 
like that in the S2 phase for the single band case, but only 
for the impurity σ-band, while the impurity π-band has 
growing and inverted dispersion here, like that in the S3 
phase. Otherwise, the latter band is found collapsed and 

π∆  gap is growing in the range between 0.8c ≈  and 0.9c ≈ , 
but the σ∆  gap decays here and the impurity σ-band 
has growing and normal dispersion like that in the S1 phase 
(see below). In total, the evolution scenario in Fig. 30(c) 
reveals up to 6 different SC phases and, generally, the case 
of two-gap SC with magnetic impurities (if also admitting 
non-equal ex,lj ) is expected to present yet greater diversity 
of SC phases and transitions between them. 

The following step is again to calculate the DOS func-
tion. Evidently, its form is more involved here than in the 
case of non-magnetic impurities, due to the effects of the 
impurity levels with their extension into narrow impurity 
bands. In the same spirit of Sec. 3.2, we estimate by analo-
gies with Eq. (49) the characteristic concentrations 0,lc  for 
such bands to really exist. For parameters of MgB2, these 
values are 410−

 , that is again well below maxc . This al-
lows treatment of the general Eq. (7) with the modified 
variables lε  and l∆  in its σ- and π-parts and readily leads 
to the DOS profiles as given in Fig. 31. 

* Its finite lifetime in this case will be due to any weak interband hopping, irrelevant for all other purposes. 

Fig. 29. (Color online) Numeric solution of the system, Eq. (64), for 
π- and σ-gaps in SC MgB2 containing magnetic impurities with 
reduced parameters of exchange coupling ex = 0.775j  and concen-
tration = 0.7c . This case is close to the phase transition which oc-
curs when, with further growing c , the crossing between the black 
line (1) (presenting the first line in Eq. (64)) and the blue line (2) (the 
second line in Eq. (64)) reaches the break point of the blue line. 
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They demonstrate all the expected features of spectrum 
restructuring with growing concentration c of magnetic im-
purities. At lowest concentrations, 0,< lc c  (Fig. 31(a), (b)), 
the lower impurity level imp,πε , lying inside the SC gap, 
gives rise to localized quasiparticle states, mostly on π-
orbitals near an impurity atom, while weak interactions 
between such states produce a small broadening loc,πΓ  (an 
analog to the single-band case, Eq. (49) and Fig. 6) of this 
level. The nature of the states corresponding to the other 
level, imp,σε , depends on the value of exchange parameter 

ex,j σ vs (cr)
exj . For its subcritical value (as in Fig. 31(a)) 

they are of resonance type with broadening res,σΓ  (an ana-
log to Eq. (55)), having maximum partial Bloch amplitudes 

Fig. 30. Decrease of π- and σ-gaps in SC MgB2 with concentra-
tion of magnetic impurities at two different values of their ex-
change coupling parameters ex, ex, ex=j j jσ π ≡ , below and 
above the critical value given by Eq. (63). The circles in panel (c) 
indicate the values of each gap at = 0.7c  accordingly to the solu-
tion presented in Fig. 29. 

Fig. 31. Calculated DOS in SC MgB2 with magnetic impurities at 
different values of their exchange coupling and concentration. 
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on σ-orbitals near impurity atoms and much smaller ones 
on π-orbitals in the host crystal. But they turn out to be 
fully localized on σ-orbitals near impurity atoms at ener-
gies within the π-gap for an overcritical ex,j σ value (as in 
Fig. 31(b)). At higher concentrations, 0,lc c>>  (Figs. 31(c), 
(d), an impurity band of width lw  develops from each l th 
level towards the Fermi level. Then the wπ  bands consist of 
band-like states built from π-orbitals, but with their Bloch 
amplitudes having strong maxima near impurity atoms. And 
it is only in narrow loc,πΓ  vicinities of imp,π±ε  levels that 
the quasiparticle states are localized, but over rather big 
clusters of impurities (see in more detail in Ref. 39). The 
structure of wσ bands again depends on ex,j σ vs (cr)

exj , con-
taining only band-like states on σ-orbitals (with maxima 
on impurity atoms) for subcritical ex,j σ (Fig. 31(c)) and 
combining band-like wσ range with localized loc,σΓ  range 
(like their π-analogs but composed from σ-orbitals) for the 
overcritical case (Fig. 31(d)). We notice that for the major 
concentration range, until the SC collapse at maxc , the ini-
tial s-wave gap gets filled with a number of new bands of 
different symmetry joined with localized states, all being in 
dynamical interaction. This complex picture of in-gap 
spectrum evolution confirms again the conclusion by the 
single-band case of Sec. 3.2 on incompleteness of the sim-
ple concept of “gapless” SC state resulted from self-
consistent averaging of impurity effects. 

Such diversity of possible localized and delocalized 
states and transitions between them would naturally result 
in a number of peculiar observable impurity effects in 
thermodynamical (including the before considered change 
of the kind of SC transition), kinetic, optical, magnetic, 
etc., properties of such multiband systems. But for their 
experimental observation and possible applications, an 
important practical issue is the real position of a magnetic 
impurity and its exchange coupling exJ  with the host 
quasiparticles. The available experimental data [66,67] 
indicate that magnetic impurities in the MgB2 compound 
occupy mostly the Mg positions which can essentially re-
duce their exJ  value and make the above discussed effects 
hardly observable. 

Thus, the measured almost linear ( )cT c  decay in 
Mg1–cMncB2, though being quite notable: ( )/cdT c dc ≈ 

159 K≈ −  [68], but from comparison with the initial linear 
dependencies in Fig. 30 it only permits to expect any un-
conventional features at | ( ) / | / (0) 0.25c cc dT c dc T  , 
rather too high concentration levels either for their experi-
mental realization or for validity of the present theory. 
Nevertheless, other data on nominally the same but spe-
cially prepared single crystal Mg1–cMncB2 [69] showed a 
much faster cT  decay, vanishing at max 0.01c  . This al-
ready gives a hope to find some unconventional behaviors 
as, e.g., 1st order transitions or S2-plateaus at varying tem-
perature, similar to those in Figs. 14, 15, or 17, in such 
prepared samples with properly adjusted c values in the 

max[0, ]c  range. A more detailed theoretical approach to the 
case of Mn impurity in MgB2 [70], though limited to the 
single impurity case, rather supports this possibility. 

On the other hand, the observed effect by Fe impurities 
in MgB2 [71] more resembles that for the non-magnetic 
case in Fig. 27. Possibly, this can be due to a strong reduc-
tion of the magnetic J -term in the impurity potential, 
Eq. (25), for this case and its domination by the non-
magnetic V -term. 

Our consideration of such effects will be continued 
in further detail in the next section devoted to impurity 
effects in SC iron pnictides, where the multiband elec-
tronic structure is combined with an alternative type of 
SC symmetry. 

6. Impurity effects in superconducting iron pnictides 

The discovery of HTSC in the family of doped iron 
pnictide compounds [32,33] has motivated a great interest 
towards these materials. Unlike the cuprate family [28], 
that present insulating properties in their initial undoped 
state, the typical iron pnictide LaOFeAs compound is a 
semimetal when undoped. The STM study [72] established 
that this material has a layered structure, where the rele-
vant structure for SC is the FeAs layer with a 2D square 
lattice of Fe atoms and out-of-plane As atoms located 
above or below the centers of square cells (Fig. 32). Its 
electronic structure, important for constructing microscop-
ic SC models, have been explored with high-resolution 
angle-resolved photoemission spectroscopy (ARPES) 

Fig. 32. Schematics of a FeAs layer in the LaOFeAs compound 
with xzd  (white) and yzd  (dark) Fe orbitals and the Fe–Fe hop-
ping parameters in the minimal coupling model. Note that the 
hoppings ( 3,4t ) between next near neighbors are mediated by the 
As orbitals (out of Fe plane). 
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techniques [73,74]. Their results indicate a multiple con-
nected structure of the Fermi surface, consisting of elec-
tron and hole pockets, and absence of nodes in both elec-
tron and hole gaps [73], suggesting that these systems 
display the so-called extended s-wave SC order, with 
opposite signs of the order parameter on the electron and 
hole segments [75]. 

To describe this band structure, the first principles nu-
meric calculations are commonly used, outlining the im-
portance of Fe atomic d-orbitals. The calculations show 
that SC in these materials is associated with Fe atoms in 
the layer plane, represented in Fig. 32 by their orbitals and 
the related hopping amplitudes. The dominance of Fe 
atomic 3d-orbitals in the DOS of the LaOFeAs compound 
near its Fermi surface was demonstrated by the local densi-
ty approximation (LDA) calculations [75–80]. It was then 
concluded that the multi-orbital effects are important for 
the electronic excitation spectrum in the SC state, causing 
formation of two gaps: one for electron and another for 
hole pockets on the Fermi surface. 

To explain the observed SC properties, it is suggested 
that these materials may reveal an unconventional pairing 
mechanism, beyond the common electron–phonon scheme 
[81,82]. In general, the total of 5 atomic orbitals for each 
iron in the LaOFeAs compound can be involved, however, 
ways to reduce this basis are sought, in order to simplify 
analytical and computational work. Some authors [83,84] 
have suggested that it is sufficient to consider only the xzd  
and yzd  Fe orbitals. This minimal coupling model, based 
on two orbitals with properly adjusted model parameters 
(energy hopping and chemical potential), provides the 
Fermi surface with the same topology that follows from the 
first principles calculations.  

Having established the SC state parameters for doped 
iron pnictides, one can also study the impurity effects in 
them. Similarly to doped perovskite cuprates, here impu-
rity centers can result both from the dopants, necessary to 
form the SC state itself, and from foreign atoms and other 
local defects in the crystalline structure. Within the min-
imal coupling model, a possibility for localized impurity 
levels within SC gaps in doped LaOFeAs was indicated 
even for non-magnetic impurities [85,86]. Such an essen-
tial difference from the case of traditional s-wave gap on 
a single-connected Fermi surface by Sec. 3.1 is due to the 
presence of additional symmetry and the question natu-
rally rises on possible collective behavior of such states at 
high enough impurity concentrations. This was consid-
ered by the authors [55], using the GF techniques, similar 
to those for doped cuprates in Sec. 4, within the minimal 
two-orbital coupling model for iron pnictide electronic 
structure and supposing the simplest isotopic type of im-
purity perturbation. Below we discuss formation of impu-
rity bands and corresponding phase states in these sys-
tems, in extension of the before presented results for 
conventional SC materials. 

6.1. Impurity effects in the minimal model for a s±-wave 
superconductor 

In more detail, the minimal coupling model [83,84] for 
the non-perturbed LaOFeAs considers two types of local 
Fe orbitals, xzd  (or x) and yzd  (or y ), on sites of the square 
lattice with lattice parameter a and 4 hopping parameters 
between nearest (NNs) and next nearest (NNNs) neigh-
bors: 

i) 1t  for xx or yy  NNs along their orientations, and 2t  
across them, and 

ii) 3t  for xx or yy  NNNs, and 4t  for xy  NNNs. 
The resulting band Hamiltonian is diagonal in 

quasimomentum k  and spin σ , but non-diagonal with respect 
to the orbital indices of the 2-spinors † ††

, ,( , ) = ( , )x yσ σψ σ k kk :  

 †

,

ˆ= ( , ) ( ) ( , ).tH h
σ
ψ σ ψ σ∑

k
k k k  (65) 

Here the energy matrix in the orbital basis is expanded in 
Pauli matrices ˆ iσ : , 0 , 3 , 1

ˆ ˆ ˆ ˆ( ) = xyh + −ε σ + ε σ + ε σk k kk  with 

the energy factors , , ,= ( )/2x y±ε ε ± εk k k , and  

, 1 2 3= 2 cos 2 cos 4 cos cos ,x x y x yt ak t ak t ak akε − − −k   

, 1 2 3= 2 cos 2 cos 4 cos cos ,y y x x yt ak t ak t ak akε − − −k   

, 4= 4 sin sin .xy x yt ak akε −k   (66) 

It is readily diagonalized at passing from the orbital to 
subband basis: †ˆ ˆˆ ˆ( ) = ( ) ( ) ( )bh U h Uk k k k , with the unitary 

matrix 2
ˆ ˆ( ) = exp( /2)U i− σ θkk  and , ,= arctan ( / ).xy −θ ε εk k k  

The resulting eigen energies for electron and hole 
subbands are 

 2 2
, , , ,( ) = ,h e xy+ −ε ε ± ε + εk k kk  (67) 

and respective electron and hole segments of the Fermi 
surface (see Fig. 33) are defined by the equations 

, ( )e h Fε = εk . A reasonable fit to the LaOFeAs band struc-
ture given by the more detailed LDA calculations [78] is 
attained with the parameter choice (in 1| |t  units) of 1 = 1t − , 
2 = 1.3t , 3 4= = 0.85t t −  [80].  

The SC state of such a multiband electronic system is 
suitably described in terms of “multiband-Nambu” 4-spi-
nors † † †

, ,, ,= ( , , , )− ↓ − ↓↑ ↑
Ψ α α β βk k kk k

 with the multiband 

spinor † † † †
, ,

ˆ( , ) = ( , ) ( )Uσ σα β ψ σk k k k . It generates another 
extension of the Hamiltonian, Eq. (65), in addition to 
Eq. (58) for two-band MgB2, in the 4×4 matrix form:  

 †

,

ˆ= ( ) .s sH h
σ
Ψ Ψ∑ kk

k
k  (68) 

Here the 4×4 matrix 3 0 1
ˆ ˆ ˆ ˆ ˆ( ) = ( )s bh h ⊗ τ + ∆ σ ⊗ τkk k  in-

cludes, besides the orbital Pauli matrices ˆ jσ , also the Pauli 
matrices ˆ jτ  acting on the Nambu (particle-antiparticle) 
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indices in Ψ-spinors. The simplified form for the extended 
s-wave gap function takes constant values, =∆ ∆k  on the 
electron segments and =∆ −∆k  on the hole segments. 

For the non-perturbed system described by Eq. (65), the 
respective GF 4×4 matrices, †

,
ˆ = |G ′ ′〈〈Ψ Ψ 〉〉k k k k , are di-

agonal in quasimomentum: , ,
ˆ ˆ=G G′ ′ ′δk k k k kk , with  

 0 3 1

,

ˆ ˆ ˆ( )ˆ ˆ=
2
e

e
e

G
d

ετ + ε τ + ∆τ
⊗ σ +k

k

k
  

 0 3 1

,

ˆ ˆ ˆ( ) ˆ ,
2
h

h
hd

ετ + ε τ − ∆τ
+ ⊗ σ

k

k
 (69) 

( ), 0 3ˆ ˆ ˆ= /2e hσ σ ± σ ,    2 2 2
, = ( )j jd ε − ε − ∆k k . 

To simplify the treatment of impurity perturbations, 
the band structure is approximated to identical circular 
electron and hole Fermi segments of radius Fk  around 
respective BZ points ,e hK  and to identical linear disper-
sion of normal state quasiparticles near the Fermi level 

Fε : ( ) (| | )e F F e Fkε − ε = − −k k Kv  and ( )h Fε − ε =k  
(| | )F h Fk= − − −k Kv . Moreover, we shall describe the 

contributions of both segments to overall electronic 
properties by a single quasimomentum variable ξ , iden-
tified with both electron ( )e e Fξ = ε − εk  and hole 

( )h h Fξ = ε − εk  ones. 
Next, the Hamiltonian of the disordered SC system is 

chosen as imp= sH H H+  including, besides sH , Eq. (67), 
the term due to non-magnetic impurities [85] on random 
sites p in Fe square lattice with an on-site energy shift V  

(supposed positive without loss of generality). It is written 
in the multiband-Nambu spinor form as 

 †( )
imp ,

, ,

1 ˆ= eiH V
N

′− ⋅
′ ′

′
Ψ Ψ∑ k k p

k k kk
p k k

 (70) 

with the 4×4 scattering matrix †
, 3

ˆ ˆ ˆ ˆ= ( ) ( )V VU U′ ′ ⊗ τk k k k . 
Under this perturbation, the GFs are again presented in the 
general forms by Eqs. (29) or (30), respective for band-like 
or localized energy ranges. The corresponding T-matrix:  

 
( )2 2 2 2

3
2 2 2

loc

ˆ
ˆ = ,

1
VT

ε ∆ − ε − ∆ − ε τ

+ ε − ε

v

v
 (71) 

is diagonal in the subband indices in and displays the in-

gap impurity levels 2
loc = / 1ε ∆ + v  [84] with the dimen-

sionless impurity perturbation parameter = NVπρv . This 
essential difference from the T-matrix defined by Eq. (35) 
for non-magnetic impurities in single-band s-wave SC, 
Sec. 3.1, is just due to the s± -symmetry. It assures cancela-

tion of non-diagonal elements in the locator Ĝ  matrix ob-
tained from Eq. (69) and thus a non-trivial behavior of the 
T-matrix denominator. On the other hand, when comparing 
such in-gap levels with those by magnetic impurities, 
Sec. 3.2, they are also insensitive to the sign of perturba-
tion parameter (here V ) but only can reach zero energy in 
the limit of 2V → ∞ . 

Following the line of Sec. 3.2, the restructured band 
spectrum at finite impurity concentration c is obtained 
from the dispersion equation (in the same T-matrix approx-
imation):  

 1ˆ( ) = det ( )D G−ε ε =k k   

 ( )( )2 2 2 2 2 2= = 0,e hε − ξ − ∆ ε − ξ − ∆ 

   (72) 

with the renormalized energy and momenta forms 

 
2 2

2 2 2
loc

= 1 ,
1
cV ∆ − ε ε ε −

 + ε − ε 


v
v

  

 
2 2

2 2 2
loc

= .
1

j j
cV ∆ − ε

ξ ξ −
+ ε − ε



v
 (73) 

Notice also the s± -symmetry related difference of this case 
from Secs. 3 and 5, namely, in non-trivial renormalization 
for momenta jξ  (instead of gap parameters), producing 
different behavior of renormalized spectrum and subse-
quent physical properties at variation of c and/or T .  

The roots of Eq. (72) with the variables, Eq. (73), de-
fine up to 8 subbands, shown in Fig. 34: 4 main bands 
(m-bands), for particles and antiparticles in the BZ e- and 
h-segments, ( )

,
m

e h±ε , and 4 impurity bands (i -bands), with 
energies near loc±ε  and momenta in the same segments. 

Fig. 33. Electron (–) and hole (+) segments of the Fermi surface 
in the normal state of model system with electronic spectrum 
given by Eq. (67). The center of first Brillouin zone is displaced 
by ( / 2 , / 2 )a aπ π  to fully include all the segments around four 
characteristic points Γ, X, M, and Y in this zone.  
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The dispersion laws for the m-bands in function of the 
above introduced single variable ξ  are approximated as 

( )
3

( ) 2 2
, 2 2 2 2 2 2

loc

( ) ,
1

m
e h

cV ξ
ε ξ ≈ ξ + ∆ ±

+ ξ + ε ξ + ∆v v
 (74) 

and their difference from that for the pure SC, Eq. (67), is 
mainly in a slight ξ ↔ −ξ  asymmetry (due to renormaliza-
tion of ,e hξ ) and in the c-dependence of the gap parameter 
∆ (analyzed below). Another difference is their finite in-
verse lifetime  

2 2
( )

2 2 2 2
loc

1/ ,
1

m cV ξ ξ + ∆
τ ≈

+ ξ + ∆ − ε

v
v

 (75) 

that defines the validity range of Eq. (74) from the IRM 
criterion as /( )Ncξ πρ . The separation of corresponding 
mobility edges from the gap edges is estimated as 

2

mob
0

,c
c

ε − ∆ ∆ (76) 

including 
2

loc
0 2= ,

2 1
N

F
c

k a
 πρ ε
 

+ 

v
v

 (77) 

the characteristic impurity concentration for i -bands for-
mation [87]. The latter presents an analogy to Eq. (50) for 
magnetic impurities in the common s-wave SC, but being 
even lower in the small parameter locNπρ ε , due to the 2D 
dimensionality of the present system. 

The dispersion laws for i -bands are more suitably ob-
tained from Eqs. (72), (73) in the inverted form as 

( )
( )( )

2 2
2 2

, 2 2 2
loc

= = ,
1

cV
± ε

∆ − ε
ξ ξ ± ε − ∆

+ ε − ε


v
 (78) 

defining a peculiar non-monotonous function ( ) ( )i
eε ξ  (see

Fig. 34) between its limits ±ε , the roots of the equation 
2 2=ε ∆ . The positive sign in Eq. (78) applies to the as-

cending part of this function within the loc[ , ]−ε ε  range (or 
the a− range) and to its descending part within the loc[ , ]+ε ε  
range (the d+ range), while the negative sign does, respec-
tively, to the d− and a+ ranges. In the same way, the ( ) ( )i

hε ξ
law follows from the ,= ± εξ −ξ  equation. The main qualita-
tive difference of this structure from the single-band case 
by Sec. 3.2 consists in that the resulting impurity band 
[ , ]− +ε ε  embraces its generating impurity level locε  and 
thus realizes a “bilateral” dispersion type. In particular, this 
prevents the actual system from appearance of a 
dispersionless state, like the S2 phase from Sec. 3.2, and of 
the related “rhinocero-horn” singularities in the order func-
tion ( , )S T∆  (see Fig. 35 below). Nevertheless, the pres-
ence of in-gap impurity bands in the spectrum generates a 
non-monotonous behavior of this function, discussed in 
what follows. 

At low enough impurity concentrations, 1/2
0c c<< , 

approximate analytic expressions: loc±ε − ε ≈  
2 2 2/[2(1 1 )cV≈ ± + ± +v v v , define linear in c growth of 

i -band width: imp =w cV . But it becomes slower at 1/2
0c c  

when this growth feels also an essential interference from the 
reduction of ( )c∆ . Its numerical treatment, like that for the 
systems considered in Secs. 3.2 and 5, is presented below. 

Again, as in the above mentioned systems, the validity 
range for the formal dispersion laws, Eq. (78), is restricted 
by the IRM criterion, Eq. (33), where the relevant inverse 
lifetime for given ε:  

( ) ( )

4
2 22

( ) loc
3 2 2 2

loc
1/

1
i

F

c V

k a

 
ε τ  + ε − ε  



vv
v

(79) 

(note its difference from ( )1/ mτ , Eq. (75)) is defined by the 
higher GE terms beside the T-matrix, Eq. (71). Then the 

Fig. 34. (Color online) Dispersion laws for SC LaOFeAs system 
with non-magnetic impurities at the choice of impurity parame-
ters = 1v  and = 0.6c . For convenience, the energy bands, result-
ing from Eq. (72) in the electron (1) and hole (2) parts of Brillouin 
zone in function of respective quasimomentum variables ,e hξ , are 
superposed as functions of the same variable .ξ  The grey arrows 
indicate the ascending and descending ranges of the ( )i

eε  band, the 
rectangles near the band edges indicate the ranges of localized 
states and related mobility edges. 
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respective estimates for the mobility edges mob,±ε  near the 
i -band edges follow as 

4
0

mob, mob, imp imp.
c

w w
c+ + − +

 ε − ε ε − ε << 
 

   (80) 

These limitations also restrict the admissible quasimomen-

tum ξ  values near the related extremal points, ±ξ ≈  

loc loc( ) /≈ ε ± ∆ ε ∆ , to beyond their vicinities: | |±ξ − ξ   

2
0( / )c c±ξ (narrow enough at 0c c>> ). 

Another peculiar feature of the present case is in ab-
sence of such restriction for the states near the very impuri-
ty levels loc±ε , since their localization is “shortcutted” by 
the highly mobile quasiparticle states with permitted ξ  
values from the [ , ]− +ξ ξ  range (granting long enough IRM 
lifetime for all the states at the same energy). 

At least, for 0<c c , all the in-gap states are localized 
and more adequately described by NRE for Ĝk  (this issue 
being left beyond the scope of the present study) while the 
main bands are still defined by Eqs. (73), (76). 

Now, the analysis of the gap equation for this system 
can begin from the case of = 0T , with use of the actual GF 
forms by Eqs. (71)–(73) in the general Eq. (8), resulting in 
the specific forms for the order function ( ,0)S ∆  as shown 
in Fig. 35. Their shape, in particular, the ending curvature 
sign, changes with varying the impurity parameters c and 
,v  and this will be seen to also produce some specific 

SC phases in the present system, though different from 
those in Secs. 3.2 and 5. 

Such phase separation can be concluded from the con-
centration dependencies for the s± -wave order parameter, 

= ( )c∆ ∆ , at different values of the impurity perturbation 
parameter v, as shown in Fig. 36.  

When comparing them with the single band case of 
Figs. 9–12, we notice appearance of another type of ( )c∆  
behavior near the final S/N transition. Here its monotonous 
decay ends with a 1st order discontinuous drop to zero 
only at lower v values, as for the = 1v  curve in Fig. 36 (at 
negative ending curvature of corresponding ( ,0)S ∆  in 
Fig. 35). But at high enough v, a deviation from this decay 
mode appears near its end (at positive ending S-curvature), 

( )c∆  reaching zero with a finite slope, that resembles 
“semi-continuous” transitions from Sec. 3.2 (but those 
never being S/N transitions). Notably, this anomalous c 
range turns broader with growing v, as seen from compari-
son between the = 2v  and = 5v  curves in Fig. 36. 

More information on these processes comes from the 
numerical treatment of related quasiparticle spectra, repre-
sented by their DOS and the diagrams analogous to the 
single-band Figs. 9–12. Thus, such a diagram for the = 1v  
case is shown in Fig. 37 and demonstrates a similarity to 
the single-band Fig. 9, with only difference in more close-
ness of the “bilateral” i -band to the m-band gap edge at the 
S/N transition at the maximum value of impurity reduced 
concentration max 1.09c ≈ . 

But the corresponding diagram at higher = 2.5v  in 
Fig. 38 reveals the mechanism for the ending anomaly 
in this case. Namely, it is seen that the bottom of “bilat-
eral” i -band reaches zero (the center of m-band gap) at 
1 0.54c ≈  and, unlike the case of S1/S4 transition in Fig. 12 

from Sec. 3.2, stays fixed there at further growing c, indi-
cating formation of a “gapless” SC state (with ( )c∆  staying 
finite and very close to the i -band top). This phase (denot-
ed Sgl) exists here within a relatively narrow concentration 

Fig. 35. Non-monotonous (and analytical) behavior of the SC 
order function ( ,0)S ∆  for LaOFeAs with non-magnetic impuri-
ties at different choices of impurity perturbation parameter v  and 

= 0.3c  in comparison with the non-perturbed 0( ,0)S ∆ . Note the 
absence of breaks, like those in Fig. 7 for the single-band system, 
and the change from negative to positive ending curvature for 

( 0,0)S ∆ →  at stronger perturbations. 

Fig. 36. Evolution of SC gap in LaOFeAs with non-magnetic 
impurities at = 0T  and different choices of impurity perturbation 
parameter v  in function of reduced impurity concentration 

0= /( )Nc c πρ ∆ . At stronger v  values, deviations from the initial 
decay mode appear within the ending c  ranges (delimited by the 
dashed lines). 
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range from 1c  to max 0.57c ≈ , presenting almost linear de-
cay of ( )c∆  and of the related locε  to zero. As seen from 
Fig. 36, the Sgl range in c rapidly grows with growing v. 
Evidently, despite a certain formal similarity with the tradi-
tional AG concept of gapless phase, this spectrum structure 
is very different from that in its origin and its dynamics 
under external factors. 

Next, in the same analogy with the single-band case, the 
analysis can be extended to finite temperatures and some 
of its results are briefly indicated in Fig. 39. Here, the 
comparison with the single-band case in Figs. 14, 15, and 
17 confirms the above suggestion regarding the absence of 
dispersionless SC phases in the present system (by absence 
of temperature independent plateaus on the ∆ vs T  curves). 
Nevertheless, these curves also present a non-monotonous 
behavior, including even an anomalous growth of ∆ with 

,T  at higher v values and this can be related with the exist-
ence of the gapless, Sgl, phase there and with closeness of 
the system at = 0T  and chosen c to this phase (as seen in 
Fig. 39). Thus, a possibility for peculiar device applica-
tions can be sought in such systems, even with common 
non-magnetic impurities. 

Finally, the critical SC transition temperature vs non-
magnetic impurity concentration c is shown in Fig. 40 and 
its comparison with the corresponding Fig. 18 for the case 
of magnetic impurities in the single-band system reflects 
the difference between their modes of reaching zero at var-
ious choices of impurity perturbation parameters. They 
suggest that, for the present system, unlike the single-band 
one, such transition is mostly realized through the gapless 
phase, whose width depends on the chosen v value. Also, a 
difference between the modes in which ∆ and cT  vanish 
with c (and, hence, the lack of common / cT∆  universality) 
can be noticed when comparing Figs. 36 and 40. 

From the available experimental data, a strong suppres-
sion of SC order in LaOFeAs with non-magnetic Zn substi-
tutes for Fe was already detected [88–90] and attributed to 
their specific pair-breaking effect in presence of the s±  

Fig. 37. (Color online) Evolution of the SC gap ∆ , the in-gap 
impurity level locε , and the impurity bandwidth impw  at = 0T  
and = 1v  in function of c . 

Fig. 38. (Color online) The processes analogous to those in Fig. 
35, but at the choice of = 2.5v . Notice the onset of a narrow gap-
less phase in the range of max0.54 < < = 0.57c c . 

Fig. 39. Evolution of SC gap in LaOFeAs with non-magnetic 
impurities at different choices of impurity perturbation parameter 
v  (shown as labels near each curve) and = 0.5c  in function of 
temperature T . Note the emergence of anomalous non-
monotonous behavior at stronger v  values. 

Fig. 40. SC critical temperature for LaOFeAs with non-magnetic 
impurities in function of reduced impurity concentration c  (the 
curves labeled by the chosen v  values). The corresponding S/N 
transitions at these curves are realized through the gapless phase 
except for their final sections at weaker v , indicated by the 
dashed lines. 
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symmetry of this order. Also, a similar effect was found to 
be produced by Co substitutes in the BaFe2As2 iron 
pnictide [91]. To confirm all other theoretical consequenc-
es of this effect, a more detailed further study is needed. 

6.2. Observable effects by the in-gap impurity states 

In-gap impurity states, either localized and band-like, 
can produce notable effects on various thermodynamical 
properties of disordered superconductors, as the SC order 
parameter and transition critical temperature (that were 
already discussed in the previous Sections), and also the 
London penetration depth Lλ , electronic specific heat elC , 
etc. [87]. Thus, the superfluid density sn  in the London 

formula, 2 2/(4 )L smc e nλ = π , can be expressed in the 
semi-classical approach [92] as 

 2

0

= ( )sech .
2sn n d
T

∞
ε

− ερ ε∫  (81) 

Then, after inserting Eqs. (69) and (71)–(73) in the gen-
eral Eq. (7) to obtain the DOS ( )ρ ε , the numerical treat-
ment of Eq. (81) leads to the temperature dependence of 

Lλ  shown in Fig. 41, visibly slower than its known be-
havior in the pure SC system. Experimentally, a similar 
variation of the decay rate of ( )L Tλ  in the BaFe2As2 iron 
pnictide with different impurity substitutes for Fe was 
reported in Ref. 93. 

Next, the expression for the electronic specific heat:  

 el
0

= ( ) tanh ,
2

C d
T T

∞∂ ε
ερ ε ε

∂ ∫  (82) 

after being numerically integrated and differentiated (with 
a notable contribution from ( , )/c T T∂∆ ∂  taken into ac-

count), results in the behavior presented in the common 
logarithmic form in Fig. 42. Its most notable new feature, 
compared to the conventional almost linear dependence on 
inverse temperature for unperturbed system (dashed line), 
is a clear break of the characteristic exponent at a rather 
low temperature (here 0 /14bT ∆ ) that can be attributed to 
the effect by quasiparticles excited at the low lying bottom 
edge of the impurity band (see in Fig. 37). Also, this break 
differs from that found for the same system in the low con-
centration limit [55] with only a narrow locΓ  range of lo-
calized states being present near the impurity level locε .  

But besides those, other effects, specific for new 
quasiparticle bands only, can be expected on kinetic prop-
erties of the disordered material, while the localized impu-
rity states should have practically no effect on them. Such 
phenomena can be naturally described in terms of the 
above indicated GF matrices as seen in what follows. Thus, 
the Kubo–Greenwood formalism [94,95] gives such ex-
pression for the (frequency and temperature dependent) 
electrical conductivity that describes optical absorption at 
given frequency ω:  

 
2 ( ) ( )

( , ) = ( , ) ( , )F F
x x

f feT d d
∞

−∞

′ε − ε ′σ ω ε ε ε ×
π ω∫ ∫ k k kv v   

 ˆ ˆTr Im ( ) Im ( ) ,G G ′× ε ε k k  (83) 

where =′ε ε − ω, / 1( ) = (e 1)T
Ff

ε −ε +  is the Fermi occupa-
tion function, and the electric field is applied along the 
x-axis. When using the above derived GF’s, Eq. (69), with 
the impurity renormalized variables, Eq. (73), in this for-
mula, the generalized velocity functions are defined as 

( , ) = Re ( )/[ Re ( )/ ]D Dε ∇ ε ∂ ε ∂εk k kkv  [87], and they result 
in the physical quasiparticle velocities at ( )= ( )jε ε ξ , for 

Fig. 41. Low temperature decay of the London penetration depth 

Lλ  in LaOFeAs with impurities at = 1v  and = 0.5c  (1) is slower 
than that in the unperturbed SC system at = 0c  (2). For the sake of 
visibility, the two curves are plotted in the / cT T  scale, normalized 
to their respective cT  values from the = 1v  line in Fig. 40. 

Fig. 42. Logarithmic plots for electronic specific heat vs inverse 
temperature in the same systems as presented in Fig. 41. Besides 
the evident lowering of ( )cT c  in accordance with Fig. 40, there 
appears an unconventional impurity effect in a break of the decay 
exponent at some low temperature bT , due to the presence of the 
in-gap impurity band of width comparable to the main band gap 
(see in Fig. 37), while there is no such break for the unperturbed 
system (dashed line). 
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the particular spectrum subbands (the peaks of ˆIm ( )G εk ). 
Respectively, there arise three characteristic types of con-
tributions to ( , )Tσ ω , due to the transitions: 

i) from the lower m-band ( <′ε −∆) to the upper m-band 
( >ε ∆), denoted m m→σ , 

ii) from the lower m-band ( <′ε −∆) to the upper i -band 
( > −ε ε ), denoted m i→σ  (or the equivalent i m→σ ), 

iii) from the lower i -band ( < +′ε −ε ) to the upper i -band 
( > −ε ε ), denoted i i→σ , whose corresponding frequencies 
are shown schematically in Fig. 43. The calculation in 
Eq. (81) is simplified with use of the Lorentzian approxi-
mation for GF ξ-dependencies:  

 ( ), , ,
=

ˆ ˆIm ( ) , ,j j j
j

G A Lε ε ε
±

ε ≈ ξ − ξ γ∑k  (84) 

including the weight matrices:  

 [ ], 1 3
ˆ ˆ ˆ= ( )/ ( , ) ,

2 NA s± ε
π

ρ ε ρ + ε ∆ ∆τ ± τ   

with ( , )s ε ∆  from Eq. (37), the standard Lorentzian func-
tion of halfwidth γ : 2 2( , ) = /[ ( )]L x xγ γ π + γ , and its peak 
points ,± εξ  given by Eq. (78). The related halfwidths of 
these peaks are ( )

, = 1/ l
± εγ τ  (with the properly chosen life-

times from Eqs. (75), (79)) but, if the IRM criterion holds, 

they are small enough to not matter in the final result. In 
this approximation, the ξ-integral in Eq. (83) is done by 
the Lorentzian convolution rule:  

 ( , ) ( , ) = ( , ).dx L x L x y L y
∞

−∞

′ ′γ − γ γ + γ∫   

The next integration in ε of the resulting Lorentzians, 
when done for the m m→σ  and i i→σ  processes, involves 
only the diagonal in j  arguments: , ,j jε ω−εξ − ξ , with the 
respective , ,

ˆ ˆTr j jA Aε ω−ε  numerators. But, for the m i→σ  
and i m→σ  processes, it also involves the non-diagonal 
combinations. Finally, this provides the particular contri-
butions to ( , )Tσ ω  as presented in Fig. 44 for the case of 

= 0T . A more detailed analysis shows that their ampli-
tudes are mainly defined by the quasiparticle velocities for 
the transition initial and final states, so that the i i→σ  pro-
file smoothly vanishes at its edges 2 ±ε  (where both veloci-
ties vanish, see Fig. 34) while the m i→σ  one has a pro-
nounced peak at its lower edge (where both velocities stay 
finite). Also these amplitudes are notably enhanced com-
pared to simply a c  rate of the m m→σ  intensity, due to a 
resonance weight transfer from the main band states, in an 
analogy to well known effects of this nature in the optical 
spectra of normal systems with impurities [43,39,96]. 

This analysis can be evidently extended for such dy-
namical properties as heat conductivity (by the 0ω →  lim-
it of an analogue to Eq. (83)) and the Peltier and Seebeck 
coefficients, but there the quasiparticle lifetimes ( )lτ  given 
by Eqs. (75), (79) are already relevant, defining some ana-
logues to the classical Drude formulas. 

7. Concluding remarks 

In conclusion, we presented a comprehensive review on 
various SC systems with impurities that produce different 
(magnetic and non-magnetic) perturbation types. This 
demonstrates the importance of detailed dynamical de-
scription of all the resulting quasiparticle states in them, 

Fig. 43. (Color online) Schematic of optical transitions in the SC 
system with the quasiparticle spectrum as in Fig. 34 (presented 
only for its part on the electron pocket). 

Fig. 44. (Color online) General picture of the optical conductivity 
showing three types of contributions by the transitions as in 
Fig. 43 for the choice of impurity parameters = 1v  and = 0.5c . 
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besides the general symmetry principles for impurity per-
turbations. In this course, a possibility for essential modifi-
cation of initial quasiparticle spectra appears, consisting in 
formation of localized in-gap impurity states and their de-
velopment into specific narrow bands of impurity quasi-
particles, provided the impurity concentration is above a 
certain (quite low) critical value 0c . Consequently, this 
leads to a number of unusual effects in the system's ob-
servable properties. 

First of all, this relates to the basic SC order parameter 
and the critical transition temperature. Besides their known 
decay, expected to appear at all impurity concentrations, 
either due to localized or band-like impurity states, a spe-
cial interest is seen in studying the effects only specific to 
the impurity band-like states. Here the interplay between 
the impurity modifications of the SC condensate and of the 
excited quasiparticles spectrum can produce formation of 
new non-trivial SC phases and new types of transitions 
between them and from SC to normal metal state. In par-
ticular, depending on the relationship between the symme-
tries of the host SC order parameter ∆ and of the impurity 
perturbation potential, such unusual phenomena as inver-
sion of the usual ∆ decay and vanishing dispersion of the 
impurity band can take place within some restricted inter-
vals of impurity concentration and temperature. Also, for-
mation of a specific gapless SC state, preceding the transi-
tion to the normal metal state, is found possible in certain 
SC systems with impurities, though it results here from 
very different dynamical mechanisms and has a different 
behavior under external factors, compared to the long ago 
proposed AG structure. 

It was then shown that the indicated spectrum restruc-
turing can produce quite pronounced observable effects, 
either in thermodynamical or kinetic properties of the re-
spective systems, including both their static and high-
frequency transport coefficients. In the latter case, the im-
purity effect is expected in narrow additional peaks of op-
tical conductance near the edge of the main absorption 
band, resembling the known resonance enhancement of 
impurity absorption (or emission) processes near the edge 
of the main quasiparticle band in normal systems. Here it 
would be possible if the impurity perturbation is weak 
enough. The static transport coefficients, including the 
thermoelectric Peltier and Seebeck coefficients, are also 
expected to be strongly enhanced at overcritical ( 0>c c ) 
impurity concentrations, compared to those in a non-
perturbed system. 

Of course, in our theoretical approach to SC systems 
with impurities, some simplified models were used both 
for the host spectral structures and for impurity potentials, 
in order to get the final picture of excitation spectra with 
collective effects of interactions between impurities taken 
into account. Nevertheless, the main qualitative results of 
these considerations can be expected to stay true if more 
realistic developments be realized. Also, these results indi-

cate an incompleteness of the previously known descrip-
tions of such systems, limited to the simplest first Born 
approximation for quasiparticle scattering or employing an 
improper use of the self-consistent (coherent potential) 
approximation. 

Experimental verifications of the predictions made 
would be of evident interest, since they can open perspec-
tives for important practical applications, e.g., in narrow-
band microwave devices or advanced low-temperature 
sensors, but this would impose rather hard requirements on 
the quality and composition of the necessary samples, 
which should be highly pure in addition to containing ex-
tremely low (by common standards) and well controlled 
measures of specially chosen and uniformly distributed 
impurity centers within the SC crystal lattice structure. 
These requirements can be compared to those imposed on 
doped semiconductor devices, these being met over a half 
century ago, and will hopefully not to present a real prob-
lem for modern lab technologies. 
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