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Nonlinear dynamics and transport properties of a 2D Wigner solid (WS) on the free surface of superfluid he-
lium are theoretically studied. The analysis is nonperturbative in the amplitude of the WS velocity. An anoma-
lous nonlinear response of the liquid helium surface to the oscillating motion of the WS is shown to appear when 
the driving frequency is close to subharmonics of the frequency of a capillary wave (ripplon) whose wave vector 
coincides with a reciprocal-lattice vector. As a result, the effective mass of surface dimples formed under elec-
trons and the kinetic friction acquire sharp anomalies in the low-frequency range, which affects the mobility and 
magnetoconductivity of the WS. The results obtained here explain a variety of experimental observations report-
ed previously. 

PACS: 73.20.Qt Electron solids; 
73.40.–c Electronic transport in interface structures; 
67.90.+z Other topics in quantum fluids and solids; 
71.45.Lr Charge-density-wave systems. 
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1. Introduction 

A two-dimensional (2D) electron gas bound to the free 
surface of liquid helium is known to exhibit a phase transition 
into the Wigner solid (WS) state [1]. In this state, surface elec-
trons are localized in sites of a triangular lattice. The WS of 
surface electrons is hovering above the liquid surface at the 
average height of about 100 Å. The surface of liquid helium 
has no pining centers, therefore, the WS can move along 
the interface in an ac driving electric field interacting with 
surface excitations of liquid helium. Electrons forming the 
Wigner crystal put periodic pressure on the surface of liquid 
helium, and, therefore, a lattice of surface dimples is formed 
under electrons [2]. This periodic pressure and the dimple 
lattice are essential for understanding the linear dynamics of 
the WS in an ac driving field [3] and for the description of the 
experiment [1]. An important consequence of the theory is 
that an oscillating motion of the WS along the surface reso-
nantly excites capillary waves (ripplons) if the driving field 
frequency ω is close to the frequency of ripplons 

3/2
, = /r q qω α ρ  with the wave vector q equal to the elec-

tron reciprocal lattice vector g  (here α and ρ are, respective-
ly, the surface tension and mass density of liquid helium). 

Since the discovery of Grimes and Adams [1], a number 
of remarkable nonlinear effects was observed when studying 
the WS transport along the surface of superfluid 4 He. A 
nonequilibrium melting of the 2D WS indicated by a sharp 
change in the magnetoresistance of the electron system 
was reported in Ref. 4. A puzzling nonlinear dependence 
of the WS magnetoconductivity xxσ  ending by a dynamic 
transition was observed [5,6]. This transition was interpret-
ed as the WS sliding over the sublattice of surface dimples. 
In the region of small values of the input voltage inV , the 
inverse magnetoconductivity 1

xx
−σ  rises rapidly with inV  up to 

its maximum value. Then, in the region of intermediate 
values of the input voltage, 1

xx
−σ  decreases approximately 

as in1/V . A similar region of xxσ  proportional to inV  ob-
served [7] was explained by an assumption that the Hall 
velocity of electrons /cE B is limited by the phase velocity 
of ripplons with the wave vector equal to the electron re-
ciprocal lattice vector g . It was suggested that in this re-
gion the electric field E  is independent of inV , while 

inxx Vσ ∝ . It should be noted also that in that work, the 
region of low excitation voltage where 1

xx
−σ  rises ( xxσ  de-

creases) as well as the linear conductivity regime were not 
detected. 
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In the absence of a magnetic field, the nonlinear WS 
mobility was studied in Ref. 8. In this experiment, an ini-
tial mobility of the WS is rather high, and it strongly de-
creases with the amplitude of the driving electric field. 
This is contrary to the magnetoconductivity data of 
Refs. 5,6 which indicate that at a smallest inV  mobility of 
the WS is low (though there are no pinning centers above 
superfluid 4 He) and it initially increases with the input 
voltage. This seeming contradiction should be explained in 
a strict theory. 

Interesting results were obtained in experimental stud-
ies [8] of coupled phonon-ripplon modes of the WS on 
liquid helium in high driving electric fields. At a low exci-
tation voltage the response amplitude as a function of the 
frequency of the excitation signal shows two maxima whose 
positions agree with the frequencies of a coupled phonon-
ripplon mode [3] calculated for two smallest wave vectors 1k  
and 2k  defined by the geometry of the experimental cell. It 
seems strange that with an increase of the amplitude of the 
excitation signal positions of these two resonances were 
observed to shift in opposite (!) directions. Moreover, new 
low-frequency electron-ripplon resonances were observed 
away from frequencies of conventional phonon-ripplon cou-
pled modes [3]. These experimental data also require a the-
oretical explanation (a brief report explaining these effects 
is given in Ref. 9). 

It should be emphasized that contrary to the case of su-
perfluid 4 He, the linear regime of the WS transport over the 
free surface of normal and superfluid 3 He was detected [10], 
and anomalies of WS mobility data were well described by 
the theory [11]. Moreover, there is a good understanding [12] 
of the nonlinear WS mobility on the surface of liquid 3He. In 
this case, a good theoretical description is possible owing 
to strong damping effects in the Fermi liquid which limit 
the mobility of surface dimples. We conclude that remarka-
ble nonlinear phenomena reported for the WS transport over 
superfluid 4 He are induced by the extremely small damping 
of ripplons. According to the quantum hydrodynamical 
model [13], the damping of capillary waves 

 
42

1
=

60 vq
T q

 π
γ  ρ  





 (1) 

decreases fast with lowering temperature. Here 1v  is the 
first sound velocity, and q is a wave vector. For typical 
experimental conditions (electron density 8 2= 6 10 cmen −⋅  
and 0.4 K 0.1 KT≥ ≥ ), the ratio ,g r gγ ω  varies from 410−  
to 710−  even for the smallest reciprocal-lattice vector 1= .g g  

In this work, we report a theoretical investigation of 
nonlinear dynamics and nonlinear transport properties of 
the 2D WS over superfluid helium caused by extremely 
small damping of capillary waves. Considering the regime 
of a given current, we found an exact expression for the me-
dium response force acting on the dimple sublattice which 
consists of two parts representing the kinetic friction and 

dimple inertia. It is remarkable that the effective mass of 
surface dimples and the effective collision frequency of the 
kinetic friction change sharply in the vicinity of 
subharmonic frequencies of ripplons , /r g mω  (here 

= 2, 3,...m ), which affects the nonlinear transport of the 
WS and phonon-ripplon coupling. In the presence of a 
magnetic field directed normally to the surface, the nonlin-
ear magnetoconductivity expression obtained is not re-
duced to a simple Drude form which explains differences 
between mobility and magnetoconductivity data reported 
previously. At sufficiently strong driving fields, the non-
linear magnetoconductivity xxσ  obtained here becomes 
negative, which causes instability and WS melting. This 
effect can be considered as an alternative explanation of 
dynamic transitions observed in the experiments [4–6]. 

2. Model description 

The localization of an electron in a lattice site is ac-
companied by a displacement of the liquid helium surface 

( )ξ r  from the equilibrium flat shape caused by the electron 
pressure. This deformation of the gas-liquid interface called 
the dimple lattice is the main origin of nonlinear effects in 
the WS transport. Under usual conditions, the dimple lat-
tice does not change the melting temperature of the WS, 
but it strongly affects its dynamics, especially in the low 
frequency range. In terms of electron displacements ls  from 
a lattice site lR , the WS coupling with capillary waves is 
described by the interaction Hamiltonian  

 [ ]int = exp ( ) ,q l lH U iξ +∑ ∑q
q l

q R s  (2) 

where ξq is the Fourier transforms of the surface displace-
ment, qU  is the coupling function for the electron-ripplon 
interaction [14] (in the limit of strong holding fields E⊥ , it 
equals ).eE⊥  Displacements ls  consist of a high-frequency 
part f ,ls , caused by thermal vibrations, and a low-frequency 
part s,ls  due to slow WS motion in a driving electric field. In 
this work, the low-frequency part is assumed to be uniform 

s, ( )l t≡s s . 
Taking into account an expression for the Hamiltonian 

of free ripplons [14] and Eq. (2), the equation for ξq can be 
found in the following form 

 2 ( )
,2 = e ,g e i t

g r g
U n g − ⋅ξ + γ ξ +ω ξ −

ρ
g s

g g g



   (3) 

where ( )2 2
f= exp / 4q qU U q s− , a Debye-Waller factor 

appears due to averaging over fast (high-frequency) modes, 
2
fs  is the contribution to the mean-square displacement 

from fast modes, and gγ  describes ripplon damping. The 
right side of Eq. (3) represents the periodic electron pres-
sure acting on the free surface of liquid helium. If ( ) = 0ts , 
the first two terms of Eq. (3) are zero and the rest terms 
yield the shape of a motionless dimple lattice. 
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In the conventional theory of the WS coupling with 
ripplons [3], the exponential function entering the right side 
of Eq. (3) is expanded up to a linear (in ⋅g s ) term. This 
term, representing the first harmonic of ω in the electron 
pressure, is responsible for a resonant increase of the ripplon 
field ξg  when ,r gω→ω . In a nonlinear theory, the electron 
pressure contains superharmonics of ω due to higher ex-
pansion terms. Thus, the right side of Eq. (3) contains terms 
proportional to exp( )im t− ω  [here we assume that 
( ) exp( )t i t∝ − ωs  and = 2, 3,...m ]. These superharmonic 

terms of the electron pressure lead to a resonant increase of 
ξg  if ,r gmω→ω . In other words, we expect a resonant in-
crease of the medium response (the dimple effective mass 
and kinetic friction) if the WS is driven at a frequency which 
is close to a subharmonic of typical ripplon frequencies: 

, /r g mω→ω . In the following, we will not expand the right 
side of Eq. (3) assuming that the parameter ⋅g s  can be large. 

As noted in the Introduction, at low temperatures the 
ripplon damping of pure 4 He is extremely small according 
to Eq. (1). In the presence of impurity 3He atoms (dilute 
3 4He He−  solutions), the ripplon damping is substantially 
increased. For the viscous regime, one can find  

( ) ( )
1/2

2 2 22= / , = 2 1 1 ,q q q x x
x

η  γ φ ωρ η φ − + − 
 ρ

 (4) 

where η is the viscosity of the solution. In this case, our 
model should be improved by an additional frequency de-
pendent term 2 ( )g g−δ ω ξ  in the left side of Eq. (3), where 

2 2 2( ) = ( / )g gδ ω ω ζ ωρ η  and 

 ( )
1/2

2
2

4 1= 1 1 1 .
2

x x
x

  ζ + + −  
   

 (5) 

In the limit 2/ 1gωρ η  , we have 2 2( ) / 2gδ ω →ω  
which just increases inertia of the dimple lattice and 
changes parameters of Eq. (3) by the numerical factor 2 / 3. 

At low temperatures, impurity quasiparticles enter the 
long mean-free-path regime, and the ripplon damping is 
caused by their reflection from an uneven surface. Accord-
ing to Ref. 15, for specular reflection, we have 

2 (qp)( ) ( ) /= , ( ) = (0)2 ,
2

s
q

F

T T Tq T F e
T

µ κ  γ κ κ    ρ   
 (6) 

where 

 
4

2 3
0

(0) = , ( ) = ,
4

F
x

p xF z z dx
e z

∞

κ
π +∫


 (7) 

FT  and Fp  are, respectively, the Fermi temperature and the 
Fermi momentum of impurity atoms. The ripplon damping 
defined by Eq. (6) has the same dependence on q as that ob-
tained for pure 4 He, still it has different dependence on tem-
perature: constqγ →  if 0T → . Assuming that a fraction of 

incoming quasiparticles ar  can be reflected diffusively 
from the the surface layer of 3He atoms which is not in-
volved in the horizontal motion of the dimple lattice [15], 
we have ( )= (1 3 / 4) s

q a qrγ − γ . For impurity concentration 
3 = 6.1%c  and electron density 8= 1.4 10en ⋅  cm–2, the ratio 

,/g r gγ ω  can be increased up to about 0.4. Thus, any reason-
ably small ratio ,/g r gγ ω  can be realized in an experiment 
with the WS on the surface of 3He–4He mixtures. 

A solution ( )g tξ  of the model equation (3) can be found 
trivially in an integral form [17], and the force acting on 
the WS by surface dimples, defined as 

int= /D ee f
H− ∂ ∂∑F r  (here ... f   denotes averaging 

over fast modes), can be represented as  

 
2

2= ( ),
ˆ

e gD

e g

n gU
t

N
−

ρω
∑ g
g

F g 


 (8) 

where 

 [ ]{ }
0

ˆ ˆ( ) = sin( ) sin ( ) ( ) ,g
g gt e t t d
∞

−γ τ
ω ω τ ⋅ − − τ τ∫g g s s   

  (9) 

and 2 2
,ˆ =g r g gω ω − γ . Equations (8) and (9) determine the 

nonlinear response of the liquid helium surface to an oscil-
lating motion of the WS. 

The equation of motion for an electron displacement 
( )ts  including the medium response force ( )D tF  represents 

a complicated nonlinear equation which is very difficult to 
solve for a given driving electric field ( )tE . Remarkably, 
an inverse problem of finding ( )tE  for a given current can 
be solved exactly. It should be noted that, in experiments 
on WS transport, the driving electric field is often adjusted 
to the current owing to electron redistribution which 
screens external potential variations. Therefore, the regime 
of a given current is realized at least partly. This conclu-
sion is supported by experimental observations [12,16] of 
regions with / < 0dE du , where u  is the WS velocity. 

In the absence of a magnetic field, we shall consider a 
simple periodic dependence 0( ) = sin( )t tωs s  and assume 
that the x-axis is directed along 0s . Then, the periodic 
function ( ) ( )x

DF t  can be represented as a Fourier series 

 
( )

2
0 0

=1
= cos( ) sin( ) ,

x
D

e k k
e k

F
m s k t s k t

N

∞
 − ν ω ω −χ ω ω ∑   

  (10) 

where kν  and kχ  are two kinds of Fourier coefficients de-
fined by the well known rule. The factors 0em sω  and 

2
0em sω  (here em  is the free electron mass) are introduced 

in order to make proper dimensions for kν  and kχ . We 
shall see that 1ν  is an effective collision frequency due to 
kinetic friction of surface dimples, while 1χ  is the ratio of 
the dimple effective mass Dm  to the free electron mass 

1( = / ).D em mχ  
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According to Eq. (10), the force acting on the WS con-
tains the first and higher harmonics of ω. Since the other 
terms of the equation of motion for an electron displace-
ment ( )ts  are linear, only the first harmonics of ( ) ( )x

DF t  are 
important for obtaining the WS conductivity and the secu-
lar equation for coupled phonon-ripplon modes. Therefore, 
we can ignore the higher harmonics of ω in Eq. (10) 
(though there is no problem with calculation of kν  and kχ  
for an arbitrary ),k  and omit the subscript 1 assuming 

1 Dν ≡ ν  and 1 =χ χ. Direct calculations yield 

 
2

2
03= , , ,

ˆ ˆˆ
e g g

D x x
g ge g

n gU
g g s

m

 γω
ν   ω ωρω  

∑
g




 (11) 

 
2

2
04= , , ,

ˆ ˆˆ
e g g

x x
g ge g

n gU
g g s

m

 γω
χ   ω ωρω  
∑
g




 (12) 

where we introduced the following functions 

 1( , , ) = ( , , ),a Q a
a ν′ ′ ′ ′ω γ ω γ
′ω

  (13) 

1
0

( , , ) = 2 sin( ) cos 2 sin ,
2 2

x x xQ a x e J a dx
∞

′−γ
ν

′ ′ω  ω    ′ ′ω γ     
    ∫

  (14) 

 
2

1( , , ) = ( , , ),
( )

Ma Q a
a

′ ′ ′ ′ω γ − ω γ
′ω

  (15) 

1
0

( , , ) = 2 sin( ) sin 2 sin ,
2 2

x
M

x xQ a x e J a dx
∞

′−γ ′ ′ω  ω    ′ ′ω γ     
    ∫

  (16) 

and 1( )J z  is the Bessel function. Properties of the function 
( , , )Q aν ′ ′ω γ  were partly investigated in the low-frequency 

limit [17] where a broadening of the Bragg-Cherenkov 
threshold occurred. Still, the nonlinear WS mobility and 
conductivity were not investigated because the dimple 
mass-function ( , , )a ′ ′ω γ  was not studied, and super-
harmonic resonances of the ripplon field at ,r gmω→ω  
were not disclosed. 

It should be noted that even first harmonics of ( ) ( )x
DF t  

in Eq. (10) defined by Dν  and χ (or equivalently, by Qν  
and MQ ) contain contributions from higher harmonics of 
the electron pressure entering the right side of Eq. (3). This 
can be seen from dependencies of ( , , )a ′ ′ω γ  and 

( , , )a ′ ′ω γ  on the dimensionless frequency ˆ= / g′ω ω ω  
calculated for different values of the nonlinear parameter 

0= xa g s . Fig. 1 indicates that ( , , )a ′ ′ω γ  has sharp max-
ima at = 1/ m′ω  ( ˆ= /g mω ω ) whose intensities depend on 
a in a non-monotonic way. As the parameter a increases, 
the distribution of maxima shifts strongly into the low-
frequency range. 

The function ( , , )a ′ ′ω γ  shown in Fig. 2 sharply 
changes its sign near points = 1/' mω . In the limiting case 

ˆ= / 0g g′γ γ ω → , the frequency dependence of ( , ,0)a ′ω  
can be fitted by a simple function [9] 

 2 2
=1

( , ,0) = ,
1/ ( )

m

m

S
a

m

∞
′ω

′− ω
∑  (17) 

where the weight of a singularity mS  is a non-monotonic 
function of a. In the linear regime, only the first term in 
the sum is important: 1 = 1,S  and = 0mS  if > 1m . With an 
increase of the nonlinear parameter a, the distribution of 

mS  is shifted in the range of large m. It should be noted 
that a strong increase of a reduces 1S  and changes its sign. 

Thus, in the nonlinear regime, the both functions 
( , , )a ′ ′ω γ  and ( , , )a ′ ′ω γ  are affected strongly by 

Fig. 1. (Color online) The dimensionless collision frequency func-
tion ( , , )a ′ ′ω γ  vs. ,ˆ= / r g′ω ω ω  calculated for four values of the 
parameter 0= xa g s . 

Fig. 2. (Color online) The dimensionless dimple-mass function 
( , , )a ′ ′ω γ  vs. ,ˆ= / r g′ω ω ω  calculated for four values of the 

parameter 0= .xa g s  
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superharmonic resonances of the ripplon field. The effec-
tive collision frequency Dν  and the dimple effective mass 

=D em mχ  change sharply when the WS is driven by a 
frequency ω which is close to subharmonics of the typical 
ripplon frequencies ,= /r g mω ω . 

The amplitude of the WS velocity 0 0=u sω . Therefore, 
the nonlinear parameter 0= xa g s  can be represented as 

= /a u′ ′ω , where 0 ,= / g xu u u′  and , ˆ= /g x g xu gω . This 
allows us to calculate   and  as functions of the di-
mensionless velocity u′ near the singular points = 1/ m′ω . 
For example, consider = 1/ 3′ω  and a close frequency 

= 0.331′ω . Under these conditions, the function 
( / , , )u′ ′ ′ ′ω ω γ  is shown in Fig. 3 for three values of ′γ . It 

is remarkable that   is large far below the Bragg-
Cherenkov threshold condition ( = 1)u′  where a steady mo-
tion of the WS starts emitting ripplons [18]. Moreover, 
curves calculated for = 1/ 3′ω  and for the close frequency 
have different evolutions of their maxima with lowering 
the damping parameter. The maximum of   calculated 
for = 1/ 3′ω  monotonously increases with decreasing 'γ  
(red dashed and dotted curves), while the maximum calcu-
lated for a very close frequency = 0.331′ω  increases only 
in a short range of ′γ  (blue dashed curve) and decreases at 
sufficiently low ′γ  (blue dotted curve). A similar behavior 
of   is disclosed for a frequency slightly larger than 1/ 3 
and in the vicinity of other singular points 1/ m. 

The dimensionless mass function ( / , , )u′ ′ ′ ′ω ω γ  is 
shown in Fig. 4 for = 1/ 3′ω  and two close frequencies. 
Calculations were performed using three values of the 
damping parameter ′γ . For the singular point = 1/ 3′ω  
(red), the  as a function of u′ is practically independent 
of the damping parameter. It is remarkable that already 
very small changes of the driving frequency = 0.32′ω  
(blue) and = 0.34′ω  (green) lead to strong (even qualita-
tive) changes in the dependence of  on the WS velocity 

u′, and near extrema the results of calculations become 
dependent on the damping parameter. A similar behavior 
of  is found also for 1/ 2′ω →  and near lower singular 
points 1/ m. 

The results shown in Figs. 3 and 4 lead to the following 
important conclusions. In the low frequency range 1′ω  , 
a frequency ′ω  can be rather close to a singular point 1/ .m  
Then, a small variation in the electron density sn  affects 

ˆ= / g′ω ω ω  and can cause large (even giant) changes in the 
nonlinear conductivity of the WS, which may lead to a 
mistaken conclusion that data are not reproducible. In an 
experiment employing the transmission line model, there 
are long wave-length density variations along the electron 
pool. Therefore, according to Fig. 3, the area of the pool 
which approaches the condition ˆ/ 1/g mω ω →  has huge 
friction causing a dynamic "pining" of the WS to the liquid 
substrate. Of course, this pinning is limited by the wave-
length of the density variation. Moreover, as we shall see, 
in the nonlinear regime, data obtained employing different 
methods can bring different mobility results. 

3. Nonlinear mobility 

In the absence of a magnetic field, the WS mobility and 
conductivity can be found from the force balance equation 

 
( ) ( )

= ( )
x

D
e e e

e

F t
m u eE t m u

N
− + − ν  (18) 

where 0= cos( ),u s tω ω  and eν  is the electron collision 
frequency due to scattering with thermally excited 
ripplons. For the given current 0= cosx sj en s t− ω ω , this 
equation determines the electric field ( )E t  whose first 
harmonic (usually measured in an experiment) can be gen-
erally written as 0( ) = sin( )E t E tω +β . The expression for 

( ) ( )x
DF t  obtained above yields  

Fig. 3. (Color online) The ( / , , )u′ ′ ′ ′ω ω γ  vs. dimensionless 
velocity 0 ,= / g xu u u′  calculated for = 1 / 3′ω  (red curves) and 

= 0.331′ω  (blue curves), and for three values of ′γ : 0.01 (solid), 
0.0075 (dashed), and 0.003 (dotted). 

Fig. 4. (Color online) The ( / , , )u′ ′ ′ ′ω ω γ  vs. dimensionless 
velocity 0 ,= / g xu u u′  calculated for three values of ′ω  and for 
three values of ′γ : 0.01 (solid), 0.0075 (dashed), and 0.003 (dotted). 
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2 2 2

sin = ν
β −

ν + ω
 (19) 

and the relationship between amplitudes  

 2 2 4 2
0 0 0( ) = ,

e

es s E
m

ν ω + ω  (20) 

where 0 0( , ) = 1 ( , )u uω + χ ω  represents dimensionless 
effective mass of an electron bound to a surface dimple, 

0 0=u sω  and = D eν ν + ν . 
To obtain the conductivity expression we shall use the 

change of the time variable =
2

t t π′ω +β ω +  which trans-

forms the ac electric field into the conventional form 
0( ) = cos( )E t E t′ ′ω . In this case, using Eqs. (19) and (20) 

the WS current can be transformed into the usual two-
component form 

 0 0= cos( )Re sin( )Im ,j E t E t′ ′ω σ + ω σ  (21) 

where the first component, oscillating in phase with ( ),E t′  
usually determines the real part of conductivity, while the 
out-of-phase component determines the quantity which is 
called the imaginary part of conductivity:  

 
2

2 2 2Re = ,e

e

e n
m

ν
σ

ν + ω
  

 
2

2 2 2Im = .e

e

e n
m

ω
σ

ν + ω




 (22) 

The WS mobility is defined as = Re / eenµ σ . 
The Eq. (20) allows obtaining the velocity-field charac-

teristic for the amplitudes 0E  and 0u . Contrary to the case 
of pure 3He, here this characteristic depends also on the 
effective mass function 0( , )uω  and eν . In order to calcu-
late eν , we use a high temperature approximation for the 
dynamic structure factor of the 2D WS where the average 
kinetic energy of an electron in the WS state replaces the 
temperature [19]. For the conditions of the experiment [8], 
typical 0 0u E−  characteristics are shown in Fig. 5, where 

, 11
= /R r gu gω . Assuming that our results can be applied (at 

least qualitatively) to the regime of a given field, we con-
clude that at a certain threshold value of 0E  the balance of 
forces is broken and there should be a bistability jump (tran-
sition) to a high velocity branch. In the regime of a given 
current, the region with 0 0/ < 0u E∂ ∂  can be observed. 

Using 0 0u E−  characteristics of Fig. 5, the Eq. (22) and 
the relationship = Re / senµ σ , the nonlinear mobility of the 
WS 0( )Eµ  is calculated and shown in Fig. 6 for two values 
of ω. Before the bistability jump shown by an arrow, the 
calculated dependence 0( )Eµ  is in a qualitative agreement 
with experimental observation [8]. It should be noted that 
even a small region with negative 0/ E∂µ ∂  is noticeable in 
the experimental data set [8]. The figure indicates that the 
threshold field thE  and mobility values of small 0E  depend 

strongly on ω. After the jump, the mobility curve was cal-
culated assuming that the WS state survives the transition 
to a high velocity branch and eν  is independent of 0E . Ex-
perimental data indicate that after the jump which occurs at 

0 10 mV/cmE ≈ , the electron mobility steadily increases 
with 0E  similar to the mobility of a 2D electron gas, and 
most probably the WS is broken. 

The experimental method [20] allows measuring the 
quantity 2/e em n eω  which is proportional to the effective 
mass function  . Under the experimental conditions [20], 
theoretical calculations using the expression for   ob-
tained here are shown in Fig. 7 for three typical values of 
ω. As expected, at a fixed electron density ( =en  

8 212.6 10 cm )−= ⋅ the peculiarity of the function 0( )E  

Fig. 5. (Color online) Velocity-field characteristics calculated for 
two typical frequencies = / 2 = 2 MHzf ω π  (solid) and 3 MHz 
(dashed). The damping parameter = 0.005′γ . The other condi-
tions are the same as in the experiment [8]. 

Fig. 6. (Color online) Mobility of the WS vs the amplitude of the 
driving electric field. Conditions are the same as in Fig. 5. 
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strongly depends on the driving frequency ω. For example, 
the bistability range, which is prominent at = / 2 =f ω π  

5 MHz=  (dotted) and noticeable at = 3 MHzf  (solid), dis-
appears already at = 2 MHzf  (dashed). The observed [20] 
shape of 2/e em n eω  is in agreement with the solid curve of 
Fig. 7. The position of the maxima is about 2.3 times high-
er than the value of the linear regime which also agrees 
with experimental observations. 

4. Excitation of coupled phonon-ripplon modes 

If longitudinal phonons of the WS with a wavevector k  
defined by the geometry of the cell can be exited in an ex-
periment, the equation of motion for electron displace-
ments acquires an additional restoring force. Considering 
only a long wave-length excitation 1( ),k g  the conduc-
tivity of the WS can be represented as 

 
2

22 2 2 2
Re ( ) = ,

( ) /

e

e l

e n
k

m k

ν
σ

  ν + −Ω ω ω   


 (23) 

where ( )l kΩ  is the spectrum of longitudinal phonons of 
the WS. Here the nonlinear effect is included in definitions 
of Dν  ( = )D eν ν + ν  and  . In the nonlinear regime, the 
effective mass function   has new singular points near 

,= /r g mω ω , and, therefore, one can expect new resonanc-
es of Re ( )kσ  when 

 2 2( ) / = 0.l k−Ω ω  (24) 

The Eq. (24) is a secular equation for coupled phonon-
ripplon modes. Solutions of this equation were analyzed in 
Ref. 9. Here we investigate the frequency dependence of 
Reσ proportional to the energy absorbtion in a nonlinear 
regime. 

The spectrum of Re ( , )kσ ω  is shown in Fig. 8 for dif-
ferent values of the nonlinear parameter 1 1 0=a g s  and for 
two nearest wavevectors 1k  and 2k  corresponding to the 
conditions of the experiment [8]. At a low excitation level 

1( = 0.1)a  we have two pronounced maxima corresponding 
to conventional phonon-ripplon coupled modes. At a high-
er excitation level 1( = 0.5)a  these maxima are shifted in 
opposite (!) directions because they were initially placed at 
the opposite sides of the singular point 1/ = 1/ 2ω ω  

1 , 1
( = )r gω ω  where ( )′ω  rapidly changes as an odd func-
tion (see Fig. 2). For even higher excitation levels 1( = 1a  
and 1 = 2),a  new low-frequency resonances appear due to 
phonon-ripplon coupling near subharmonics of ,r gω . 
It should be noted that in a real experiment the inhomoge-
neous broadening could affect the new resonances espe-
cially for 2=k k . Anyway, the theoretical results presented 
in Fig. 8 explain why the positions of conventional pho-
non-ripplon resonances corresponding to 1k  and 2k  shift in 
opposite directions with an increase of the excitation pow-
er. The appearance of new low-frequency resonances is 
also in agreement with experimental observations [8]. 

5. Nonlinear magnetoconductivity 

Magnetoconductivity of the WS usually is measured 
under the condition that the Hall velocity is much higher 
than the drift velocity along the direction of the electric 
field (here the x-axis is fixed to be parallel to the electric 
field). In the presence of a strong magnetic field B  directed 
perpendicular to the surface, assuming ,= sin( )y y ss s tω , 
we have to consider , ,= sin( ) cos( )x x s x cs s t s tω + ω  to sat-
isfy equations of motion for electron displacements. 

Fig. 7. (Color online) The quantity 2/e em n eω  vs. the amplitude 
of the driving electric field calculated for three frequencies of 

( )E t . Other conditions are the same as in the experiment [20]. 

Fig. 8. (Color online) Frequency dependence of Re ( , )kσ ω  calcu-
lated for two lowest wavevectors 1k  (red curves) and 2k  (blue 
curves). For the sake of clarity, each curve of a higher excitation 
level is shifted up by 5 17 10− −⋅ Ω  with respect to the zero level of 
the previous curve. The damping parameter = 0.01′γ . 
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The amplitude of the Hall motion ,y ss  is much larger than 
,x ss  and ,x cs . Contrary to the mobility calculations given 

above, now we should describe two components of the 
force acting on the WS by surface dimples: ( )x

DF  and ( )y
DF . 

According to Eqs. (8) and (9), ( )x
DF  and ( )y

DF  contain fac-
tors xg  and yg , respectively, and, therefore, the function 

( )tg  should be treated differently when expanding it in 
small x xg s . We shall use superscripts ( )x  and ( )y  to dis-
tinguish these two cases. Considering the y  component of 
the force, we can neglect xs  as compared to ys  and use the 
following approximation ( )( ) ( )yt tg g   with 

 { }( )

0

ˆ ˆ= sin( ) sin ( ) ( ) ,gy
g g y y ye g s t s t d
∞

−γ τ  ω ω τ − − τ τ ∫g   

  (25) 

because the integral is an odd function of yg . 
The Eq. (25) can be calculated in the way similar to that 

described above. For major terms of the Fourier series, we 
have 

( )
2D

s, s,= cos( ) sin( ) ,
y

e y y y y
e

F
m s t s t

N
 − ν ω ω −χ ω ω   (26) 

where 

 
2

2
s,3

ˆ ˆ= ( , / , / ),
ˆ

e g
p p y y g g g

e g

n gU
g g s

m
ν ω ω γ ω

ρω
∑
g




 (27) 

 
2

2
s,4

ˆ ˆ= ( , / , / ),
ˆ

e g
p p y y g g g

e g

n gU
g g s

m
χ ω ω γ ω

ρω
∑
g




 (28) 

and = ,p x y  is a subscript. As compared to the mobility 
treatment, here we have a different parameter s,= y ya g s  
describing an excitation level. 

Considering the ( )x
DF  component, one cannot use the 

approximation of Eq. (25) because the integral is an even 
function of xg , and this approximation yields ( ) = 0x

DF . 
Therefore, in this case, ( )tg  should be expanded up to 
linear terms of x xg s : 

 [ ]( )

0

ˆ ˆsin( ) ( ) ( )gx
g g x x xe g s t s t
∞

−γ τω ω τ − − τ ×∫g   

 { }cos ( ) ( ) .y y yg s t s t d × − − τ τ   (29) 

Here the term independent of x xg s  [similar to that of 
Eq. (25)] is neglected because it gives zero result after 
summation over all g . Formally, we can represent 

( ) ( )( ) ( ) ( )y xt t t+g g g   , where the first term is im-
portant only for ( )y

DF  while the second term is important 
only for ( )x

DF . 
Inserting , ,= sin( ) cos( )x s x c xs s t s tω + ω  and =ys  

, sin( )y ss t= ω  into Eq. (29) gives two different terms. The 
term proportional ,s xs  can be represented as a derivative 
with respect to a, while the term proportional to ,c xs  can 

be represented as a time derivative. For the chosen de-
pendence ( )xs t , the WS velocity component along the x-
axis is a sum ( ) ( )x xu t u t′+ , where ,( ) = sin( )x x cu t s t−ω ω  
and ,( ) = cos( )x x su t s t′ ω ω  (here and below the stroke '  
means that a quantity originates from the sin-term of ).xs  
An analysis of the Fourier coefficients indicates that now 

( )x
DF  contains additional friction and inertia components 

 [ ]
( )

=
x

D
e x x x x x x x x

e

F
m u u u u

N
′ ′ ′ ′− ν + ν + χ + χ   (30) 

where xν  and xχ  are described by Eqs.(27) and (28)),  

 
2

2
,3= , , ,

ˆ ˆˆ
e g g

x x d y y s
g ge g

n gU
g g s

m

 γω′ν   ω ωρω  
∑
g




 (31) 

 
2

2
,4= , , ,

ˆ ˆˆ
e g g

x x d y y s
g ge g

n gU
g g s

m

 γω′χ   ω ωρω  
∑
g




 (32) 

and 

 1( , , ) = ( , , )d a Q a
a ν
∂

ω γ ω γ
ω ∂

 , (33) 

 2
1( , , ) = ( , , ).d Ma Q a

a
∂

ω γ − ω γ
∂ω

  (34) 

It should be noted that ( , , )d a ω γ  contains a derivative 
( , , ) /Q a aν∂ ω γ ∂  which at a certain condition can become 

negative causing instability and melting of the WS. 
In order to proceed with conductivity calculations, we 

have to introduce new dimensionless inertia functions 
= 1p p+ χ  and = 1x x′ ′+ χ . Then, the balance of ampli-

tudes is described by 

( ) ( )22 2 2 0

,
= .c

x y x y x y c x y
e s y

e E
m s
ω

′ ′ω ν + ν ω + ω −ω −ν ν
ω

      

  (35) 

In the limit of low ω and ν, this equation transforms into 
the usual Hall relationship , 0= /s ys cE Bω . The important 
point is that new functions x′ and x′ν  are much larger than 

x  and xν  respectively because d  and d  contain the 
derivative / a∂ ∂  instead of 1/ a  entering   and , while 
the parameter ,= y y sa g s  is very large due to a high Hall 
velocity (the first maximum of   occurs at 50).a ≈  

A procedure similar to that used for obtaining Eq. (22) 
yields the following equation for the real part of 
magnetoconductivity 

 
2

= e
xx

e

e n
m

σ ×  

 
2 2 2 2

2 2 2 2 2

( ) ( )
.

( ) ( )
y c x y x y y y x x

c x y x y x y y x

′ ′ν ω + ν ν + ν ω + ν ω −
×

′ ′ω + ν ν −ω +ω ν + ν

  

   
  

  (36) 
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To include the contribution from direct scattering of elec-
trons by thermally excited ripplons one should add eν  to 
each pν  and x′ν . This equation differs substantially from the 
conventional Drude form. The usual magnetoconductivity 
equation follows from Eq. (36) if we consider the low fre-
quency limit and assume that = =y x x′ν ν ν . As noted 
above, this simple approximation cannot be used here be-
cause x x′   and x x′ν ν  if , 1y y sg s  . 

In the conventional magnetoconductivity treatment based 
on the Drude equation, there is a strict relationship between 

xxσ  and = / ee mµ ν , and one can expect a certain accord-
ance of magnetoconductivity data with mobility data. The 
appearance of new quantities x′ and x′ν  which differ 
greatly from   and Dν  entering Eq. (22) means that such 
an accordance is impossible for the nonlinear WS transport 
over superfluid 4He. 

Typical dependencies of 1
xx
−σ  on the WS velocity 

,= y su sω  normalized to a ripplon velocity , 11
= /R r gu gω  

are shown in Fig. 9 for two electron densities. The condi-
tions of the system were chosen to be very close to those of 
the experiment [5,6]. It is important that 1

xx
−σ  rapidly falls 

down before the Bragg-Cherenkov threshold, approaching 
a minimum which is below the experimental data. After 
the minimum the dependence 1( )xx u−σ  is similar to the de-
pendence 1

in( )xx V−σ  observed in the experiment (assuming 
that yu  is approximately proportional to in )V : 1( )xx u−σ  in-
creases, attains a maximum and starts falling down again. 
The new fall ends by sharp changes of 1( )xx u−σ  leading to 
instability because xxσ  becomes negative when u  exceeds a 
certain threshold value thu  which is larger than the Bragg-
Cherenkov threshold. Before attaining negative values, 

1( )xx u−σ  demonstrates a vertical jump, which also agrees with 
experimental observations. The condition < 0xxσ  means 
that any density fluctuation grows [21] and, therefore, the 
long-range order is expected to be destroyed. The threshold 

value thu  changes in a non-monotonous way even for very 
small variations of en , and in the interval 

8 2 8 21 10 cm < < 1.3 10 cmen− −⋅ ⋅  the ratio th 1/u u  can sub-
stantially exceed the values indicated in Fig. 9. 

6. Conclusions 

In this work, we theoretically investigated the nonlinear 
responce of the liquid helium surface to an oscillating mo-
tion of the 2D Wigner solid on the surface of superfluid 
helium. The response force applied to the WS consists of 
two different terms representing the effective mass of sur-
face dimples and the kinetic friction. The electron pressure 
acting on the free surface is a nonlinear function of the 
electron current which induces superharmonic resonances 
of the ripplon field and the response force. As a result, the 
dimple mass and the kinetic friction change sharply when 
the WS is driven with a frequency which is close to sub-
harmonics of the frequency of a ripplon whose wave vector 
coincides with a reciprocal-lattice vector. In the limiting 
case of zero ripplon damping, the dimple mass and the 
effective collision frequency as functions of frequency 
have an infinite number of singular points. Therefore, any 
low driving frequency is close to a singular point, which 
means that WS transport over superfluid 4He is singular and 
a small variation in the electron density can cause large 
changes (even qualitative) in nonlinear transport properties 
of the WS. 

We found that our calculations of the nonlinear WS mo-
bility and the dimensionless mass function are in good quali-
tative accordance with experimental observations [8,20] 
which previously had no theoretical explanations. The anal-
ysis of nonlinear phonon-ripplon coupling given in this work 
explain observation of new low-frequency resonances [8] 
and the strange behavior of conventional phonon-ripplon 
coupled modes with an increase of the excitation signal. 

Considering magnetotransport of the 2D WS in an oscil-
lating electric field, we found that the nonlinear magneto-
conductivity tensor cannot be reduced to the conventional 
Drude form, and, therefore, an accordance between nonline-
ar mobility and magnetoconductivity data is impossible. In 
the direction of the driving electric field, the dimple mass 
and effective collision frequency acquire huge values ex-
ceeding greatly those of the mobility treatment. Moreover, 
at a sufficiently high electron velocity in the perpendicular 
direction, the magnetoconductivity becomes negative which 
causes instability and fluctuational melting of the WS. The 
dependence of nonlinear magnetoconductivity on the veloci-
ty amplitude obtained in this work can be used also as an 
alternative explanation of the remarkable dynamic transition 
observed long ago [5,6]. 
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