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We use variational approach to analyze the evolution of the dynamics of a neutral s-wave superconductor be-
tween BCS and BEC regimes. We consider 2D case, when BCS–BEC crossover occurs already at weak coupling 
and is governed by the ratio of the two scales — the Fermi energy EF and the bound state energy for two fermi-
ons in a vacuum, E0. BCS and BEC regimes correspond to EF >> E0 and EF << E0, respectively. We compute 
the spectrum of low-energy bosonic excitations and show that the velocity of phase fluctuations remains / 2Fv  
through BCS–BEC crossover. We also discuss the topological  Aφ  term in the effective action. 
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1. Preface 

It is our great pleasure to present this article for a spe-
cial issue in memory of Alexei Alexeevich Abrikosov. 
Alexei Alexeevich was one of the pioneers of field-theo-
retical approach to superconductivity and the co-author of 
the book [1] which educated at least two generations of 
physicists. He is also the father of vortex physics in super-
conductors. Our study is based on his works, and we hope 
it will be of interest to the readers of the special memorial 
issue of the Low Temperatures Physics. 

2. Introduction 

In this paper, we discuss the evolution of the dynamic 
properties of a neutral superconductor between BCS re-
gime, when bound pairs of fermions condense immediately 
once they form, and Bose–Einstein condensation (BEC) 
regime, when bound pairs of fermions form at a higher insT  
and condense at a smaller cT . Experimental evidence for 
preformed pairs has been reported for high- cT  cuprates [2] 
and, more recently, for Fe-based superconductor 1eSe eF Tx x−  
(Ref. 3). 

We consider a 2D s-wave superconductor and assume a 
rotational symmetry and 2 / (2 )k m  fermionic dispersion. In 
2D BCS–BEC crossover can be analyzed already within 
weak coupling, when calculations are under control [4–6]. 
Indeed, in 2D systems, two fermions form a bound state 
already at arbitrary small attraction g , with energy 

2/( )002 = 2 e N gE −Λ , where 0 = / (2 )N m π  is the free parti-
cle density of states per spin in 2D and Λ  is the upper cut-
off for the attraction [4–6]. In 3D systems, a bound state of 
two fermions emerges only once the interaction exceeds a 
certain cutoff, generally of the order of fermionic band-
width [8]. 

The evolution of the static properties of a superconduc-
tor between BCS and BEC regimes has been extensively 
discussed in the condensed matter context [4,5,7–23,42] 
and also for optical lattices of ultracold atoms [24,25]. The 
BCS–BEC crossover is determined by the interplay be-
tween 0E  and FE : the system is deep in the BCS regime 
when 0FE E  and deep in the BEC regime when 0 FE E . 
In the BCS regime, the pairing instability temperature and 
superconducting cT  are 1/2

0ins ( )FcT T E E≈  , and the pair-
ing gap ∆ also scales as 1/2

0( )FE E . In the BEC regime 
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ins 0 0/ log ( / )FT E E E , c FT E , and ∆ still scales as 
1/2

0( )FE E . The chemical potential 0( = 0) = FT E Eµ − , and 
it changes sign from positive to negative when 0E  becomes 
larger than FE . 

Here we focus on the evolution of the dynamical prop-
erties. We use variational approach, in which we assume 
that the order parameter ( , )∆ τr  slowly fluctuates around 
its equilibrium value 0∆ . We obtain the quadratic form in 
the variations 0( , )∆ τ − ∆r  and extract from it the spectrum 
of collective modes, including gapless Anderson–Bogo-
lubov–Goldstone (AGB) phase mode. In the BCS regime, 
the velocity of AGB excitations, AGBv , is the same as 
the velocity of a sound wave in the normal state: 

= / 2AGB Fv v , where Fv  is Fermi velocity. We argue 
that the value AGBv  remains / 2Fv  also in the BEC lim-
it. Within this approach, we also identify the linear in fre-
quency term, which corresponds to the ( , )i d d Aτ φ τ∫ r r  
term in the effective action. Such term is often referred to 
in the literature as the Berry phase term [26–31]. We obtain 
the variation of the prefactor A with respect to the variation 
of ∆. This allows us to express A as = / 2A n C+ , where n 
is the density (which may depend on time), up to a con-
stant C. A constant C is irrelevant if the phase φ is defined 
globally, i.e., has a certain value at any point in space, be-
cause then a prefactor can be pulled out from the d dτ∫ r , 
and the remaining term ( , )d dτφ τ∫ r r  reduces to an irrele-
vant boundary term, which does not affect the equation of 
motion. However, if the phase is not defined globally, as in 
the case of a moving Abrikosov vortex with coordinates 

( )X τ  and ( )Y τ , ( , ) ( )d d XY YXτφ τ ∝ −∫ r r    does not reduce 
to a boundary term and does affect the equation of motion. 
In particular, it gives rise to an effective Magnus force act-
ing on a vortex [26–37]. To obtain A exactly, one needs an 
alternative approach, in which one expands the effective 
action in terms of time derivatives of the order parameter 
[38]. This approach yields = 0C  in the absence of impurity 
scattering. 

The paper is organized as follows: in the next section 
we obtain, as a warm-up exercise, the expression for the 
condensation energy in the crossover between BCS and 
BEC regimes. In Sec. 4 we introduce the effective action 
of a superconductor in terms of its fluctuating order pa-
rameter ( , )∆ τr . In Sec. 5 we derive the dispersion relation 
for the AGB mode by expanding in small variations of ∆ 
relative to its equilibrium value. In Sec. 6 we obtain the 
term linear in the time derivative of the phase of the order 
parameter (the Berry phase term). We summarize our re-
sults in Sec. 7. 

3. The condensation energy 

We first consider the case when the order parameter 
( , )∆ τr  is a constant 0∆ . In this situation the pairing Hamil-

tonian has a conventional form 

 ( )† †
0 , ,, ,= k k kk k

k
H c c c c↑ ↓↑ ↓

ε + +∑   

 ( )† † †*
0 0 ,, , , ,kk k k

k
c c c c ↑↑ − ↓ − ↓

+ ∆ + ∆∑  (1) 

where operators †
,c σk  are Fourier transforms of † ( )σψ r , etc. 

and = =−ξ ξ ε − µk k k , 2= / 2mεk k . The difference be-
tween the ground state energy 0H〈 〉 in a superconductor 
(with the chemical potential 0= FE Eµ − ) and in a normal 
state (with the chemical potential 0 = FEµ ) is the conden-
sation energy condE . 

The ground state energy is often separated into kinetic 
and potential energy parts, kin pot=scE E E+ , although this 

splitting is a bit elusive for a quantum system of interacting 
fermions as, e.g., fermionic self-energy, which is a potential 
energy of a fermion in a field created by other fermions, 

contributes to the fermionic density †
,,( ) = kkn k c c ααα

〈 〉∑  

and, hence, to the kinetic energy. We follow earlier works 
and define the kinetic energy as kin = ( )kkE n kε∑ . The 

kinetic part of the ground state energy can be expressed via 
the normal Green’s function as 

 kin 2 2 2
, 0

= 2 ,
iE

ω

 ω + ξ
− ε  

ω + ∆ + ξ  
∑ k

k
k k

 (2) 

where at = 0T  and in thermodynamic limit 

2 3
0

,
= / (2 ) = / (2 )S d kd SN d d

ω
ω π ε ω π∑ ∫ ∫

k
,  

where S  is the area of a 2D sample. 
The potential energy is 

 0
pot 0 2 2 2

, 0
= .E

ω

∆
−∆

ω + ∆ + ξ
∑
k k

 (3) 

For a system with weak attraction g , the self-consistent 
equation on 0∆  is 

 0 0
2 2 2

, 0

1= .
g S ω

∆ ∆

ω + ∆ + ξ
∑

k k
 (4) 

Carrying out integration over the Matsubara frequency and 
over kξ  up to the cutoff Λ , and using 0 0= exp ( 2/ )E N gΛ − , 
we obtain the algebraic equation [4–6] 

 2 2
0 0= 2 ,Eµ + ∆ − µ  (5) 

which defines 0∆  in terms of the actual chemical potential 
µ and the two-particle bound state energy 0E . The self-
consistency equation for µ follows from the condition that 
the total number of fermions, including bound pairs, is 
conserved [5]. This yields 
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 2 2
0 = 2 .FEµ + ∆ + µ  (6) 

The solution of Eqs. (5), (6) is 

 0= ,FE Eµ −  0 0= 2 .FE E∆  (7) 

Like we said, BCS–BEC crossover occurs when 0E  be-
comes comparable to the Fermi energy, FE . BCS behavior 
is realized when the bound state energy 0E  is much smaller 
than FE , and BEC behavior is realized when 0 FE E . A 
negative µ at 0<FE E  implies that the Fermi momentum 

Fk , defined as position of the minimum of the fermionic 
dispersion 2 2

0= ( )k kE ε − µ + ∆ , is zero [12]. When the 
particle density is small, FE  is small compared to Λ , and 
the crossover occurs at small 0 /E Λ, i.e., already at weak 
coupling, when 0 1N g  . 

To obtain the condensation energy in BCS–BEC cross-
over regime, we write 

 

2
0

0 2 2 2
0

norm 0
0

2 ( ( ))
= ,

(2 ) ( )
2= .

(2 ) ( )

sc
id dE N S

d dE N S
i

ε ω + ε − µ + ∆ε ω
−

π ω + ∆ + ε − µ

ε ω ε
π ω − ε − µ

∫

∫
 (8) 

Evaluating the integrals separately for 0>FE E , when 
> 0µ , and for 0<FE E , when < 0µ , and in both cases 

using Eq. (7) to relate µ with 0∆ , we obtain after a straight-
forward algebra that the condensation energy 

 2 0
cond 0 0= , ,E SN f

µµ − ∆  ∆ ∆ 
 (9) 

where 

 
2

21 ( 1 )( , ) = .
4 2

x x xf x y y + +
+ −  (10) 

Using 2 1 = 2x x y+ +  (Eq. (6)) we obtain 

 1( , ) = ( ).
4

f x y y y x+ −  (11) 

Using next 2 2
0 0 0( ) = ( ) / = / = 1/ 4Fy x y E E− µ µ − µ ∆ ∆ , 

we find 

 1 1 1( , ) = = ,
4 4 2

f x y +  (12) 

Substituting into (9), we obtain that 

 
2
0

cond 0 0 0= (2 ) =
2FE SN E E SN

∆
− −  (13) 

in the whole BCS–BEC crossover region. 
A remark is in order about the order of integration over 

frequency and dispersion. The order does not matter as 
long as the integral over kε  is taken within finite limits, 
i.e., one can do d dω ε∫  in any order and the result will be 
the same. The situation gets more tricky when the integra-
tion over ε is extended to infinite limit. The most extreme 
case here is BCS limit, where µ ∆

, and the integration 

over =ξ ε − µ can be formally extended to d
∞

−∞
ξ∫ . In the 

BCS limit, the difference between µ and 0µ  is irrelevant, 
to leading order in /∆ µ , and condE  can be expressed as 

 
2 2

2
cond 0 0 2 2 2 2 2

0
=

2 ( )( )
d dE SN ω ξ ω − ξ

− ∆
π ω + ξ ω + ξ + ∆∫ . (14) 

At small ω and ξ , the would be divergence of the inte-
grand is regularized by 0∆ , but at large ω and ξ , the inte-
grand scales as 2 2 2 2 2( ) / ( )ω − ξ ω + ξ , i.e., the 2D integral 
is marginal by power counting. Such an integral is non-
singular, but its value depends on how the integration is 
performed. If we treat ω and ξ  as “equivalent” variables 
and evaluate the integral using polar coordinates, the inte-
gral vanishes because of 2 2ω − ξ  in the numerator. If we 
integrate over ω first or over ξ  first, both times in infinite 
limits, the result is finite, but obviously of a different sign. 
Because at = 0T  the integration over Matsubara frequency 
ω truly goes from −∞  to +∞ , while the integration over ξ  
actually holds in finite limits, which can only approximate-
ly be extended to ±∞ , the correct way to evaluate the inte-
gral in (14) is to integrate over frequency first. Integrating, 
we obtain 

 
2

2 0
cond 0 0 2 2 2 2 2

0

1=
2 (| | )

dE SN
∆ξ

− ∆
ξ + ∆ ξ + ξ + ∆

∫ . (15) 

The integrand scales as 31/ | |ξ  at large | |ξ , i.e., the in-
tegral converges and can be evaluated in infinite limits. By 
rescaling 0= xξ ∆ , one can immediately verify that the 
integral does not depend on 0∆ , and (15) reduces to 

 
2

2 2 2
cond 0 0 0 02

0

1= 1 =
21

dxE SN x x SN
x

∞
 − ∆ + − − ∆ 
 +

∫  .  

  (16) 

This agrees with (13). 
One can further check that the variation of the energy is 

exactly the same as the variation of the chemical potential 
2

0 0 0 0= ( ) = 2 ( ) / 2F F F Fn n E N E E E E Nδµ µ − + − ≡ ∆ . As 
a result, E N− µ  (equal to the Grand potential at = 0T ) does 
not change between the normal and the superconducting 
state. 

Note in passing that the self-consistency analysis can be 
straightforwardly extended to a finite T . In the BCS re-
gime, the onset temperatures pT  for the pairing and cT  for 
superconductivity (i.e., for pair coherence) are comparable 
and both scale as 0FE E  (more precisely, pT  almost coin-
cides with the mean-field cT , while the actual cT  of 
Berezinskii–Kosterlitz–Thouless transition is smaller by a 
numerical factor). In the BEC regime the two temperatures 
differ strongly: 0 0/ log ( / )p F FT E E E E 

, while c FT E , 
i.e., the ratio /c pT T  vanishes at 0FE →  (see, e.g., Ref. 6). 
When 0FE E , 0 ins= 1.76T∆ , like in BCS theory, when 

0FE E , 0∆  is much larger than cT , but much smaller 
than pT . 
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4. The effective action 

The effective action for an order parameter of an s-wave 
superconductor can be obtained by departing from a mi-
croscopic model with local four-fermion attractive interac-
tion g−  ( > 0g ) and decoupling four-fermion interaction 
via Hubbard–Stratonovich transformation [39], by intro-
ducing the pairing field ( , )r∆ τ . This procedure is well 
documented, and we just quote the results. 

The partition function Z  is expressed via the integral 
over the Grassmann fields as 

 [ , ]= e ,SZ d d − ψ ψψ ψ∫  (17) 

where = ( , )αψ ψ τr  and = ( , )αψ ψ τr  are spin-full coordi-
nate and time dependent Grassmann fields, and 

 ( )[ , ] = ( , ) ( , ) [ , ] .S d d Hα τ αψ ψ τ ψ τ ∂ ψ τ + ψ ψ∫ r r r  (18) 

Here τ is the imaginary (Matsubara) time = itτ  and 

 
2

†[ , ] = ( , ) ( , )
2

H
mσ σ

  ∇
ψ ψ ψ τ − − µ ψ τ −      

r r   

 † †( , ) ( , ) ( , ) ( , ).g ↓ ↑↑ ↓
− ψ τ ψ τ ψ τ ψ τr r r r  (19) 

The four-fermion interaction is decoupled by Hubbard–Stra-
tonovich transformation 

 

22
22 1e = e .

2

y yxax
a

dy
a

 
 − +
 
 

π ∫  (20) 

In our case we introduce two Hubbard–Stratonovich fields 
( , )∆ τr  and *( , )∆ τr  and rewrite the partition function as 

 
** [ , , , ]= e ,SZ d d d d − ψ ψ ∆ ∆ψ ψ ∆ ∆∫  (21) 

where now 

 *[ , , , ] =S ψ ψ ∆ ∆   
2

*| ( , ) |= ( , ) ( , ) [ , , , ] ,d d H
gα τ α

 ∆ τ
τ ψ τ ∂ ψ τ + + ψ ψ ∆ ∆  

 
∫

rr r r

  (22) 
and 

 
2

*[ , , , ] = ( , ) ( , )
2

H
mσ σ

  ∇
ψ ψ ∆ ∆ ψ τ − − µ ψ τ +     

r r   

( , ) ( , ) ( , ) ( , ) ( , ) ( , )∗
↑ ↓ ↓ ↑

+ ∆ τ ψ τ ψ τ + ∆ τ ψ τ ψ τ r r r r r r .  (23) 

The action *[ , , , ]S ψ ψ ∆ ∆  can be re-expressed in a more 
compact form by introducing Gorkov–Nambu spinor 

†= [ , ]T↑ ↓
ψ ψ ψ . Then 

 
2

* | ( , ) |[ , , , ] =S d d
g

∆ τ
ψ ψ ∆ ∆ τ −∫

rr   

 1( , ) ( , ; , ) ( , )d d d 'd G ' '−′ ′ ′− τ τ ψ τ τ τ ψ τ∫ ∫r r r r r r , (24) 

where the inverse Green’s function 1( , ; , )G '− ′τ τr r  is given by 

 1 ˆ ˆ( , ; , ) = [ ( ) ( , , )] ( ) ( ),G ' K−
τ′ ′ ′τ τ −∂ − − ∆ τ λ δ − δ τ − τr r r r r r   

  (25) 
with 

 
2

2

(1/ 2 ) 0ˆ ( ) = ,
0 (1/ 2 )

m
K

m

 − ∇ − µ
 
 ∇ + µ 

r   

and 

 
0 ( , )ˆ ( , ) = .
( , ) 0∗

∆ τ 
∆ τ  

∆ τ  

r
r

r
  

Integrating over ψ  and ψ  we then obtain 

 
** [ , ]= e SZ d d − ∆ ∆∆ ∆∫  (26) 

and 

 
2

* | ( , ) |[ , ] =S d d
g

∆ τ
∆ ∆ τ −∫

rr   

 1ˆlog ( , ; , ).d d d 'd Tr G '−′ ′− τ τ τ τ∫ ∫r r r r  (27) 

In Fourier space (momentum k and Matsubara frequency ω) 

 1 ( , )ˆ ( , ) = .
( , )

k

k

i k
G k

k i

∗
−

∗

 ω − ξ ∆ ω
 ω
 ∆ ω ω + ξ 

  

5. The dynamics of phase fluctuations 

We now expand the action in small variations of the or-
der parameter around a constant value, ( , ) = ( , )δ∆ τ ∆ τ −r r

0 ( ) ( ).− ∆ δ δ τr . The action to the second order in δ∆  has 
been obtained in the BCS–BEC crossover regime in 
Ref. 40, and our expression for the quadratic form in δ∆  in 
the action agrees with theirs. The authors of Ref. 40, how-
ever, didn’t extract the spectrum of the ABG mode from 
their data, nor they extracted the linear in Ω  (i.e., φ ) term 
in the action. Collecting all second-order contributions and 
Fourier transforming to momentum and Matsubara fre-
quency space, we obtain the variation of   in the form 

( )2 2

,

1= | | | | h.c. ,
2

A A B+ + − − + −
Ω

 δ δ∆ + δ∆ + δ∆ δ∆ + ∑
q

   

  (28) 
where 

 
= ( , ) =  ( , ) e ,

= ( , ) =  ( , ) e

i i

i i

d d t

d d t

− + Ωτ
+

− Ωτ
−

δ∆ δ∆ Ω τ δ∆

δ∆ δ∆ − −Ω τ δ∆

∫
∫

qr

qr

q r r

q r r
 (29) 

and
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/2 /2
2 2 2 2 2 2

, 0 /2 0 /2
2
0

2 2 2 2 2 2
, 0 /2 0 /2

( ( / 2) )( ( / 2) )1= ,
(( / 2) )(( / 2) )

= ,
(( / 2) )(( / 2) )

k

i i
A

g

B

± − ±
±

ω ± − ±

ω + − +

ω ± Ω + ξ − ω Ω + ξ
− ε

ω ± Ω + ∆ + ξ ω Ω + ∆ + ξ

∆

ω + Ω + ∆ + ξ ω − Ω + ∆ + ξ

∑

∑

k q k q
k

k q k q

k k q k q





 (30) 

 ______________________________________________  

where, we remind, 2= = / (2 )k k k mξ ε − µ − µ. 
The excitation spectrum is obtained from the condition 

2=A A B+ − , or, equivalently 

 
2

= 0.
2 2 2

A A A A A AB B+ − + − + −+ + −    + − −    
    

 (31) 

Evaluating the frequency and momentum integrals, we 
obtain 

 20
2 2 20 0

= 1
2 8

NA A B+ −
  + µ  − Ω + +
  ∆ µ + ∆  

  

 
22
0

2 2 2 2
0 0

1 =
m

   ∆µ   + µ + +    µ + ∆ µ + ∆   

q   

 
2

20
2

00
,

4
F

F
F

N E E
E E m

 
= Ω + 

+∆   

q   

 0 0
2 2 00

= 1 ... = ...,
2 2

F

F

N N EA A B
E E

+ −
 + µ + + + +
  +µ + ∆ 

  

 0 0
2 2 00

1 1= ,  = = ,
2 4 4 F

N NA A i A A
E E

+ −−
Ω − −

+µ + ∆
  

  (32) 
where dots stand for Ω  and q-dependent terms in 
( ) / 2A A B+ −+ + , which we do not need. Substituting this 
into (31), we obtain from (31) 

 
2 2

2 20

0 0
= 0.

16 ( ) 2
F

F

N
E E E

 
Ω + 

+   
qv

 (33) 

Converting this last expression into real frequencies 
( iΩ → − Ω), we see that the excitation spectrum has a gap-
less mode, whose velocity remains / 2Fv , no matter 
what the ratio of 0 / FE E  is. 

To see that this mode corresponds to phase fluctuations, 
we split the complex variations +δ∆  and −δ∆  into real and 
imaginary parts ±′δ∆  and ±′′δ∆  and re-express the action in 
Eq. (28) as 

 
2 2

2

,

1= ( )
2 q

B BA A
A A+ + − − −

+ +Ω

  
′ ′ ′δ δ∆ δ∆ + δ∆ − +       

∑   

 
2 2

2

,

1 ( ) .
2 q

B BA A
A A+ − − − −

+ +Ω

  
′′ ′′ ′′+ δ∆ δ∆ + δ∆ −       

∑  (34) 

This expression shows that there are gapped and gap-
less modes. Suppose that the equilibrium value of 0=∆ ∆  
is real. Then longitudinal variation ( , )r tδ∆  in coordinate 
is real and transverse one is imaginary. Using Eq. (29) we 
find that for longitudinal gap fluctuations –=+′ ′δ∆ −δ∆  
and =+ −′′ ′′δ∆ δ∆ , while for transverse (phase) fluctuations 

–=+′ ′δ∆ −δ∆  and =+ −′′ ′′δ∆ δ∆ . Using now the fact that at 
= 0Ω  and = 0q , = =A A B+ − , we immediately find from (31) 

that longitudinal fluctuations are gapped and phase fluctua-
tions are gapless, as they should be. 

The 2q  term in the integrand in Eq. (28) for δ  deter-
mines the phase stiffness. Taking 2q  term from A A+ −+  
in (29) and expressing ( , )r∆ τ  as 0( , ) = eir ∇φ∆ τ ∆ r , such 
that 0( , ) = ( )qδ∆ Ω ∆ δ − ∇φq , we obtain 

 2 20= ( ) = ( ) .
8 4

FN End
m m

δ ∇φ ∇φ∫ r  (35) 

We see that the phase stiffness also does not change in 
BCS–BEC crossover and remains the same as in BCS limit 
[41]. 

The expression for δ , Eqs. (28) and (30), have been 
obtained in [40], but the excitation spectrum have not been 
obtained there, although the dispersion of phase fluctua-
tions at arbitrary 0 / FE E  can be extracted from Eq. (26) in 
that paper. 

6. The term linear in τ∂ φ in the action 

The prefactors A+  and A− contain the piece linear in Ω , 
with opposite signs. The corresponding term in the action is 

 0
linear 2 2

0

=
8

N
iδ − ×

µ + ∆
   

 ( ) ( )2 2 2 2
– –

,
( ) ( ) ( ) ( ) =

q
+ +

Ω

 ′ ′ ′′ ′′× Ω δ∆ − δ∆ + δ∆ − δ∆  ∑   

 0
2 2

08

N
i= − ×

µ + ∆
  

[ ]– – – –
,

( )( ) ( )( ) .
q

+ + + +
Ω

′ ′ ′ ′ ′′ ′′ ′′ ′′× Ω δ∆ + δ∆ δ∆ − δ∆ + δ∆ + δ∆ δ∆ − δ∆∑   

  (36) 

For definiteness, let’s assume that ±δ∆  are real, i.e., 
=± +′δ∆ δ∆ . The transverse gap variation –+′ ′δ∆ − δ∆  can 

be expressed as the time variation of the phase of super-
conducting gap 0 0( , ) = e = (1 ...)ir iφτ∆ τ ∆ ∆ + φτ +



 , where 
( , )φ = φ τr  and = /φ ∂φ ∂τ . Taking the Fourier transform we 

find 
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 – 0= 2 sin .d+′ ′ ′ ′ ′δ∆ − δ∆ − φ∆ τ Ωτ τ∫  (37) 

The longitudinal gap variation can be approximated by its 
= 0q  and = 0Ω  value = ( , )d d′ ′δ∆ τδ∆ τ∫ r r . Substituting 

this into Eq. (36) we obtain 

 0 0
linear 2 2

0

= ( , ),
2

N
iQ d d

∆
′δ τ φδ∆ τ

µ + ∆
∫ r r   (38) 

where 

 = sin .
2

d dQ
′Ω τ ′ ′Ωτ Ωτ

π∫  (39) 

The integral contains the universal contribution = (2 / )Q π ×  
( )sin / = 1d× Ω Ω Ω∫  and parasitic high-energy contribu-

tion, which vanishes under proper regularization. Substitut-
ing = 1Q  into (38) we obtain 

 0 0
linear 2 2

0

= ( , ).
2

N
i d d

∆
′δ τ φδ∆ τ

µ + ∆
∫ r r   (40) 

We now observe that to leading order in ( , )′δ∆ τr , 

2 2
0 0( , ) /′∆ δ∆ τ µ + ∆r  is the variation of 2 2| ( , ) |µ + ∆ τr  

over ∆, keeping µ constant. As the consequence, Eq. (40) 
can be viewed as the variation of 

 2 20
linear 0

( , )= ( ) = ,
2

N
i d d C iA d d∂φ τ τ µ + ∆ + µ τφ   ∂τ∫ ∫

rr r    

  (41) 
where 

 2 20
0= ( ) ,

2
N

A C µ + ∆ + µ  
 (42) 

and ( )C µ  is some unknown constant, which depends on µ. 

Using 2 2
0 0 0= 2 =Fn N E N  µ + ∆ + µ 

 
, we can rewrite (42) as 

 = ( ),
2
nA C+ µ  (43) 

where ( )C µ  is some other constant. This constant cannot 
be obtained using the variational approach. In Ref. 38 we 
obtained a systematic expansion of the action in terms of 
the derivatives of the order parameter over the imaginary 
time. In this approach we computed the A  term explicitly 
and found that = 0C  in the limit when the energy differ-
ence between discrete levels in the vortex core well ex-
ceeds a scattering rate due to impurities. 

7. Conclusion 

In this paper we analyzed the evolution of the low-fre-
quency dynamics of collective excitations of an s-wave 
neutral superconductor at zero temperature, between BCS 
and BEC regimes. The two regimes correspond to small 
and large ratio of 0 / FE E , respectively, where FE  is the 
Fermi energy, and 0E  is the bound state energy for two 

particles. In 2D, bound state develops already at weak coupl-
ing, what allows one to analyze the crossover without in-
cluding strong coupling renormalizations. We found that 
the phase velocity of the collective excitations remains 

/ 2Fv  through the BCS–BEC crossover. The supercon-
ducting stiffness (the prefactor for 2( )∇φ  term in the ac-
tion) also does not change through the BCS–BEC crosso-
ver and remains equal to 0 / (4 ) = / (8 )FN E m n m , as in 
BCS limit. The action also contains the term linear in time 
derivative of φ — the Berry phase term. When φ is defined 
globally, i.e., has a certain value at any point in space, such 
term reduces to a boundary term and does not contribute 
to equation of motion, if the density is homogeneous. If 

= ( )n n τ , the linear in φ  term in the action is 
linear = ( / 2) ( )i d d nτ τ φ∫ ∫r  , where = ( , )φ φ τr . For the 

case of a moving vortex with coordinates ( )X τ  and ( )Y τ , 
φ is not uniquely defined at the center of the vortex core, 
i.e., for x X→  and y Y→ . In this situation 

( )d d d XY YXτφ ∝ τ −∫ ∫r    , which does not reduce to the 
boundary term. Then the Berry phase term in the action 
contributes to equation of motion even when the prefactor 
is a constant, and it becomes relevant to find the exact 
prefactor = / 2A n C+ . The exact prefactor A  has been 
computed by expanding the action in time derivatives of 
the order parameter [38]. This calculation yields = 0C . 

Our results for the expansion of the effective action in 
terms of ′δ∆  can be straightforwardly extended to other 
symmetries of the order parameter and to non-Galilean-
invariant dispersion. One can also use our formulas to ob-
tain terms with higher-order derivatives (these are terms 
with higher powers of Ω  and q in the integrand of Eq. (28)). 
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