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We derive a general expression for the entropy per particle as a function of chemical potential, temperature 
and gap magnitude for the single layer transition metal dichalcogenides. The electronic excitations in these mate-
rials can be approximately regarded as two species of the massive or gapped fermions. Inside the smaller gap 
there is a region with zero density of states where the dependence of the entropy per particle on the chemical po-
tential exhibits a huge dip-and-peak structure. The edge of the larger gap is accompanied by the discontinuity of 
the density of states that results in the peak in the dependence of the entropy per particle on the chemical poten-
tial. The specificity of the transition metal dichalcogenides makes possible the observation of these features at ra-
ther high temperatures order of 100 K. The influence of the uniaxial strain on the entropy per particle is dis-
cussed. 

PACS: 73.43.Cd Theory and modeling; 
68.60.Dv Thermal stability; thermal effects; 
65.40.gd Entropy. 

Keywords: Dirac materials, entropy, dichalcogenides. 
 

1. Introduction 

We devote our work to the memory of Alexei Alexeye-
vich Abrikosov. One of the topics of his research at the end 
of the last millennium [1] was the unusual magnetoresist-
ance, linear in magnetic field and positive, observed in 
nonstoichiometric silver chalcogenides. His approach was 
based on the assumption that these substances are gapless 
semiconductors with a linear energy spectrum discovered 
by himself with coauthors in sixties [2]. 

This work of Abrikosov had drawn attention of two au-
thors of the present work (VG and SS) to the various reali-
zations of the Dirac fermions in condensed matter systems. 
It was impossible to foresee that the discovery of graphene 
in 2004 would make the Dirac fermions in condensed mat-
ter one of the hottest topics of research for decades. 

Another lesson that one may learn studying the scien-
tific heritage of Alexei Abrikosov is to focus on the theo-
retical results that are closely related to experiment. He al-
ways taught that the article must be finished by the formula, 
which can be checked by experimentalist. Following his 
advice here we present a study of the entropy per particle 

= /s S n∂ ∂  (S is the entropy per unit volume and n is the elec-
tron density) for which a witty approach for experimental 
measurement was discovered by Kuntsevich et al. [3]. In 
spite of the fundamental character of entropy that charac-
terizes thermodynamics, heat transfer, thermoelectric prop-
erties of many-body systems, it is always hard to measure 
it directly. The recent experiment [3] is not an exception as 
the quantity measured directly in a 2D electron gas is the 
temperature derivative of the chemical potential, / T∂µ ∂ . 
The key idea of the authors of experiment [3] is that modu-
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lation of the sample temperature changes the chemical po-
tential and, hence, causes recharging of the gated structure, 
where the 2D electrons and the gate act as two plates of 
a capacitor. Therefore, / T∂µ ∂  is directly determined in the 
experiment from the measured recharging current. The 
Maxwell relation is then allows to equate both derivatives 

 = = .
T n

Ss
n T
∂ ∂µ   −   ∂ ∂   

 (1) 

It was theoretically predicted [4] that in a quasi-two-
dimensional electron gas (2DEG) with parabolic dispersion, 
the entropy per electron exhibits quantized peaks when the 
chemical potential crosses the size quantized levels. The 
amplitude of such peaks in the absence of scattering de-
pends only on the subband quantization number and is in-
dependent of material parameters, shape of the confining 
potential, electron effective mass, and temperature. 

Very recently we studied [5] the behavior of s as a func-
tion of chemical potential, temperature and gap magnitude 
for the gapped Dirac materials. A special attention was 
paid to low-buckled Dirac materials [6,7], e.g., silicene [8] 
and germanene [9]. The dispersion law in these materials 
writes 

 2 2 2 2( ) = ,s Fk kη ησ± + ∆ v  (2) 

where = 1η ±  and = 1σ ±  are the valley and spin indices, 
respectively. Here Fv  is the Fermi velocity, k is the wave-
vector, and the valley- and spin-dependent gap, =ησ∆
= z SO∆ −ησ∆ , where SO∆  is the material dependent spin-
orbit gap caused by a strong intrinsic spin-orbit interaction. 
It can have a relatively large value, e.g., 4.2 meVSO∆ ≈  in 
silicene and 11.8 meVSO∆ ≈  in germanene. The adjustable 
part of the gap =z zE d∆ , where 2d  is the separation be-
tween the two sublattices situated in different planes, can 
be tuned by applying an electric field zE . Accordingly, the 
density of states (DOS) reads 

 ( ) ( )2 2

=1
= ( ) ,

N

i
i

D f θ − ∆∑    (3) 

where the function ( )f   is assumed to be a continuous 
even function of energy ε and in the case of the discussed 
materials = 2N  and 2 2( ) = | | /( )Ff π   v . The DOS (3) has 
4 discontinuities at the points = i±∆ , where = 1i  cor-
responds to = = 1η σ ±  with 1 = | |SO z∆ ∆ −∆  and the se-
cond one with = 2i  corresponds to = = 1η −σ ±  with 

2 = | |z SO∆ ∆ + ∆ . 
One of the main results predicted in [5] is that for 

2=µ ±∆  ( , > 0SO z∆ ∆  was assumed) there is a peak of the 
height = 2 ln 2 / 3s ±  in entropy per particle when 0T → . 
The calculation of [5] shows that a peak at 2=µ ±∆  can 
still be seen for the temperature, 2

110T − ∆  for 2 1= 2∆ ∆ . 
Taking 2 SO∆ ∆ , one estimates that the necessary tem-
perature is the order of a few Kelvins. 

Layered transition-metal dichalcogenides (TMDCs) re-
present another class of materials that can be shaped into 
monolayers, where similar effects might be observed. Single 
layer TMDCs with the composition MX2 (where M = Mo, W 
is a transition metal, and X = S, Se, Te is a chalcogen atom) 
are truly two-dimensional (2D) semiconductors with a large 
band gap of the order of 1 eV to 2 eV (see, e.g., Refs. 10, 15). 
Consequently, one may expect that the peaks in entropy 
per particle can be seen at much higher temperatures. 

The paper is organized as follows. We begin by present-
ing in Sec. 2 the model describing single layer TMDCs. 
Since the full description of strained TMDCs is very com-
plicated, the effect of a uniform uniaxial strain is taken into 
account only via scalar potential spin-independent parts of 
the Hamiltonian. In Sec. 3 we discuss the DOS and present 
an analytical expression for the entropy per particle in 
TMDCs. The results for the obtained behavior of the en-
tropy per particle are discussed in Sec. 4 and conclusions 
are given in Sec. 5. 

2. Model 

The low-energy excitations in monolayer TMDCs can 
be described by the following model Hamiltonian density 
[11–15] 

 = 1

2

= ,

= ,D

H H

H H H

τ
τ ±

τ
τ +

∑
 (4) 

where = 1τ ±  is the valley index, DH τ  is the linear in mo-
mentum in Dirac-like part [16] and 2H  is the quadratic 
part. The Dirac Hamiltonian contains free massive Dirac 
fermion, 0H τ , and spin-orbit term SOH τ , 0=D SOH H Hτ τ τ+ . 
The first term is 

 0 = ( ) ,
2F x x y y zH k kτ ∆

τ σ + σ + σv  (5) 

σ are the Pauli matrices acting in the 2 2×  “band” space, 0σ  
is the unit matrix, the Fermi velocity 6= / 0.5·10 m/sF at v 

 
with t being the effective hopping integral and a is the lat-
tice constant, the major band gap 1–2 eV∆  . The inver-
sion symmetry breaking results in the spin-orbit part of the 
Hamiltonian 

 0 0= ,
2 2

z z
SO z c zH s sτ σ −σ σ + σ

λ τ + λ τv  (6) 

where zs  is the Pauli matrix for spin, 2 150–500 meVλv   
is the spin splitting at the valence band top caused by the 
spin orbit coupling, 2 cλ  is the spin splitting at the conduc-
tion band bottom. The DFT calculations [15] show that 
absolute value 2 | 2 | 3–50 meVcλ λv    and the sign of 

cλ  depends on the compound, > 0cλ  for MoX2 and 
< 0cλ  for WX2 compounds. 
The quadratic part of the Hamiltonian, 2H , contains the 

following diagonal terms 
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2 2

2 0= ( ),
4 z

e

kH
m

ασ +βσ
  (7) 

where em  is the free electron mass, and α ≠ β are constants 
of the order of 1. Finally, as discussed in [11–15] more 
accurate approximations also include the trigonal warping 
terms. 

The spin-up and spin-down components are completely 
decoupled, thus the spin index = 1σ ±  is a good quantum 
number. Neglecting the quadratic term (7) we obtain the 
dispersion laws for conduction and valence bands 

 2 2 2 2
, ( ) = ( ( ) ) / 4

2
c

c F v ck k
λ + λ

τσ ± + ∆ − λ −λ τσ

v
v v .  

  (8) 

This spectrum closely resembles that of described by Eq. (2) 
of massive fermions in low-buckled Dirac materials except 
to the first valley- and spin-dependent term in Eq. (8). In 
the first approximation one can neglect the conduction band 
splitting and take = 0cλ  to arrive at the simplest model [16], 
where the conduction bands remain spin degenerate at K  
and ′K  points and have small spin splitting quadratic in k , 
whereas the valence bands are completely split, 

 2 2 2 2
, ( ) = ( ) / 4

2c Fk k
λ

τσ ± + ∆ −λ τσ 

v
v vv . (9) 

Single layer TMDCs can sustain deformations higher 
than 10% [17,18]. The experimental possibility to tune the 
band gap with strain has been proven for MoS2 in [19–22] 
and in WS2 [23–25]. The full description of strained TMDCs 
is much more involved than that of graphene and includes 
five different fictitious gauge fields as well as scalar poten-
tials entering spin-independent and spin-dependent parts of 
the Hamiltonian [26]. Below we restrict ourselves by a 
qualitative estimate of the strain effect on the properties of 
TMDCs and consider only the scalar potential term in 
the spin-independent Hamiltonian (5), viz. 

 str 0 3
( ) ( ) ( ) ( )

= ,
2 2

D D D DH + − + −ε + ε ε − ε
σ + σ

   

 (10) 

where ε  is the strain tensor. The explicit expressions for 
the diagonal terms D±  are provided in [26] and here we 
only keep the linear in strain contributions neglecting the 
higher order terms 

 2= ( ),xx yyD ±
± α ε + ε  (11) 

with 2 = 3.07 eV+α −  and –
2 = 1.36 eVα − . The correspond-

ing parameters for the spin-dependent part are smaller by 
the three orders of magnitude, so that the corresponding 
term can be safely neglected. Assuming that the strain is a 
uniform uniaxial one, we can express D±  via xxε ≡ ε  ( > 0ε  
for tensile strain) and the Poisson’s ratio, ν, [27] as follows 

2= (1 )D ±
± α ε − ν . Thus in the present toy model the effect 

of strain is reduced to renormalization of the chemical po-
tential, 

 2 2(1 )( ) / 2+ −µ → µ− ε − ν α +α  (12) 

and the gap 

 2 2(1 )( ).+ −∆ → ∆ + ε − ν α −α  (13) 

Setting = 0ν  one may estimate that 1% tensile strain shifts 
µ by 22 meV and ∆ by 17 meV− , respectively. 

3. Entropy per particle 

As it was mentioned above, the entropy per particle is 
directly related to the temperature derivative of the chemi-
cal potential at the fixed density n (see Eq. (1)). The latter 
can be obtained using the thermodynamic identity 

 
1

= .
n T

n n
T T

−

µ

 ∂µ ∂ ∂   −     ∂ ∂ ∂µ     
 (14) 

At thermal equilibrium, the total density of electrons is 

 tot ( , ) = ( ) ,FDn T d D f
T

∞

−∞

−µ µ  
 ∫


   (15) 

where ( ) = 1/ [exp( ) 1]FDf x x +  is the Fermi–Dirac distribu-
tion function and we set = 1Bk . Note that in the presence 
of the electron-hole symmetry it is convenient to operate 
with the difference n between the densities of electrons 
and holes instead of the total density of electrons, as usual-
ly done for graphene [5]. 

One can show that in a close analogy with graphene and 
low-buckled Dirac materials the DOS for TMDCs describ-
ed by the approximate spectrum (8) is 

 2 2
2

= 1

1( ) = ( ) .
( )

i i i
iF

D
±

 − θ − − ∆ π
∑

v
      (16) 

Here we denoted = ( ) / 2i ci λ + λv  and = [ ( )] / 2i ci∆ ∆ − λ −λv  
with = 1i +  corresponding to = = 1τ σ ±  and = 1i −  corre-
sponding to = = 1τ −σ ± . 

Obviously for = 0cλ  the resulting DOS corresponds to 
the spectrum (9). The DOS (16) differs from the one de-
scribed by the equation (3) by the presence of the energy 
shift, i , in the modulus and in the argument of the θ-func-
tion. As a consequence the quantization of the entropy per 
particle, = 2 ln 2 / 3s ± , obtained in [5] for the low-buckled 
Dirac materials does not occur in TMDCs. 

The behavior of the DOS given by Eq. (16) is illustrated 
in Fig. 1. To be specific, we took the values = 1.79 eV∆ , 
2 = 0.43 eVλv  corresponding to the compound WS2. The 
constant 2 cλ  for WS2 is 0.03 eV−  [15]. In order to 
demonstrate the role of this parameter we choose the larger 
value of cλ . Furthermore, we consider three possible cases: 

= 0cλ  is shown by the dash-dotted (red) line, long dashed 
(green) line is for = 0.05 eVcλ , dotted (blue) line is for 
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= 0.05 eVcλ − . Note that in general ab initio density func-
tional theory calculations [15] predict that > 0cλ  and 

< 0cλ  correspond to MoX2 and WX2 compounds. Going 
from the negative to positive energies we observe the first 
discontinuity of the DOS at 1 = / 2 = 1.11 eV−

− −∆ −λ −v . 
It linearly goes down until the second discontinuity that 
occurs at 1 = / 2 = 0.68 eV− −∆ + λ −v . Their positions are 
independent of the value of cλ . The DOS is zero inside the 
gap between 1

−  and 1 = / 2 c
+
− ∆ −λ . Then it increases line-

arly until the discontinuity at the energy, 1 = / 2 c
+ ∆ + λ . 

Obviously for = 0cλ  the last two discontinuities become 
degenerate 1 1= = 0.895 eV+ +

−  . For a finite cλ  their order-
ing depends on the sign of cλ . 

The peculiarities of DOS in TMDCs beyond the Dirac 
approximations are discussed in [28,29]. The quadratic part 
of the Hamiltonian (7) results in the curving of the linear in 
energy pieces seen in Fig. 1. Such curving is not essential 
and the does not change the discontinuous character of the 
DOS function that is responsible for the peaks in ( )s µ . 

An advantage of the linearized approximation is that it 
resembles the case of gapped graphene and allows to ob-
tain rather simple analytical results. For example, one can 
derive the analytical expression for the particle density 
(carrier imbalance) [30] and find the derivative / T∂µ ∂  
using Eq. (14). Its generalization for the low-buckled Dirac 
materials was made in [5] (see also [31]). The expression 
for the particle density in TMDCs beyond the Dirac ap-
proximation is discussed in [29], but it is not very practical 
for obtaining the derivative / T∂µ ∂ . 

Differentiating Eq. (15) with respect to T  and µ and 
shifting the variable of integration i→ +    for each term 
in the DOS (16) one obtains 

tot
2 2 = 1

( ) ( )= = ( , , )
4 cosh

2

T i i
i

n d D n T
T T

T

∞

µ ±−∞

∂ −µ  µ ∆  −µ∂ 
∑∫

  


 (17) 

and 

 tot
2 = 1

( )= = ( , , ),
4 cosh

2

i i
T i

n d D n T
T

T

∞

µ
±−∞

∂ 
µ ∆  −µ∂µ 

∑∫
 


 (18) 

where =i iµ µ −   is the shifted chemical potential. Since 
the corresponding integrands in Eqs. (17) and (18) become 
formally the same as in the case of the low-buckled Dirac 
materials [5] we arrive at the final expressions 

2 2
1 sinh ( / ) sinh ( / )( , , ) =

cosh ( / ) cosh ( / )T
F

T Tn T
T T T
∆ µ ∆ + ∆ µ

µ ∆ + ∆ + µπ  v
 

2 2
22 Li e 2 Li eT TT T
T

µ+∆ µ−∆
−    ∆µ   + − − − + −

   
   

 

( 2 ) ln 2cosh ( 2 ) ln 2cosh
2 2T T
µ −∆ µ + ∆    − µ − ∆ − µ + ∆      

 

  (19) 

and 

 2 2
1( , , ) = tanh tanh

2 2 2F
n T

T Tµ
∆ µ − ∆ µ + ∆ µ ∆ − +   π  v

  

 ln 2cosh ln 2cosh .
2 2

T
T T

 µ − ∆ µ + ∆    + +     
    

 (20) 

2Li ( )x  in Eq. (19) is the dilogarithm function. As one can 
see, Eq. (20) is symmetric with respect to the transfor-
mation µ → −µ or ∆ → −∆ . On the other hand, Eq. (19) is 
antisymmetric under change µ → −µ and symmetric under 
∆ → −∆ . The last property is checked using the identity for 
the dilogarithm function 

 
2

2
2 2

1 1Li = Li ( ) ( ) .ln2 6
z z

z
π − − − − − 

 
 (21) 

4. Results 

Basing on obtained Eqs. (14), (19) and (20) one can in-
vestigate the dependence ( )s µ  for the different cases. 

Figure 2 is computed for the material parameters ∆, λv  
and cλ  chosen for WS2 compound. The dependence ( )s µ  
is shown for three values of the temperature: the solid (red) 
line is for = 20 KT , the dashed (green) line is for = 40 KT  
and the dotted (blue) line is for = 80 KT . The vertical lines 
are at the values of chemical potential 1 1 1 1= , , ,− − + +

− −µ      
that correspond to the discontinuities of the DOS. 

Comparing Fig. 2 with the results presented in [5], one 
can see that overall shape of ( )s µ  is similar for TMDCs 
and low-buckled Dirac materials, although the details are 
different. For example, inside the gap for 1 1[ , ]− +µ∈    the 
dependence of s on the chemical potential exhibits a huge 
dip-and-peak structure in the temperature vicinity of the 
point = ( ) / 2cµ λ + λv . (The value = 1i  corresponds to the 
smaller gap in Eq. (16).) This feature is even more pro-

Fig. 1. (Colour online) The DOS, ( )D  , in arbitrary units versus 
energy in eV. The parameters are = 1.79 eV∆ , 2 = 0.43 eVλv . 
The dash-dotted (red) line = 0cλ , long dashed (green) = 0.05 eVcλ , 
dotted (blue) = 0.05 eVcλ − . 
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nounced and sharp in TMDCs than in the other materials 
due to the larger ratio / T∆ . However in the low-buckled 
Dirac materials this structure was present in the tempera-
ture vicinity of the Dirac point, = 0µ , because the whole 
dependence ( )s µ  was an antisymmetric function of µ. This 
is obviously not the case of TMDCs. As discussed in [5] 
the peak inside the gap is mainly due to the specific de-
pendence of the chemical potential on the electron density. 

The presence of the second larger gap, 2 1>∆ ∆ , in sili-
cene and similar materials results in the emergence of the 
peak in ( )s µ  near the points 2=µ ±∆ . Similarly the discon-
tinuities of the DOS given by Eq. (16) at 1 1= ,− +

− −µ    asso-
ciated with a larger gap = 2i  also result in the peaks in ( )s µ . 
They are shown in the inserts in Fig. 2, because they are 
much smaller in height. As explained above the value of s 
at the peaks in the low-temperature limit is not equal to the 
quantized value 2 ln 2 / 3±  expected for the low-buckled 
Dirac materials [5]. It is essential that both peaks can still 
be seen at rather high temperatures. The peak on the right 

starts to smear at = 80 KT , while the peak on the left can 
still be seen. 

It is shown in Fig. 1 that for = 0cλ  the two discontinui-
ties of the DOS merge at 1 1= =+ +

−µ   . Then the positive 
peak in ( )s µ  disappears as can be seen on the dash-dotted 
(red) in Fig. 3. As in Fig. 2 the vertical lines correspond to 
the singularities of the DOS. There is only one singularity 
for the dash-dotted (red) line at 1 1= = = 0.895 eV+ +

−µ   . 
For nonzero cλ  there are two singularities shifted from this 
point to the left and right by | | = 0.05 eVcλ . In this case 
the peak at the larger energy = / 2 | |cµ ∆ + λ  is restored as 
can be seen on the dotted (blue) line for < 0cλ  and long 
dashed (green) line for > 0cλ . 

Finally we consider how a uniform uniaxial strain would 
affect the results shown in Fig. 2. We use Eqs. (12) and (13) 
to model the dependence of chemical potential and gap ∆ 
on the strain, respectively. The dependence ( )s µ  is shown 
for three values of the strain: the dotted (green) line is for 

= 0ε , the dashed (red) line is for = 2%ε  and the solid (blue) 
line is for = 4%ε . As expected, the presence of strain re-
sults in the movement of the peaks in ( )s µ . 

5. Conclusion 

In the present work we had derived a general expression 
for the entropy per particle as a function of the chemical 
potential, temperature, and gap magnitude for the single 
layer transition metal dichalcogenides subjected to the uni-
form uniaxial strain. The spectrum of quasiparticle excita-
tions of these materials is similar to that of the low-buckled 
Dirac materials, viz. there is the valley- and spin-dependent 
gap = [ ( )] / 2cτσ∆ ∆ − τσ λ −λv  in the spectrum. The differ-
ence from the latter is that the whole spectrum is also shifted 
by a valley- and spin-dependent constant = ( )/2cτσ τσ λ + λ v . 
This introduces the hole-electron asymmetry in the band 
structure of TMDCs and makes the resulting DOS (16) 

Fig. 2. (Colour online) The entropy per electron s  vs the chemi-
cal potential µ  in eV for three values of temperature. The parame-
ters are = 1.79 eV∆ , 2 = 0.43 eVλv  and = 0.015 eVcλ − . 

Fig. 3. (Colour online) The entropy per electron s vs the chemical 
potential µ  in eV for three values of = 0, 0.05 eVcλ 

. The pa-
rameters are = 1.79 eV∆ , 2 = 0.43 eVλv  and = 20 KT . 

Fig. 4. (Colour online) The entropy per electron s  vs the chemi-
cal potential µ  in eV for three values of strain. The parameters 
are = 1.79 eV∆ , 2 = 0.43 eVλv , = 0.015 eVcλ − , 2 = 3.07 eV+α − , 

2 = 1.36 eV−α −  and = 40 KT . 
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asymmetric function of the energy. When a small spin 
splitting at the conduction band bottom, cλ , is taken into 
consideration the DOS (16) has 4 discontinuities: 2 for the 
negative and 2 for the positive energies. The positions of 
these discontinuities are not just at the energies | |τσ± ∆  
with = = 1τ σ ±  and = = 1τ −σ ±  due to the energy shift τσ . 
It is demonstrated that inside the smaller gap there is a re-
gion with zero density of states where the dependence of 
the entropy per particle on the chemical potential exhibits 
a huge dip-and-peak structure. The edge of the larger gap 
is accompanied by the discontinuity of the density of states 
that results in the peak in the dependence of s on the chemi-
cal potential. The specifics of the transition metal dichal-
cogenides makes the found features to be of the “high tem-
perature” nature, since they can be observed at rather high 
temperatures up to 100 K. 

Since the Seebeck coefficient is related to the tempera-
ture derivative of the chemical potential, the strong peaks 
in the entropy per particle also indicate the same kind of 
singularities in the Seebeck coefficient in these materials. 
The latter can be expected at the edge of the gaps and has 
the origin similar to the electronic topological transitions 
[32–34]. 
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