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The superconducting state in uranium compounds UGe2, URhGe and UCoGe is formed at temperatures far 
below the Curie temperature pointing on nonconventional nature of superconductivity in these materials — 
namely the superconductivity with triplet pairing. The emergence of superconductivity is accompanied by the 
slight magnetization expulsion typical for the type-II superconductors. Following classic Abrikosov paper I de-
velop the theory of type-II superconductivity in application to two-band ferromagnetic metal with equal spin tri-
plet pairing. 

PACS: 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.); 
74.25.Dw Superconductivity phase diagrams; 
74.25.Ha Magnetic properties including vortex structures; 
74.70.Tx Heavy fermion superconductors. 
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1. Introduction

The investigations of interplay between superconductiv-
ity and magnetism have long story. Usually ferromagnetic 
ordering suppresses the superconducting state because the 
exchange field exceeds the paramagnetic limit field and 
aligns the electron spins directed oppositely in Cooper 
pairs. Nevertheless, singlet superconductivity can coexist 
with ferromagnetism when the critical temperature of the 
transition to the superconducting state is greater than the 
Curie temperature, as is the case with ternary compounds 
investigated in the 1980s (for review see [1]). The coexist-
ence occurs in a form crypto-ferromagnetic superconduct-
ing state characterized by appearance a periodic magnetic 
structure with period larger than the interatomic distance, 
but smaller than the superconducting coherence length, 
which weakens the depairing effect of the exchange field. 

The superconductivity in the more recently discovered 
uranium compounds UGe2, URhGe and UCoGe [2–4] ex-
hibits quite different properties (see the experimental [5] 
and theoretical reviews [6] and references therein). Here 
the superconducting states exist at temperatures far below 
the Curie temperature (Fig. 1) and in the magnetic fields 
strongly exceeding the paramagnetic limit indicating that 
we deal with the triplet pairing. The general form of super-
conducting order parameters in these orthorhombic com-

pounds is found in the paper [7]. Similar to the superfluid 
3He the pairing interaction is caused by the magnetic fluc-
tuations. The theory based on this mechanism and on the 
symmetry considerations allows explain many specific 
properties of these materials [6]. 

Quite recently there was proposed the phenomenologi-
cal description of the phase diagram of UCoGe [8,9] where 
the ferromagnetism is suppressed by pressure whereas the 
superconductivity arising at small pressures inside of the 
ferromagnetic state continues to exist at high pressures in 
the paramagnetic state, Fig. 1(c). The theory was devel-
oped as if it would be in the neutral superfluid. This ap-
proach is justified by the smallness of the internal magnetic 
field interacting with the electron charges that slightly 
changes the critical temperature of transition to the super-
conducting state. The effects caused by the screening 
supercurrents has been taken into account only qualitative-
ly [9]. This has allowed to explain the significant differ-
ence between the transition from the ferromagnetic to the 
ferromagnetic superconducting state and the transition 
from the superconducting to the ferromagnetic supercon-
ducting state. However, the developed theory was not 
completely consistent. 

All the aforementioned superconductors are related to 
the type-II superconducting materials [10]. The internal 
magnetic fields in all of them exceed the corresponding 
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lower critical fields 1cH  [5,11–13]. Hence, at temperature 
decrease the phase transition from the ferromagnetic to the 
ferromagnetic superconducting state occurs to the mixed 
state characterized by the emergence of Abrikosov vorti-
ces. Accordingly, the proper theory of this phase transition 

must be formulated in frame Ginzburg–Landau–Abrikosov 
theory of type-II superconductivity [14]. In the application 
to ferromagnetic conventional superconductors with singlet 
pairing such approach has been developed first in the pa-
pers [15,16]. The corresponding theory for the nonmagnet-
ic superconductors with equal spin triplet pairing in ab-
sence of spin-orbital coupling has been presented in the 
paper [17]. 

Here, I develop the Abrikosov theory of type-II super-
conductivity for equal spin pairing triplet superconducting 
state in two band ferromagnetic metal. First, I describe the 
phase transition from ferromagnetic to superconducting 
ferromagnetic state that occurs in all three uranium com-
pounds (see Fig. 1). Then I consider the solution for isolat-
ed vortex in such type superconductors and the transition 
from the Meissner to the mixed superconducting state 
which is realized in UCoGe. In my derivation I use the 
pedagogic presentation of classic Abrikosov theory per-
formed by N.B. Kopnin [18]. 

2. Model 

The triplet-pairing superconducting state order parame-
ter in two-band (spin-up, spin-down) ferromagnet is given 
by the complex spin-vector [6,19] 

 01 ˆ ˆ ˆ ˆ ˆ( , ) = ( , )( ) ( , )( ) ( , ) ,
2

x iy x iy z↑ ↓ −∆ + + ∆ − + ∆  d k r k r k r k r  

  (1) 

where ( , )↑∆ k r , ( , , )↓∆ r k r , 0 ( , )∆ k r  are the amplitudes 
of spin-up, spin-down and zero-spin of superconducting 
order parameter depending on the Cooper pair centre of 
gravity coordinate r and the common direction of momen-
tum k of pairing electrons. In the orthorhombic ferromagnets 
with easy axis along ẑ  direction there are only two super-
conducting states A and B with different critical temperature 
[7]. We will work with equal spin pairing B-state with the 
order parameter 

 1 2
ˆ ˆ( , ) = ( ), ( , ) = ( )B z B zk k↑ ↓∆ η ∆ ηk r r k r r . (2) 

The Ginzburg–Landau (GL) free energy functional is 

 { 2 4= ij i jF dV M M D M Mα + β + ∇ ∇ +∫   

 2 2 2 2
1 1 2 1 1 2ˆ( )( ) ( )z+ α η + η + γ η − η +B   

 4 4 2 2* *
2 1 2 1 2 1 1 2 2 1 2( ) ( )+ γ η η + η η + β η + η + β η η +   

   
2

**
1 1 1 2 2 2( ) ( ) ,

8ij i j ij i jK D D K D D
+ η η + η η + − π 

B BM  (3) 

where M  is the density of magnetic moment component 
along the easy axis, B = curl A is the magnetic induction, 

 0 1 10 0= ( ),     = ( ),C scT T T Tα α − α α −′  (4) 

Fig. 1. (Color online) Temperature-pressure phase diagram of 
UGe2 (a), URhGe (b), and UCoGe (c). Notations FM, SC and PM 
have been used for ferromagnetic, superconducting and paramag-
netic phases, correspondingly, TCP is the tricritical point, CEP is 
the critical end point [5]. 
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( )CT P′  is the pressure dependent “Curie temperature” 
(see [15]) and 0 ( )scT P  is the formal critical temperature of 
superconducting transition in the single band (say just 
spin-up) case. = (2 / )i e c− ∇ −D A  is the long derivative. 
In a single domain ferromagnet in the absence of external 
field = 0H  or at the external field directed along the axis 
of spontaneous magnetization ẑ  the order parameter com-
ponents are the z-coordinate independent and the long de-
rivatives are 

 2= ,  = .x y y
eD i D i A

x y c
∂ ∂

− − −
∂ ∂
 

 (5) 

For the superconducting state (2) the gradient terms have 
the following form 

 * *
1 1 1 1 1 1( ) ( ) (1  2).xx x x yy y yK D D K D Dη η + η η + →   

The upper critical field problem in two band superconductor 
with different stiffness constants 1xxK  and 1yyK  can be 
solved only numerically or by means of variation approach 
used in the paper by Zhitomirsky and Dao [20]. With purpose 
to develop the analytic treatment we neglect the 

orthorhombicity puting 1 1 1= = ,xx yyK K K  2 2 2= =xx yyK K K  
and also = = .xx yyD D D  

An analytic solution can be found also for the equal 
spin pairing A-state 

 1 2
ˆ ˆ( , ) = ( ), ( , ) = ( )x xk k↑ ↓∆ η ∆ ηk r r k r r  (6) 

discussed in the papers [8,9]. Then, however, due to the 
gradient mixing terms like *

1 1( )x x y yD Dη η  the order pa-
rameter (6) acquires (see [6]) more general form 

 1 1
ˆ ˆ( , ) = ( ) ( ),x x y yk ik↑∆ η + ηk r r r  (7) 

 2 2
ˆ ˆ( , ) = ( ) ( ).x x y yk ik↓∆ η + ηk r r r  (8) 

Thus, instead two GL equations for the superconducting 
order parameters one has to solve four of them. The linear 
equations for 1 1 2 2, , ,x y x yη η η η  can be solved making use 
the generalization on two band case the problem of the 
upper critical field in uniaxial superconductor with two-
component order parameter under magnetic field directed 
along four-fold axis (see [19]). This, however, leads to 
very cumbersome equations and we prefer to work with the 
state given by Eq. (2) and the free energy functional 

____________________________________________________ 

 { 2 4 2 2= ( ) ( )x yF dV M M D M D Mα + β + ∇ + ∇ +∫   

 2 2 2 2 4 4 2 2* *
1 1 2 1 1 2 2 1 2 1 2 1 1 2 2 1 2ˆ( ) ( )( ) ( ) ( )z+ α η + η + γ η − η + γ η η + η η + β η + η + β η η +B   

 
2

* * * *
1 1 1 1 1 2 2 2 2 2[( ) ( ) ] [( ) ( ) ] .

8x x y y x x y yK D D D D K D D D D
+ η η + η η + η η + η η + − π 

B BM  (9) 

_______________________________________________ 

3. Transition from ferromagnetic to superconducting 
ferromagnetic state 

In URhGe and UCoGe below phase transition in ferro-
magnetic state the magnetic moment acquires the finite 
value, the magnetic induction is = 4B Mπ  and a super-
conducting ordering is absent  

   2 2 0
0 1 2

( ( ))
= ( ( )) = ,  = = 0,

2
CT T P

M M T
α −

− η η
β

 (10) 

where the Curie temperature is 

 
0

2=C CT T π
+′

α
. (11) 

In presence of an external field = 4H B M− π  parallel to 
spontaneous magnetization the magnetic moment is deter-
mined by the equation 

 3
0 02 4 = .M M Hα + β  (12) 

At arbitrary temperatures below the Curie temperature, one 
can work with the GL formula for 0M  only qualitatively. 
Instead, it is possible to use the known experimental values 
of magnetization 0 ( , ).M H T  The same is true for UGe2 
where the superconductivity arises below the first order 
phase transition to ferromagnetic state (Fig. 1). 

At the subsequent phase transition the superconducting 
order parameter amplitudes 1 2,η η  appear. They are de-
termined by the Ginzburg–Landau equations obtained by 
variation of Eq. (9) in respect to 1 2, :η η  

 
22

1 1 1 1 12
2( ) ieBB K x

y cx

  ∂ ∂ α + γ η − + − η +  ∂  ∂ 

  

 2 2
2 2 1 1 1 2 1 22 = 0+ γ η + β η η + β η η , (13) 

 
22

2 1 1 1 2 2 22
2( ) ieBB K x

y cx

  ∂ ∂ γ η + α − γ η − + − η +  ∂  ∂ 

  

 2 2
1 2 2 2 1 22 = 0+ β η η + β η η . (14) 
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3.1. Upper critical field 

The transition to the superconducting state occurs at 
2 ( )cB T  which is the eigen value of the corresponding line-

ar equations 

 
22

2
1 1 2 10 1 2

2
( ) c

c
ieB

B K x
y cx

  ∂ ∂ α + γ η − + − ×  ∂  ∂ 

  

 10 2 20 = 0,× η + γ η  (15) 

 2 10 1 1 2 20( )cBγ η + α − γ η −   

 
22

2
2 202

2
= 0.cieB

K x
y cx

  ∂ ∂ − + − η  ∂  ∂ 

 (16) 

The solution of this system for the lowest eigen value is 

     
2

2 0
0

0 2
= exp ,      = 1,2,

2
c

i i
c

B q
C x i

B

  π Φ η − − Φ π   
 (17) 

where 0 = /c eΦ π  is the magnetic flux quantum. Substitu-
tion of solutions back to equations yields the system of 
linear equations for coefficients 1 2,C C . The equality of the 
determinant of this system to zero yields the equation for 
the 2 ( )cB T  

 
2

2 1 1 2 1 1 2 2

0 2 1 0

2 2c c c cB B B B
K K

   π α + γ α − γ π
+ − +   Φ Φ  

  

 
2 2 2
1 1 2 2

1 2

( )
= 0cB

K K
α − γ − γ

+ . (18) 

It contains the terms 1 1 2 =cBα ± γ 10 0 1 2 10( / )sc cT T Bα − ± γ α  
corresponding to the shifts of critical temperature in spin-up 
and spin-down bands. In a magnetic (nonunitary) supercon-
ducting state the shift of 0scT  is much smaller than the tem-
perature 0scT  (see [19]): 

 1 2 2
0

10
,c B c

sc
F

B B
T

γ µ
≈

α ε
 (19) 

where Bµ  is the Bohr magneton and Fε  is the Fermi ener-
gy. In neglect these terms 

 
1/22 2

0 1 1 1 1 2
2

2 1 2 1 1 2
( ) = .

2 2 2 2 2cB T
K K K K K K

   Φ α α α α γ  − − + − +  π      
  (20) 

In the absence of external field the ferromagnet volume is 
filled by the domains with opposite magnetization orienta-
tion and the equation 

 2 0( ) = 4 ( )c sc scB T M Tπ  (21) 

determines the critical temperature scT  of transition to the 
superconducting state. When the external field increases 
the parallel to the field domains are expanded, the antipar-
allel domains are shrunk and the critical temperature does 
not change till 0= 4H Mπ  [21]. When the external field 
exceeds 04 Mπ  the multi-domain ferromagnetic structure 
is suppressed. We will develop theory for phase transition 
to superconducting state in single ferromagnetic domain 
with magnetization parallel to the external field where the 
upper critical field at temperatures below scT  is deter-
mined by equation 

 2 2 0( ) = ( ) 4 ( ),c cH T B T M T− π  (22) 

that near the critical temperature is 

   2 0
2

( ( ) 4 ( ))
( ) = ( ).

=
c

c sc
sc

B T M T
H T T T

T TT
∂ − π

−
∂

 (23) 

One must remember, however, that the actual upper critical 
field in multi-domain specimen at given temperature < scT T  
is shifted up on 4 Mπ  in respect to this value (see Fig. 2). 

I will not write the explicit formula for scT  and for 

2
=

( )c
T Tsc

B T
T

∂
∂

. They are quite cumbersome even in neg-

ligence of temperature and field dependence of magnetiza-
tion 0M . A reader can easily obtain them. 

3.2. Vortex lattice 

The solution (17) is centered at 2= /2 =cx cq eB

0 2/2 .cq B= Φ π  The full solution is a linear combination of 
these solutions for different q. One can construct a periodic 
solution of the form 

Fig. 2. (Color online) Schematic upper critical field Hc2(T) tem-
perature dependence: for single domain — lower (blue) curve and 
for multi-domain specimen — upper (red) curve. 
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2
2 0

0 ,
0 2

= exp ,    = 1,2.
2

c
i i n

cn

B qn
C iqny x i

B

  π Φ η − − Φ π   
∑  

  (24) 

It is periodic in y with period 0 = 2 /Y qπ . It would be 
periodic in x as well if the coefficients satisfy the periodici-
ty condition , ,=i n p i nC C+ , where p is an integer. Then, 

 0 0
2

, = e ( , )
2

ipqy
i i

c

p cqx y x y
eB

 
η + η  

 . (25) 

The simplest case is realized when all the coefficients 
=in iC C  are n-independent. The array forms a rectangular 

lattice. 
The modulus of these distributions are double periodic 

with periods 

 0 0
2

2= ,    = .
2 c

cqX Y
eB q

π

  

The unit cell area of rectangular lattice is 

 20
0 0

2
= = 2 ,

c
X Y

B
Φ

πξ  (26) 

which corresponds to exactly one flux quantum per unit 
cell. If q is chosen in such a way that 0 0=X Y , we obtain a 
square lattice. 

3.3. Magnetization decrease below transition to the 
superconducting ferromagnetic state 

At magnetic field H  slightly below 2 ( )cH T  there is 
the screening of magnetization by superconducting cur-
rents. This case the superconducting order parameter am-
plitudes and the ferromagnetic moment acquire the small 
correction  

   1 10 1 2 20 2 0 ˆ ˆ= ,   = ,    = ( ) .M z m r zη η + η η η + η +M   (27) 

The same is true for the vector-potential which is 

 0 1 0 2= ,    = (0, ,0),cB x+A A A A   

 1 0 2= (0, ( 4 ) ,0) ( ).cH M B x+ π − + δA A r  (28) 

The corresponding magnetic induction is  

 0 ˆ ˆ= curl = ( 4 ) ( ) .H M z B z+ π + δB A r  (29) 

It is important to note that in the ferromagnetic supercon-
ducting mixed state the specimen magnetization is not 
equal to 0= ( )M M m r+  but 

 0
( ) ( )= =

4 4
B H BM〈 − 〉 〈δ 〉

+
π π

r
 , (30) 

where 1( ) = ( )S dxdy−〈 〉 ∫   is the space average over the 
surface perpendicular to spontaneous magnetization. 

By variation of the functional Eq. (9) in respect to the 
vector potential we obtain the Maxwell equation 

____________________________________________________ 

  2 2 * *
1 10 20 1 10 0 10 10 0 10

2 2 2ˆcurl[ 4 4 ( )] = = ( ) ( ) (1 2)
4
c ie ie iez j K

c c c
 δ − π + π γ η − η − η ∇ − η − η ∇ + η + → π  

B m A A
  

 (31) 

or 

 
2 2 *1 10 20 10 10*

1 10 10
[ 4 4 ( )] 2= = (1 2) ,

4 x
B mc ej K i i

y x x

  ∂ δ − π + πγ η − η ∂η ∂η − η − η + →  π ∂ ∂ ∂   

 (32) 

2 2
1 10 20 2 2* *

1 10 10 10 10
0 0

[ 4 4 ( )] 2 22= = ( ) ( ) (1 2) .
4

c c
y

B m B Bc ej K i i
x x x

 ∂ δ − π + πγ η − η  π π∂ ∂ − − η + η − η − η + →  π ∂ ∂ Φ ∂ Φ   

  

  (33) 
_______________________________________________ 

With help of relation 

 0 2
0

0

2
=i c

i
B

i
x y

 ∂η π∂
− − η ∂ ∂ Φ 

  

one can rewrite the Maxwell equations as 

 
2 2

1 10 20[ 4 4 ( )]
=

B m
y

∂ δ − π + πγ η − η
∂

  

 
2 2

10 20
1 2

0

24 ,K K
y y

 ∂ η ∂ ηπ
= − π + 

Φ ∂ ∂  
  (34) 

 
2 2

1 10 20[ 4 4 ( )]
=

B m
x

∂ δ − π + πγ η − η
∂

  

 
2 2

10 20
1 2

0

24 .K K
x x

 ∂ η ∂ ηπ
= − π + 

Φ ∂ ∂  
 (35) 

Hence, 

 ( )2 2
1 10 2 20

0

2= 4B K Kπ
δ − π η + η +

Φ
  

 2 2
1 10 204 4 ( ).m+ π − πγ η − η  (36) 
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Now, let us find ( )m r . Below scT  the magnetization is 
determined from the equation 

 32 4 2 = 0,M M D M Bα + β − ∆ −  (37) 

obtained by the variation of the functional Eq. (9) in respect 
to M. Here ∆  is the 2D Laplacean. Hence, the correction to 
magnetization 0=m M M−  is determined by the equation 

 2
0(2 12 2 ) =M D m Bα + β − ∆ δ  (38) 

which, taking into account Eq. (36), can be rewritten as 
 

 2(2 12 2 ) =M D mα + β − ∆   

2 2 2 2
1 10 2 20 1 10 20

0

24 ( ) 4 ( ),K Kπ
= − π η + η − πγ η − η

Φ
  

  (39) 

where 0 0 0= ( ) = ( 2 / )C CT T T Tα α − α − − π α′ . The mag-
netic coherence length is much shorter than the size of vor-
tex lattice cell 

 
2

= << .
6

m
D

M
ξ ξ

α + β

  

Hence, 
____________________________________________________ 

 
( )2 2 2 2 2

1 10 2 20 1 10 20
0

2
0

(2 ) 2 ( )
( ) = .

6

K K
m

M

π η + η + πγ η − η
Φ

−
α + β

r


 (40) 

According to Eq. (30) the magnetization decrease below transition to the superconducting state is 

 ( ) 2 22 2
0 1 10 2 20 1 10 20

0

( ) 2= = | ( ) | | ( ) | ( ) ( ) .
4
BM K K m〈δ 〉 π

− − η + η − + γ η − η
π Φ
r r r r  (41) 

In absence of an external field this space average ( )scT T∝ − . It can be calculated substituting the functions 10 20,η η  in 
the GL functional and then finding its stationary solutions in respect of constant 1C  and 2C  at 0= 4B Mπ . For phase tran-
sition in an external field one can express this average through the difference 2cH H−  like it was done in the classic 
Abrikosov paper [14]. 

To find the average we are searching for let us write the GL equations (13), (14) in the matrix form 

 

2 2 21 1 1 2 1 1 2 2 11
2 22 2 1 2 2 1 22 1 1 2

2( ) ;   (2 ) 0
= .

2 0(2 );   ( )

ieB K
c

ieB K
c

 α + γ − ∇ − γ  β η + β η ηη     
 +    η     β η + β η η   γ α − γ − ∇ − 

A

A





 (42) 

Using the corresponding linear equations (15), (16) one can obtain the equations for the small corrections 

 

2
1 1 2 1 0 2 1 1 0 10 1 0 1 10

1

2 2
2 1 1 2 2 0 2 1 0 20 2 0 1 20

2 2 2( ) ;   ( ) ( )2
2 2 2;   ( ) ( ) ( )

c

c

ie ie ieB K K Kiec c c
ie ie iecB K K K
c c c

   α + γ − ∇ − γ ∇ − η + ∇ − ηη    
−    η    γ α − γ − ∇ − ∇ − η + ∇ − η   

A A A A A

A A A A A



  





  

+  

 
2 2

1 10 2 20 1010
1 2 2 220 10 20 2 1 20

(2 ) 0
( ) =

0(2 )
cH H B

 β η + β η ηη    + γ − + δ +   −η     β η + β η η 
. (43) 

Let us multiply this column from the left on the line * *
10 20( , )η η  and integrate the obtained product over the surface per-

pendicular to spontaneous magnetization 1() = ()S dxdy−〈 〉 ∫ . Then after integrating by parts we find that the integral from 
the first term in the product is equal to zero and the other terms are collected into the following expression 

 2 2 4 4 2 2
1 1 2 10 20 1 10 20 2 10 20

1 ( ) ( )( ) 2 ( ) 2 = 0.cH H B
c

− + γ − + δ η − η + β η + η + β η ηjA  (44) 

The current density is 2 2
1 10 20ˆ= ( /4 )curl( 4 4 ( )).c zπ δ − π + π γ η − ηj B m  Integrating the first term by parts we obtain 

 4 4 2 2
2 1 10 20 2 10 20

1 ( 4 )( ) 2 ( ) 2 = 0,
4 cB m H H B− δ − π − + δ + β η + η + β η η

π
 (45) 
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and using (36) 

  ( )2 2 2 2 4 4 2 2
1 10 2 20 1 10 20 2 1 10 20 2 10 20

0

2 2 2 = 0.( ) ( ) ( )cK K H H B
 π

η + η + γ η − η − + δ + β η + η + β η η Φ 
  

  (46) 
_______________________________________________ 

For the more compact presentation I introduce the follow-
ing notations for the coordinate dependent combinations 

 ( ) ( )2 2 2 2
2 1 10 2 20 1 10 20

0

2( ) = ,C K Kπ
η + η + γ η − η

Φ
r   

  (47) 

   ( )4 4 2 2
4 1 10 20 2 10 20( ) = 2 2C β η + η + β η ηr  (48) 

and rewrite (46) as 

     2 2 2 4( ) ( ) ( ) ( ) ( ) = 0.cC H H C B C〈 〉 − + 〈 δ 〉 + 〈 〉r r r r  (49) 

Hence, below the upper critical field the magnetization 
decrease is 

 0 2
( )= = ( ) ( ) =

4
BM C m〈δ 〉

− −〈 − 〉
π
r r r   

 2 2
2

2 4

( ) ( ) ( )
( ).

( ) ( ) ( ) c
C C m

H H
C B C
〈 〉〈 − 〉

= − −
〈 δ 〉 + 〈 〉

r r r
r r r

 (50) 

The pre-factor 2 2

2 4

( ) ( ) ( )
( ) ( ) ( )

C C m
C B C
〈 〉〈 − 〉
〈 δ 〉 + 〈 〉

r r r
r r r

 in the right hand 

side of this equation plays the role of the generalized 
Abrikosov combination 

 
2

1 ,
4 (2 1)Aπβ κ −

 (51) 

where κ  is the Ginzburg–Landau parameter, and Aβ  is 
the Abrikosov constant. In one band superconductor, 
where the type (17) solution of the linear GL equation is 

0 ( )η r , this constant 

 
4

0
2 2

0

| ( )|
=

( | ( )| )
A

〈 η 〉
β

〈 η 〉

r
r

  

is just the number independent from the material proper-
ties. In two band case the universality is lost. Taking in 
mind the Eqs. (36) and (40) 

 [ ]2( ) = 4 ( ) ( ) ,B C mδ − π −r r r  (52) 

 2
2
0

2 ( )
( ) =

6
C

m
M

π
−

α + β
r

r


 (53) 

we see that the pre-factor in Eq. (50) is expressed through 
the averages of 2

10| ( )|η r , 2
20| ( )|η r  and squares of them. 

The explicit calculation of it can be performed only after 

determination of constant 1C  and 2C  as stationary values 
of the GL functional taken at functions Eq. (17). 

The magnetic moment decrease in the ferromagnetic 
superconducting mixed state is registered experimentally 
in URhGe [3] and in UCoGe [12,13]. The temperature de-
pendence of magnetization in URhGe is shown in Fig. 3. 

4. Transition from superconducting to superconducting 
ferromagnetic state 

In previous chapter we discussed the phase transition 
from the ferromagnetic state to ferromagnetic supercon-
ducting mixed state taking place in all uranium ferro-
magnets at temperature decrease in zero field (Fig. 1) and 
also in an external field parallel to the spontaneous mag-
netization. This case the superconducting order parameter 
forms the vortex lattice where vortices are closely packed 
together: the distance between them is of the order of the 
coherence length ( )Tξ . Another situation is realized in 
UCoGe (Fig. 1(c)). At pressures larger 1 GPa the Curie 
temperature falls below the superconducting critical tem-
perature and the phase transition occurs to nonmagnetic 
superconducting state. The pressure decrease transforms 
this state into ferromagnetic superconducting state. Theo-
retically the phase transformation from normal to super-
conducting state and the subsequent transition to supercon-
ducting ferromagnet state in neutral superfluid with triplet 
pairing have been described in Refs. 8, 9. There was also 
predicted [8] the direct first-order phase transition between 
the normal and superconducting ferromagnet state. It oc-

Fig. 3. (Color online) The change of static magnetization in 
URhGe in a constant applied field of 0.06 T [22]. 
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curs in some pressures interval when the temperatures of 
transition to ferromagnetic and superconducting state are 
closed each other (see Appendix). So long the magnetiza-
tion is small enough it does not penetrate inside the bulk of 
material being screened by the surface supercurrents. At 
pressure decrease the magnetization free superconducting 
state passes into the ferromagnetic superconducting mixed 
state. This transformation is complete analog of transition 
between the Meissner and the mixed superconducting state 
[9] (see Fig. 4). The ferromagnetic magnetization increas-
ing with pressure decrease penetrates to the superconduct-
ing volume in form of quantized vortices. This is happen 
when it reaches the value of the lower critical field 

1 1= /4c cM H π  in this material. In the type-II ferromagnet-
ic superconductors 1 2c cH H  and at M  slightly above 

1cM  the distance between vortices  

 2
0

14
c

c

H
r

M
≈ ξ

π
 (54) 

is large in comparison with coherence length. Thus, it is 
reasonable to study the field and the order parameter dis-
tributions around an isolated vortex. 

4.1. Single vortex 

An isolated vortex in an uniaxial metal that I discuss is 
axially symmetric. It has a phase which changes by 2π  after 
rotation around its axis directed along the spontaneous mag-
netization 0 ˆM z . When the coefficient 2 2= | |γ − γ  is nega-
tive the phase difference between the superconducting order 
parameters is absent [9] and I put it equal to the azimuthal 

angle ϕ in the cylindrical frame (r, ϕ, z). Thus, I will look 
for a solution of GL equations (13), (14) in the form 

 1 1 2 2= ( )e ,     = ( )e .i if r f rϕ ϕη η  (55) 

The vector potential has only a ϕ-component: 
= (0, ,0)AϕA , and the gauge invariant vector potential is  

 = (0, ,0).
2

cA
erϕ −Q   (56) 

The GL equations are 

____________________________________________________ 

 
2 2 2

3 2
1 1 1 1 1 2 2 1 1 2 1 22 2 2

1 4( ) 2 = 0,e QB f K f f f f f
r rr c

 ∂ ∂
α + γ − + − + γ + β + β 

∂∂  

 (57) 

 
2 2 2

3 2
1 1 2 2 2 2 1 1 2 2 2 12 2 2

1 4( ) 2 = 0e QB f K f f f f f
r rr c

 ∂ ∂
α − γ − + − + γ + β + β 

∂∂  

. (58) 

_______________________________________________ 

The field distribution around a single vortex is deter-
mined by the Maxwell equation derived from the station-
ary condition of the GL functional with respect of vector 
potential 

 2 2
1 1 2ˆcurl curl 4 curl 4 curl ( )z f f− π + πγ − +A M   

 
2

2 2
1 1 2 22

2(4 ) ( ) = 0
( )

e K f K f
c

π
+ +

π
Q



. (59) 

For 0r ≠  it is 

 2 2
1 1 2ˆcurl curl 4 curl 4 curl ( )z f f− π + πγ − +Q M   

 
2

2 2
1 1 2 22

2(4 ) ( ) = 0
( )

e K f K f
c

π
+ +

π
Q



 (60) 

or 

 
2

2 2
1 1 2 22

1 2(4 ) ( ) =
( )

rQ e K f K f Q
r r r c

∂ ∂ π
− +

∂ ∂ π 
  

 
2 2

1 1 2( ( ))
4

M f f
r

∂ − γ −
= π

∂
. (61) 

The magnetization is determined from the equation 

 32 4 2 = 0,M M D M Bα + β − ∆ −  (62) 

obtained by the variation of the functional Eq. (9) in re-
spect to M . The induction is = curlzB A . Thus, omitting 
the gradient term D M∆  which can be thrown out by the 
same reason as in Eq. (40), we come to the equation 

Fig. 4. Schematic temperature-pressure phase diagram of UCoGe. 
Notations FM, SC and PM used for ferromagnetic, superconduct-
ing and paramagnetic phases correspondingly. M is the Meissner 
state divided from the mixed ferromagnetic superconducting 
states by the line of Hc1 [9]. 
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 3 12 4 = ,rQM M B
r r

∂
α + β =

∂
 (63) 

which is valid at 0r ≠ . 
The Eqs (57), (58), (61) and (63) present the full system 

of equations determining the space distribution of the 
1 2( ), ( ), ( )f r f r M r , and ( )Q r  around single vortex in the 

ferromagnetic superconductor. The solution of this system 
can be found only numerically. However, a qualitative 
description is still possible. 

The general solution of Eq. (61) 

 ( ) = ( ) ( )h iQ r Q r Q r+  (64) 

consists of the sum of a solution of homogeneous equation 
and a particular solution of the inhomogeneous equation. 

At distances larger than the London penetration depth 
from the vortex axis 

 
2 2

1 10 2 20
> =

4 2( )

cr
e K f K f

π
λ

π +



  

the functions 1 10 2 20 0( ) , ( ) , ( )f r f f r f M r M≈ ≈ ≈  are al-
most constant and 

 0
1( ) =

2h
rQ r

Φ  −   πλ λ
 , (65) 

where the function 1( )z  is the Macdonald function of 
first order. It decreases exponentially for large z: 

 1
2( ) = exp( ).z z
z

−
π

   

The constant magnetization 0M  is determined from 
Eq. (63) with = 0B . The corresponding solution of inho-
mogeneous Eq. (61) is 

 
2 2

2 0 1 10 20( ( ))
= 4 = 0.i

M f f
Q

r
∂ − γ −

πλ
∂

 (66) 

The induction = curl ( )z h iB +Q Q  is exponentially small. 
The constants 10 20, f f  are found from the equations (57), 
(58) at ( ) = 0Q r . 

The solution of equations (57), (58) at the small 
1,2 1< / | |r Kξ ≈ α  is 1 2/ ,   /f r f r∝ ξ ∝ ξ . The induction 

0= curl ( ) =z h iB B+Q Q , where the constant 0B  must be 
found as the limiting value of the numerical solution of 
equations in intermediate region < <rξ λ , = 2Q rMπ  and 
magnetization is determined by equation 

 3
02 4 = .M M Bα + β  (67) 

The crucial difference with vortex solution for ordinary 
type-II superconductors is the behavior of the order param-
eters in the intermediate distance interval < <rξ λ . Here, 
all the functions 1 2( ), ( ), ( ), ( ) = curlzf r f r M r B r A  are 
gradually changed (see Fig. 5). 

4.2. Lower critical field 

The free energy of single vortex is the difference be-
tween the energy Eq. (9) at stationary vortex solution and 
the energy without vortex, that is at stationary constant 

1 2 0, , , = 0M Bη η , 

____________________________________________________ 

 { 2 4 2 2 2 2
1 1 2 1 1 2= ( ) ( ) (| ( ) | | ( ) | ) ( )(| ( ) | | ( ) | )E dV M M Bα + β + α η + η + γ η − η +∫ r r r r r r rv   

 4 4 2 2* *
2 1 2 1 2 1 1 2 2 1 2( ( ) ( ) ( ) ( )) (| ( ) | | ( ) | ) | ( ) | | ( ) |+ γ η η + η η + β η + η + β η η +r r r r r r r r   

 
2

* * * *
1 1 1 1 1 2 2 2 2 2[( ( )) ( ) ( ( )) ( )] [( ( )) ( ) ( ( )) ( )]

8x x y y x x y yK D D D D K D D D D
+ η η + η η + η η + η η + − −π 

Br r r r r r r r BM   

 { }2 4 2 2 4 4 2 2* *
0 0 1 1 2 2 1 2 1 2 1 1 2 2 1 2(| | | | ) ( ) (| | | | ) | | | |dV M M− α + β + α η + η + γ η η + η η + β η + η + β η η∫ . (68) 

_______________________________________________ 

The corresponding expression for the conventional single 
band type-II superconductor is obtained if we put 

1 2= 0, =M η η . This case the kinetic energy term con-
tains 2 2 2 2

1 1(4 / ) | | .K e c Q η  Since 1/Q r∝  for ,rξ λ   
this gives a logarithmically large contribution at distances 
r λ . Because modulus of the vortex order parameter 

1 1| ( )| = | | = constη ηr  everywhere at >r ξ  from the vortex 
axis the other terms add nothing to the vortex energy. As 
result the energy of a single-quantum Abrikosov vortex is 

 
2
0

2= ln .
(4 )

AE
Φ  λ

  ξ πλ
v   

In ferromagnetic two-band superconductor with triplet pair-
ing the situation is different. In the interval of distances 

< <rξ λ  all the order parameters 1 2( ), ( ), ( )f r f r M r  do 
not coincide with its values in the vortex absence. Hence, 
the vortex energy does not have the usual logarthmic form. 
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It can be calculated only numerically making use the solu-
tion of Eqs. (57), (58), (61) and (63). 

The free energy of a unit volume of a superconductor 
with set of single-quantum vortices is obtained by multi-
plication of the vortex energy on the density of vortices 

0= / ,n B〈 〉 Φ  where B〈 〉  is the induction space average. 
Magnetization begins penetrate in the bulk of superconduc-
tor when loss of energy due to vortices appearance will be 
compensated by gain of the energy due to disappearance of 
work on pushing out of magnetization from volume of su-
perconductor 

 
0

< 0.B E M B〈 〉
− 〈 〉

Φ v  (69) 

Thus, in UCoGe, at pressure decrease the magnetization 
reaches the lower critical value 

 1
0

( , ) = ,c
E

M P T
Φ

v  (70) 

and the transition from the Meissner to the superconduct-
ing mixed state occurs. In the presence of external field 
parallel to the domain magnetization this formula acquires 
the following form 

 1
0

4( 4 ) = .cH M Eπ
+ π

Φ v  (71) 

5. Conclusion 

I have developed the theory of type-II superconductivi-
ty in two band ferromagnetic metals with triplet pairing. 
The obtained results near the upper critical field are in 
qualitative correspondence with the results of classic 
Abrikosov theory for type-II superconductivity in single 
band metals with singlet pairing. However, the magnetiza-

tion decrease below the transition to the superconducting 
ferromagnetic state is not expressed through the universal 
ratio known in the Abrikosov theory. The essential distinc-
tion also presents the coordinate dependence of the order 
parameters and the magnetic field around isolated quan-
tized vortex that leads to the different magnitude in vortex 
line energy in comparison with its value in conventional 
superconductors. 

The theory is applicable to the description of supercon-
ducting state arising deeply inside the ferromagnetic state 
in UGe2, URhGe, UCoGe. The particular attention is de-
voted to the transition from the Meissner to the supercon-
ducting mixed state specific for UCoGe. 

The presented approach can be also applied to the de-
scription of type-II superconductivity in two band non-
magnetic metals either with singlet or with triplet pairing. 

Appendix A 

The direct first order transition from normal to super-
conducting ferromagnetic state in neutral Fermi liquid has 
been predicted by Cheung and Raghu [8] by means the 
numerical calculations. An attempt to confirm this by ana-
lytical treatment undertaken in Ref. 9 is incorrect. The 
proper qualitative argumentation in support of conclusion 
Ref. 8 is as follows. Taking electron charge equal to zero 

= 0e  or, in other words, the London penetration depth 
equal to infinity we come from the present model to the 
neutral Fermi liquid model discussed in Refs. 8, 9. This 
case according to the Eq. (59) the magnetic induction is 

 2 2
1 1 2= 4 4 ( ).B M f fπ − πγ −  (A1) 

In absence of gradient terms the free energy density of the 
ferromagnetic superconductor in respect to the free energy 
density in the normal state is 

2 4 2 2 2 2
0 1 1 2 1 1 2= ( ) ( ) 4 ( )CF T T M M Mα − + β + α η + η + πγ η − η −

  
4 4 2 2 2 2 2

2 1 2 1 1 2 2 1 2 1 1 22 | | ( ) 2 [ ( )] .− γ η η + β η + η + β η η − π γ η − η  
  (A2) 

In the normal state 1 2= = = 0Mη η  and = 0F . Howe-
ver, due to the linear in M  term 2 2

1 1 24 ( )Mπγ η − η  one 
can find that the state with = 0F  can be realized also at 
nonzero order parameter values 1 20, 0, 0Mη ≠ η ≠ ≠ . 
These two states are divided by the phase transition of the 
first order. Indeed, as this was shown in Ref. 8, the first 
order type transition occurs near the intersection the line 

( , ) = 0T Pα  with the line 1( , ) = 0T Pα . The width of pres-
sures interval where the first order transition occurs is in 
fact negligibly small. This is due to the smallness of 1γ  
coefficient already pointed out in the main text (see 
Eq. (19)). Here, 

 1
0 0

10
,B

sc sc
F

M M
T T

γ µ
≈

α ε
  (A3) 

Fig. 5. Schematic coordinate dependences around an isolated 
vortex of f1(r) and f2(r) superconducting order parameter ampli-
tudes which grow up linearly at r < ξ and tend to constants at 
r > λ. B(r) is the magnetic induction decreasing with distance 
from the vortex axis and tending to zero at r > λ. 

672 Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 6 



Theory of type-II superconductivity in ferromagnetic metals with triplet pairing 

where Bµ  is the Bohr magneton and Fε  is the Fermi 
energy [19]. Thus, the corresponding term is practically 
insignificant 

In charged Fermi liquid the direct transition from the 
normal to the superconducting ferromagnetic state will be 
apparently of the second order because the appearance of 
finite magnetization accompanied by the work on pushing 
out of the magnetic induction from the superconducting 
volume. 
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