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Micro-cracks give rise to non-analytic behavior of the stress-strain relation. For the case of a homogeneous 
spatial distribution of aligned flat micro-cracks, the influence of this property of the stress-strain relation on har-
monic generation is analyzed for Rayleigh waves and for acoustic wedge waves with the help of a simple micro-
mechanical model adopted from the literature. For the efficiencies of harmonic generation of these guided 
waves, explicit expressions are derived in terms of the corresponding linear wave fields. The initial growth rates 
of the second harmonic, i.e., the acoustic nonlinearity parameter, has been evaluated numerically for steel as ma-
trix material. The growth rate of the second harmonic of Rayleigh waves has also been determined for micro-
crack distributions with random orientation, using a model expression for the strain energy in terms of strain in-
variants known in a geophysical context. 

PACS: 43.35.+d Ultrasonics, quantum acoustics, and physical effects of sound; 
46.40.Cd Mechanical wave propagation (including diffraction, scattering, and dispersion); 
62.30.+d Mechanical and elastic waves; vibrations. 
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1. Introduction 

Rayleigh waves and wedge waves are two different 
types of guided acoustic waves. The strain field associated 
with the prior (more generally: surface acoustic waves, 
SAWs) is localized at the surface of a solid, i.e., a two-
dimensional manifold, whereas the latter have strains lo-
calized at a one-dimensional manifold, namely the apex 
line of a solid elastic wedge, i.e., the intersection line of 
two surfaces. Straight-crested time-harmonic SAWs are 
characterized by a two-dimensional wave-vector, whereas 
the wave-vector of a time-harmonic wedge wave is always 
along the apex line and hence one-dimensional. Rayleigh 
waves are studied since the pioneering work by Lord Ray-
leigh [1] and find technical applications in various fields of 
science and engineering. Acoustic wedge waves were dis-
covered much later [2,3] and are yet awaiting practical use 
in technical devices, while prototypes for such devices 
have already been developed (see, for example, [4,5] for 
recent reviews). 

Both types of guided acoustic waves have in common 
the property of being non-dispersive in the ideal case. This 
means that their phase velocity is independent of their fre-
quency. Ideal means essentially a homogeneous elastic 
medium, planar surfaces and a perfectly sharp wedge tip. 
The absence of dispersion favors nonlinear effects, as it 
guarantees phase matching for the growth of higher har-
monics. 

In crystal lattices, the elastic nonlinearity stems from 
the interatomic forces in the neighborhood of the rest posi-
tions of the atoms, which allows the potential energy of the 
solid to be expanded in powers of the Green–Lagrange 
strain tensor [6] and consequently, stress is an analytic 
function of strain. The influence of the third-order terms in 
this expansion on the propagation of surface and, to a less-
er extent of wedge acoustic waves, has been investigated in 
theory and experiment (see the recent review [4], and [7]). 

Defects like dislocations or micro-cracks are known to 
strongly modify the nonlinear properties of acoustic waves 
in solids, while they often change their linear properties 
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like their speed to a much lesser degree [8,9]. In the case of 
bulk and surface acoustic waves, this fact is used for pur-
poses of non-destructive evaluation [10,11] as it provides a 
viable tool for pre-fatigue detection, even if the size of the 
micro-cracks is much smaller than the wavelength of the 
acoustic waves. A central quantity in this context is the 
acoustic nonlinearity parameter (ANP), which is a measure 
of the efficiency of second harmonic generation of a time-
harmonic fundamental wave. In the case of acoustic wedge 
waves, no experimental work is known to us that would 
focus on the influence of dislocations or micro-cracks of 
sub-wavelength size on the nonlinear propagation proper-
ties. However, recent experiments on wedge waves in a po-
lycrystalline aluminum sample containing residual stresses 
point to unusual, “non-classical” nonlinear behavior [12]. 

Micro-cracks can render the stress-strain relation of the 
solid non-analytic. Kinks in this relation are known to be 
generated by flat micro-cracks of the “kissing bond” 
type [9] due to the difference of their elastic response to 
tensile and compressive stress. Non-analytic behavior of 
the stress-strain relation has also been found in finite ele-
ment simulations of solids with micro-cracks that have an 
internal structure [13]. 

Our goal in this contribution is to present a method of 
calculating the growth of higher harmonics and of the 
products for a time-harmonic Rayleigh or wedge wave in 
an elastic medium with a homogeneous spatial distribution 
of flat micro-cracks with sub-wavelength size. Concerning 
their orientation, we consider the simple case of all micro-
cracks being aligned such that their surface normals are all 
along the same direction. In the case of Rayleigh waves, 
we choose this direction to be the propagation direction. In 
the case of wedge waves propagating at a rectangular edge, 
the alignment is chosen such that the surface normals of 
the micro-cracks are vertical to the apex line and parallel to 
one of the surfaces of the wedge. Based on an effective 
stress-strain relation for this system that follows from a 
simple micro-mechanical model [14–17] and is supported 
by finite element simulations, an asymptotic expansion of 
the displacement field is derived that yields a set of cou-
pled evolution equations for the slowly varying amplitudes 
of the fundamental and higher harmonics. This approach 
differs from an earlier study by Oberhardt et al. who used 
the finite element method to simulate the nonlinear propa-
gation of surface acoustic waves in a medium containing 
micro-cracks [18]. 

If the matrix material of the elastic medium with micro-
cracks is isotropic, a totally random distribution of micro-
crack orientations maintains the isotropy. An expression 
for the density of potential energy set up by Lyakhovsky 
and Myasnikov [19] applies to this situation and contains a 
term that is not analytic in the strain invariants. We shall 
apply this expression as a model for the elastic properties 
of media with random micro-crack orientations. Our con-
tribution concludes with a short summary and discussion. 

2. Stress-strain relation for an elastic medium 
with micro-cracks 

The following derivation will be confined to flat micro-
cracks that are homogeneously distributed in an isotropic 
matrix material. In the first part of this section, we consider 
the case of all micro-cracks having the same orientation 
such that their surface normals are oriented along the 
x1 direction. Micro-mechanical models of penny-shaped 
micro-cracks in the context of nonlinear acoustic wave 
effects [20,14–17] make use of an additive decomposition 
of the total macroscopic infinitesimal strain parameters 

αβε  into the infinitesimal strain (0)
αβε  generated by a macro-

scopic Cauchy stress αβσ  in the absence of micro-cracks 
and a separate contribution ( )MC

αβε  of the micro-cracks. 
Here and in the following, Cartesian indices are denoted by 
small Greek letters, and we invoke the convention that 
summation over repeated Cartesian indices is implied. Ap-
plying the approach in [15] to a distribution of fully 
aligned micro-cracks in the static limit, we obtain 
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( )
11 1 1 11

11 11
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α βαβ
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   σ + σ σ + σ   

 × δ δ + δ δ σ + δ δ + δ δ σ 

  

  (1) 

In (1), H denotes the Heaviside step function, ,N Ss s  are 
coefficients which are proportional to the concentration of 
the penny-shaped micro-cracks and depend on their diame-
ter and the elastic properties of the matrix material. The 
quantity µ is the coefficient of friction between the adja-
cent faces of a micro-crack. 

Inserting (1) in the stress-strain relation for the matrix 
material without micro-cracks, 

 ( )(0) (0)(0) (MC)C Cαβ µν µν µναβµν αβµνσ = ε = ε − ε , (2) 

where (0)Cαβµν are the elastic constants of the matrix material, 
we obtain for the diagonal elements of the Cauchy stress 
and infinitesimal strain tensor: 

 (0) (0)
11 11 22 33 1111 12 ( )c cσ = ε + ε + ε + ∆σ , (3a) 

 (0) (0)
22 22 11 33 2211 12 ( )c cσ = ε + ε + ε + ∆σ , (3b) 

 (0) (0)
33 33 11 22 3311 12 ( )c cσ = ε + ε + ε + ∆σ , (3c) 

where the stress deviations 

 11 0 0 1 0| |∆σ = τ ε + τ ε , (4) 

 
(0)
12

22 33 11(0)
11

c

c
∆σ = ∆σ = ∆σ  (5) 
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result from the micro-cracks, and where we have defined 
the quantity 

 
(0)
12

0 11 22 33(0)
11

( )
c

c
ε = ε + ε + ε . (6) 

(0) (0)
11 12,c c  denote two independent elastic constants of 

the matrix material in Voigt notation. 
The constants 0 1,τ τ  in (4) are related to the coefficients 
,N Ss s  in (1) via 

 
(0)

(0) 11
0 11 (0)

11

21
2 1

N

N

c s
c

c s

+
τ =

+
, (7) 

 
(0)

(0) 11
1 11 (0)

11

1
2 1

N

N

c s
c

c s
τ = −

+
. (8) 

The occurrence of the modulus in (4) introduces nonlinear-
ity into this stress-strain relation. 

In the case of shear stress / strain, we consider here only 
two limiting cases concerning the friction between the fac-
es of the micro-cracks. When the friction is negligible 
( 0µ → ), we obtain from (1) 

 12 66 12 13 66 13 23 44 232 , 2 , 2c c cσ = ε σ = ε σ = ε , (9) 

where (0)
44 44c c=  and 

 
(0)
44

66 (0)
441 2 S

c
c

c s
=

+
. (10) 

In this case, the relation between shear stress and shear 
strain remains linear, but causes the macroscopic elastic 
properties of the elastic medium to become anisotropic. 

In the case of very large friction (µ → ∞), (9) is re-
placed by 
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( )

(0)
12 2 0 1244

(0)
13 2 0 1344

(0)
23 2344

2 ( ) ,

2 ( ) ,

2 ,

c H

c H

c

σ = − τ ε ε
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 (11) 

involving the quantity 

 
(0)

(0) 44
2 44 (0)

44

2

1 2
S

S

c s
c

c s
τ =

+
. (12) 

Because of the Heaviside function in (11), the relation be-
tween shear stress and shear strain becomes nonlinear, too. 

When dealing with nonlinear acoustic waves, it is more 
convenient to work with the first Piola–Kirchhoff stress 
tensor ( )Tαβ  instead of the Cauchy stress tensor ( )αβσ . 
When transforming from the latter to the prior, additional 
nonlinear terms appear, which are partly contained in the 
nonlinear contributions to ( )Tαβ  resulting from the matrix 
material alone. We shall neglect these terms in comparison 

to the dominant nonlinearity arising from the non-analytic 
parts (4), (5) and (11). For the purpose of applying pertur-
bation theory, we decompose the first Piola–Kirchhoff 
stress tensor into the contribution of the matrix material 
and a perturbation due to the presence of the micro-cracks, 

(0)T T Tαβ αβαβ= + ∆  with (0) (0)T C µναβ αβµν= ε . The diagonal 
elements of Tαβ∆  are given by (4) and (5), when σ  is re-
placed by T , 

 11 0 0 1 0| |T∆ = τ ε + τ ε , (13) 

 
(0)
12

22 33 11(0)
11

c
T T T

c
∆ = ∆ = ∆ . (14) 

For the off-diagonal elements, we find 23 32 0T T∆ = ∆ =  
and 

 12 21 2 122T T∆ = ∆ = − τ ε , (15a) 

 13 31 2 132T T∆ = ∆ = − τ ε , (15b) 

if friction is neglected, and 

 12 21 2 0 122 ( )T T H∆ = ∆ = − τ ε ε , (16a) 

 13 31 2 0 132 ( )T T H∆ = ∆ = − τ ε ε  (16b) 

in the limit of infinite friction coefficient µ. 
After having established the stress-strain relation for a 

medium containing micro-cracks that are fully aligned, we 
comment on the case of a distribution of micro-cracks with 
totally random orientations. Now, elastic isotropy of the 
elastic medium is maintained, and the density of potential 
energy of the medium, considered as a function of macro-
scopic strain, depends on the three invariants 1 ,I αα= η  

2 ,I αβ αβ= η η  3I αβ βγ γα= η η η  of the Green–Lagrange 
finite strain tensor , , , ,( ) ( ) / 2u u u uαβ α β β α γ α γ βη = + + , only. 
Lyakhovsky and Myasnikov [19] introduced an expression 
for the density of potential energy that contains a non-
analytic term via its square-root dependence on the strain 
invariant I2, 

 2
1 2 1 2

1
2 LMI I I IΦ = λ + µ + κ . (17) 

We use this potential as a model for an elastic medium 
containing defects like micro-cracks with perfectly random 
orientation. In (17), λ and µ are the second-order Lamé 
constants of the medium with defects, and LMκ  is an addi-
tional constant which becomes zero in the limit of vanish-
ing defect concentration. This potential gives rise to the 
following dependence of the first Piola–Kirchhoff stress 
tensor on displacement gradients: (0)T T Tαβ αβαβ= + ∆  with 

(0)Tαβ  being the linear part of Tαβ  and 

1
, , , 2

2
( ) LM

IT u u u I
Iαβ αλ α λ γ λ γ β λβ λβ

  
 ∆ = δ + µ + κ δ + η     

.  

  (18) 
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We approximate Tαβ∆  by keeping on the right-hand side of 
(18) only the dominant non-analytic contributions, 

 LMT ζζ
αβ γλ λγ αβ αβ

γλ λγ

 ε
 ∆ ≈ κ ε ε δ + ε
 ε ε 

. (19) 

3. Rayleigh waves 

For the investigation of the influence of nonlinearity on 
the propagation of surface acoustic waves, one may follow 
well-established methods that were pioneered in this con-
text by the authors of [21–25]. The displacement field ( )uα , 
depending on the material coordinates ,xα  1, 2, 3,α =  is 
written as an asymptotic expansion 

 ( ) 2 ( ) 3( )I IIu u u Oα α α= ν + ν + ν , (20) 

where the expansion parameter ν is a typical strain, and 
a stretched coordinate 1X x= ν  is introduced. 

The first-order field is a linear superposition of a fun-
damental surface acoustic wave with phase velocity Rv , 
frequency Rkvω =  and its higher harmonics, 

( )
1 3 3 1

1
( , , ) ( ) exp ( ( )) c.c.I

Ru x x t w kx i k x v t A
∞

α α
=

= − +∑ 



   (21) 

Here, c.c. stands for the complex conjugate of the preced-
ing expression. We assume that the elastic medium fills the 
half-space x3 > 0. Consequently, wα(z) decays exponential-
ly for z → ∞. For homogeneous elastic media without de-
fects, a nonlinear evolution equation for the displacement 
amplitudes A



 (with appropriate normalization) was de-
rived [21–25], which may be written in the form 

 
1

2

1
( ) ( ) m m

m
A k m m F m A A

X

−

−
=

∂
= − −

∂ ∑


 

    

 2 * *

1
2 ( ) ( ) ( )n

m m
m

k m m m F m A A
∞

−
= +

− −∑ 



    (22) 

with exponent n = 1. The kernel function F in this evolu-
tion equation depends on the ratio of two wavenumbers. Its 
value for the argument 1/2 is directly related to the acous-
tic nonlinearity parameter (ANP) for surface acoustic 
waves propagating in the elastic medium in the absence of 
defects. We call this quantity βR. For isotropic media, fol-
lowing the definition of the ANP for Rayleigh waves in-
troduced by Herrmann et al. [10,11] and normalizing the 
functions wα(z) such that 

 
2 2

3 2 2(0) 1
2

R R

L T R

v vw i
v v v

 
= − −  

− 
, (23) 

this relation is 

 
2

8 (1 2)L
R

R

v F
v

 
β =  

 
. (24) 

In (23), (24), the quantities vL, vT, vR are the speeds of lon-
gitudinal and transverse bulk waves and of Rayleigh 
waves, respectively. The evolution equation (22) implies 
that the growth rate for the second harmonic of a time-
harmonic surface acoustic input wave is proportional to the 
square of the input wave’s amplitude. 

For isotropic media, explicit analytic expressions for 
the kernel (and hence for the ANP) in terms of the two 
decay constants of the Rayleigh waves and the two second-
order and three third-order elastic constants are given by 
Parker [24], Zabolotskaya [25] and Knight et al. [26]. For 
an isotropic material with density of potential energy 

 2 3 4
1 2 1 1 2 1 2 3 3

1 1 4 ( )
2 6 3

I I I I I I OΦ = λ + µ + ν + ν + ν + η , (25) 

where 1 2 3, , , ,λ µ ν ν ν  are the two second-order and three 
third-order Lamé constants, the ANP has the form 

 0 1 1 2 2 3 3( ) ( ) ( )R b b b bβ = + ν µ + ν µ + ν µ . (26) 

For a given normalization, the coefficients ,nb  0, ..., 3,n =  
depend on the Poisson ratio only. 

We now consider the influence of micro-cracks on the 
nonlinear properties of Rayleigh waves. Treating the stress 
deviations Tαβ∆ , introduced in (13)–(16), as perturbations, 
we regard the coefficients , 0, 1, 2,n nτ =  as being of first 
order in the expansion parameter ν, 0 0ˆτ = ντ , 1 1ˆτ = ντ , 

2 2ˆτ = ντ . We note that these coefficients can be made arbi-
trarily small by reducing the concentration of defects. 

For simplicity, we consider here only the case of negli-
gible friction within the micro-cracks. In this case, the off-
diagonal elements of Tαβ∆  give rise to a correction of the 
second-order elastic constants, which is of first order in ν  
and leads to anisotropy, but does not directly affect har-
monic generation or nonlinear combination processes to 
leading order in ν . Therefore, we shall not account for these 
off-diagonal components in the following. 

When inserting the expansion (20), with (21) for the first-
order field, into the equation of motion for the displace-
ment field and keeping only terms of second order in ν , 
we obtain 

 
2

(0)( ) ( )
2

II IIu C u
x xt

α γαβ γδ
β δ

∂ ∂ ∂
ρ − =

∂ ∂∂
  

 (0) (0)
1 1C C

x xα γβ αβ γ
β β

 ∂ ∂
= + ×  ∂ ∂ 

  

 ( )
3 1

1
( ) exp( ( )) .I

Rw kx i k x v t A T
X x

∞

γ αβ
β=

∂ ∂
× − + ∆

∂ ∂∑ 



   (27) 

The quantity ( )ITαβ∆  is obtained by inserting into (13)–(16) 
the displacement gradients ( )

,
Iuα β for αβε  and dividing by ν . 

The right-hand side of (27) is a 2π-periodic function of 
1( )Rk x v tξ = − . In particular, ( )ITαβ∆  may be represented as 

a Fourier series 
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 ( ) ( )
1 3 3( , , ) ( ) exp ( )IT x x t T x i

∞

αβ αβ
=−∞

∆ = ∆ ξ∑ 





 . (28) 

The same argument was used by Pecorari [17] in connec-
tion with non-collinear mixing of acoustic bulk waves. 
A physically meaningful solution for ( )IIu  has to be a bound-
ed 2π-periodic function of ξ, too, which may be written in 
the form of a Fourier series, 

 ( ) ( )
1 3 3( , , ) ( ) exp ( )IIu x x t U x i

∞

α α
=−∞

= ξ∑ 



 . (29) 

When inserting (28) and (29) in (27), multiplying both 
sides of this equation by *

3( ) exp ( )w nkx inα − ξ , where n is a 
positive integer, summing over α, integrating over ξ  from 
0 to 2π, over 3x  from 0 to infinity, performing two integra-
tions by parts, thereby obeying the traction-free boundary 
conditions at the surface, the following infinite set of dif-
ferential equations is obtained: 

 
* ( )

3 3 3
0

( ) ( ) ( )n
R niN A D nk w nkx T x dx

X

∞

β α αβ
∂  = ∆ ∂ ∫  . (30) 

Here we have introduced the linear operator 
1 3 3( )D q iq d dxα α α= δ + δ  and the coefficient 

 2 *

0

2 ( ) ( )R RN v w z w z dz
∞

α α= ρ ∫ . (31) 

We note that the quantity (0)
11/RN c  depends on the Poisson 

ratio of the matrix material only. 
In order to determine the initial growth rate of the nth 

harmonic amplitude for an initially sinusoidal Rayleigh 
wave, we have to insert the first-order solution (21) with 

0A =


 for 1≠  into (13) and evaluate the right-hand side 
of (30). Defining ψ  as the phase angle of 1A , we obtain 

 [( )
1 0 311 ˆ sin ( ) ( )I

RT A f kx∆ = −τ ξ + ψ +  

 ]1 3ˆ | sin ( ) || ( ) |Rf kx+ τ ξ + ψ , (32) 

where we have defined the depth profile wα of the Ray-
leigh waves such that 1(0)w  is real, and we have defined 
the real function 

 
(0)
12

1 3(0)
11

( ) 2 ( ) ( )R
c df z w z i w z

dzc

 
 = −
  

. (33) 

With (33) and (34), we obtain from (30) 

 1| |A k A
X
∂

= γ
∂  

 (34) 

with the coefficients γ


 being equal to zero for 1>  odd and 

 1

0

ˆ
e ( )| ( ) |

( 1)( 1)
i

R R
R

f z f z dz
N

∞
ψτ

γ =
− + π ∫







 

 (35) 

for even . Note that the modulus of γ


 is independent of 
the normalization of the depth profile of the Rayleigh wave 
displacement field. Also, the quantity 2

1ˆ/Rvγ ρ τ


 depends 
on the Poisson ratio of the matrix material, only. This de-
pendence is shown in Fig. 1 for 2= . 

From (34) it also follows that a time-harmonic Rayleigh 
input wave with amplitude 1A  generates immediately all 
even harmonics with initial growth rates being proportional 
to 1| |A . We also note that the initial efficiency of higher 
harmonic generation decreases, 2−γ ∝



  for → ∞ , be-
cause the integral on the right-hand side of (35) becomes 
proportional to 1−

  for large . 
So far, we have considered Rayleigh waves propagating 

in a medium with micro-cracks fully aligned according to 
the inset of Fig. 1. We now move to elastic media contain-
ing a distribution of micro-cracks with perfectly random 
orientation. When adopting the Lyakhovsky–Myasnikov po-
tential (17) as a model for this case, we may proceed in the 
same way as in the aligned case, using (19) instead of 
(13)–(16) for the stress deviation ( )ITαβ∆  and insert there the 
displacement gradients ( )

,
Iuα β corresponding to a time-har-

monic Rayleigh input wave. It is then straightforward to 
show that the initial growth of higher harmonics is again 
described by (34) with coefficients γ



 which can be non-zero 
only for even harmonics. The dependence of 2

2 /R LMvγ ρ κ  
on the Poisson ratio of the matrix material is shown in Fig. 1. 

4. Acoustic wedge waves 

In this section, elastic wedges with opening angle θ are 
considered that contain a spatially homogeneous distri-
bution of micro-cracks which are aligned such that the 
normal of their faces are along the x1 direction. The x3 di-
rection points along the apex line of the wedge and is 
the propagation direction of acoustic wedge waves. The 

Fig. 1. The quantity 2| |γ  in units of 2
10.1 Rvτ ρ  for fully aligned 

micro-cracks (diamonds) and in units of 2
LM Rvκ ρ  for random 

orientation (circles) as function of the Poisson ratio. Inset: Orien-
tation of aligned micro-cracks with respect to surface and propa-
gation direction of Rayleigh waves. 
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geometry with the orientation of the coordinate system is 
shown in Fig. 2. The matrix material is assumed to be iso-
tropic. 

In isotropic elastic wedges, acoustic modes may be cha-
racterized as either even or odd, depending on their be-
havior with respect to the reflection at the wedge’s mid-
plane (x1 = x2). For opening angles smaller than 90° and 
Poisson ratios in the range of most materials of practical use, 
only odd wedge waves (anti-symmetric flexural modes, ASF 
modes) exist [27]. Unlike Rayleigh waves, ASF modes do 
not resonantly generate even harmonics [28]. This means 
in particular, that the growth rate of the second harmonic 
of an ASF mode and hence the acoustic nonlinearity pa-
rameter of such modes is zero. 

For wedge waves of even symmetry, an evolution equa-
tion for their slowly varying amplitudes A



 was derived by 
Krylov and Parker [29] which can be brought into the 
form (22) with exponent n = 2. In analogy to the case of 
Rayleigh waves, the growth rate of the second harmonic 
and consequently an acoustic nonlinearity parameter for 
even acoustic wedge waves would be proportional to the 
value of the kernel function F in the evolution Eq. (22) at 
the argument 1/2. 

In the following, we shall confine our discussion to 
ASF modes. The displacement field of a linear time-har-
monic wedge wave with wavenumber k and amplitude A 
has the form 

 1 2 3 1 2 3( , , , ) ( , ) exp ( ( )) c.c.Wu x x x t w kx kx ik x v t Aα α= − + ,  
  (36) 

where Wv  is the phase velocity of the wedge wave. The 

profile functions ( , )w x yα  have to be normalized appropri-
ately and decay to zero for large distances from the apex 

line, 2 2x y+ → ∞ . They may be determined numerically 
via an expansion in a double series of Laguerre functions 
after a conformal mapping of the wedge with opening an-
gle θ into a rectangular wedge [30]. This method was also 
applied to compute the kernel function F in the evolution 
Eq. (22) for certain propagation geometries in anisotropic 
wedges [31]. 

The distribution of micro-crack orientations shown in 
Fig. 2 breaks the reflection symmetry with respect to the 
wedge’s midplane, and resonant generation of even har-
monics will be allowed. Following the same procedure as 

described in the previous section in the context of Rayleigh 
waves, starting with an asymptotic expansion (20), where 
the first-order field is now a superposition of wedge waves, 

 ( )
1 2 3( , , , )Iu x x x tα =   

 1 2 3
1

( , ) exp ( ( )) c.c.Ww kx kx i k x v t A
∞

α
=

= − +∑ 



   , (37) 

and the stretched coordinate is X = ν x3. At second order in 
the expansion parameter ν, we obtain an equation of the 
form (27) with the right-hand side modified. In particular,

3 1( ) exp ( ( ))Rw kx i k x v tα −   is replaced by 1 2( , )w kx kxα ×   
3exp ( ( ))Wi k x v t× −  and ( )ITαβ∆  depends on all three Car-

tesian coordinates. In analogy to the case of Rayleigh 
waves, its dependence on x3 is via 3( )Wk x v tζ = − , and it is 
a 2π-periodic function of this quantity and may therefore 
be expanded in a Fourier series of the form (28) with Fou-
rier coefficients ( )

1 2( , )T x xαβ∆ 

 . Proceeding now in the same 
way as in the previous section (see also [31] for the appli-
cation of this approach), we obtain the analog of (30), 

 WiN A
X
∂

=
∂ 

  

* ( )
1 2 1 2 1 2( ) ( , ) ( , )

S

k D k w kx kx T x x dx dxβ α αβ = ∆ ∫∫ 



     (38) 

with  
2 2 *

1 2 1 2 1 22 ( ) ( , ) ( , )W W
S

N v k w kx kx w kx kx dx dxα α= ρ ∫∫     . 

  (39) 
In contrast to its definition in the previous section, the line-
ar operator ( )D qα  in (38) is defined as 1 1( )D q xα α= δ ∂ ∂ +

2 2 3x iqα α+ δ ∂ ∂ + δ . The integrals in (38) and (39) have to 
be carried out over the cross section S of the wedge in the 
x1x2 plane. Note that WN  is independent of k  and . 

We now determine the Fourier coefficients ( )Tαβ∆ 

  for 
the stress deviation Tαβ∆  given by the expressions (13)–(15), 
which correspond to a distribution of aligned micro-cracks 
as shown in Fig. 2. When inserting in these expressions the 
first-order displacement field (37) with 0A =



 for 2≥  
and 1 1| | exp ( )A A i= ψ , (38) takes on the form (34). The 
coefficients γ



 are zero for  being an odd integer number. 
For even  they are related to the displacement field of the 
ASF wedge modes via 

2
1ˆ e ( , )| ( , ) |

( 1)( 1)
i

W W
W S

i f x y f x y dxdy
N

ψτ
γ =

− + π ∫∫





 

 

, 

  (40) 
where we have defined 

(0)
12

1 2 3(0)
11

( , ) 2 ( , ) ( , ) ( , )W
c

f x y w x y w x y iw x y
x yc

  ∂ ∂ = + +  ∂ ∂   
. 

  (41) 

Making use of the isotropy of the matrix material, we de-
fine the profile functions ( , )w x yα  such that 1w  and 2w  are Fig. 2. Wedge geometry. 
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real, while 3w  is imaginary, and consequently Wf  is real. 
In the same way as in the case of Rayleigh waves, we find 
that γ



 is independent of the normalization of the profile 
functions and that 2−γ ∝



  for large . In Fig. 3, numerical 
results are presented for the dependence of 2γ  on the open-
ing angle θ in the range 55 90° ≤ θ ≤ °. The quantity 2γ  is 
the initial growth rate of the second harmonic of a time-
periodic wedge wave apart from the factor 1| |k A . The data 
refer to wedges made of steel with micro-cracks aligned 
according to Fig. 2(b). The phase angle ψ was chosen to be 
–π/4. The inset of Fig. 3 shows the phase velocity Wv  of 
the wedge waves as function of θ. For opening angles 

60θ ≤ °, a second branch of ASF modes exists. The results 
in Fig. 3 demonstrate that the ASF modes of the branch 
with higher speed have 2γ  values that differ from those of 
the branch with lower speed by their sign and have consider-
ably smaller magnitude than the latter. 

5. Conclusions 

In summary, a method has been presented for the calcu-
lation of the initial growth rates of higher harmonics of 
time-harmonic Rayleigh and wedge waves propagating in 
elastic media with a spatially homogeneous distribution of 
sub-wavelength micro-cracks. It is based on the effective 
stress-strain relation of the system, which is non-analytic in 
the case of flat micro-cracks. Numerical results have been 
presented for the initial growth rate of the second harmonic. 

A basic difference between Rayleigh and anti-symmet-
ric flexural wedge waves pertains to the nonlinearity of the 
pure matrix material. In the case of Rayleigh waves, the 
matrix material contributes to the growth rate of the second 
harmonic a term proportional to the square of the funda-
mental amplitude, which becomes dominant with decreas-
ing concentration of micro-cracks. In the case of wedge 
waves, the growth rate of the second harmonic vanishes in 
the absence of micro-cracks. Consequently, acoustic wedge 

waves are expected to be particularly sensitive to textured 
micro-crack distributions that break the reflection sym-
metry with respect to the wedge’s midplane. Since such 
distributions cause the linear elastic properties of the 
wedge to become anisotropic, too, there will be a small 
contribution to the initial growth rate of the second har-
monic proportional to the square of the fundamental ampli-
tude, which decreases to zero in the limit of vanishing mi-
cro-crack concentration. 

A remarkable feature, generated by the non-analyticity 
of the stress-strain relation and already known for acoustic 
bulk waves (see, for example, [17]), is the immediate 
growth of infinitely many (even) harmonics with growth 
rates depending linearly on the input wave’s amplitude. 
The observability of harmonics higher than the second is 
clearly limited by attenuation in the metallic samples with 
defects. 

In the case of aligned micro-cracks, the initial growth 
rates are proportional to the parameter τ1 in the non-
analytic stress-strain relation. This parameter can be quan-
tified by finite-element simulations, which have been car-
ried out for homogeneous distributions of aligned flat mi-
cro-cracks in the high-strength metallic alloy IN718 [13]. 
For the ratio of |τ1| and the elastic constant c11 of IN718, a 
value of more than 0.005 was found for a micro-crack con-
centration of 0.014 per diameter cubed. 

Finally we note that the approach presented for the 
quantitative determination of growth rates of higher har-
monics can easily be extended to nonlinear frequency mix-
ing with two guided input waves. 

The authors dedicate this work to the memory of Ar-
nold Markovich Kosevich with deep admiration of the va-
luable contributions he made to the fields of crystal defects 
and nonlinear waves, which this paper pertains to. One of 
us (A.P.M.) had the pleasure of cooperating with him on 
the latter subject. 
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