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We explore the transport of the surface states quasielectrons in the 3D topological insulators through the bar-
riers of various origin: the Fermi velocity and the electrostatic barriers. These barriers are believed to be the rec-
tangular and one-dimensional ones. The transmission coefficient T as the function of the quasiparticle energy E 
and an angle of incidence θ (transmission spectra) is evaluated with the help of the effective Hamiltonian; the 
conductivity G is calculated on the base of the Landauer–Buttiker formula. It is shown that the value of T and G 
significantly depends on the ratio of the Fermi velocities in the barrier and out-of-barrier regions α = vF2/ vF1. 
The dependence of these quantities on the strength of the electrostatic potential is analyzed. We find in particular 
that the effect of supertunneling manifests itself in the considered structure — being markedly dependent on the 
value of α. The formula which points out the energy value for which the effect of supertunneling takes place, for 
different α, is presented. For normal angle of the particle incidence, there is the effect analogous to the Klein 
paradOx. The spectra T(E,θ) and G(E) substantially depend on the interplay of α, energy E and the magnitude 
of the electrostatic potential. Hence, by changing the problem parameters one can flexibly vary the spectra 
of T(E,θ) and G(E) in wide limits. The obtained results may be useful for the nanoelectronics based on the topo-
logical insulators. 
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1. Introduction 

Topological insulators belong to the new class of sub-
stances that have recently been called Dirac materials 
([1] and references therein). These include very different 
objects in their structure, in particular the low- and high-
temperature d-wave superconductors, superfluid phases 3Не, 
graphene, two- and three-dimensional insulators etc. [1]. 

The key concept that unites these different objects is a 
linear dispersion relation that describes the low-energy 
excitations of the quasiparticles. Due to the fact that the 
Dirac materials have a number of non-trivial, interesting 
properties, they — and topological insulators (TI) among 
them — are actively studied in the last time (e.g., [2–13]). 
The most important characteristic of TI is that they are 
insulators in their volume, but are capable of conducting 
the electric current on their surface. These surface states 
can contribute to charge transport at low energies. Under 
low energies, the surface states of TI are described by a 
massless Dirac equation in one or two dimensions, analo-

gous to the equation for the quasielectrons in graphene. 
The dispersion relation for the Dirac particles relates to 
a cone in the three-dimensional case. Some properties of 
surface states of TI are expressed in terms of topologically 
invariant quantities and, importantly, are protected from 
the influence of moderate perturbations due to the sym-
metry of inversion of time in the corresponding Hamiltoni-
an. Time reversal invariant perturbations such as lattice 
imperfections or non-magnetic moderate disorder do not 
produce a gap; at the same time the external magnetic field 
can produce a gap for the surface states. 

Quasielectrons in TI exhibit strong spin-orbital interac-
tion. Due to this and due to the time-reversal symmetry, 
the surface states of TIs have an odd number of Dirac 
cones and expose the chiral spin nature (as observed by the 
angle-resolved photo-emission spectroscopy). Directions 
of the linear and the spin-angular quasi-momenta of quasi-
electrons on the surface of TI are interconnected and per-
pendicular to each other. Also we should keep in mind that 
the surface Hamiltonian of the 3D TI deals with the real 
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spin (in contrast with the graphene where the respective 
Hamiltonian comprises the pseudospin term). 

There are two classes of topological insulators: two (2D) 
and three-dimensional (3D) TI. The first ones are also call-
ed quantum spin Hall dielectrics, and they can be realized 
in quantum wells of HgCdTe compounds. Three-dimensi-
onal TIs are represented by bismuth compounds Bi2Se3, 
Bi2Te3 and similar materials. There are also strong and 
weak 3D TIs. Surface states in 2D and 3D TIs are one-
dimensional and two-dimensional, respectively. 

It is known that the Dirac excitations in TI exhibit the 
Klein tunneling (as in graphene) for normal incidence of 
the quasielectrons on the barrier. 

It is convenient to control the behavior of fermions in 
Dirac materials by means of external electric and magnetic 
fields, and a lot of publications are devoted to the corre-
sponding problem for this reason. 

At the same time, since the Fermi velocity fully charac-
terizes the Dirac cone slopes, i.e., the linear dispersion re-
lation, it is essential for applications. Therefore recently 
one more way for controlling the electronic properties of 
the Dirac materials namely by means of the spatial change 
of the Fermi velocity (in particular with the help of doping) 
was offered (e.g., [17–20] and references therein). A lot of 
propositions to use this control in practice were also pub-
lished [14–21]. 

2D and 3D TI may be useful in practice in particular in 
quantum computation and spintronics. 

Motivated by the above mentioned statements we ana-
lyze here the transmission of the Dirac quasiparticles 
through the velocity and electrostatic barriers in the 3D 
topological insulators. 

2. Model and formulae 

Consider the motion of the quasielectrons of the topo-
logical insulator surface states along the Ox axis from the 
left to the right. Assume that there is the rectangular one-
dimensional electrostatic potential barrier with the height 
U and width D, the interfaces coordinates being xl = 0 and 
xr = D for the left and the right interface, respectively.  

The low-energy excitations of the surface states in TI 
can be described by the following Hamiltonian [4,10]: 

 0F y xH i U
x y

 ∂ ∂
= − σ −σ + σ ∂ ∂ 

v , (1) 

where Fv  is the Fermi velocity, xσ , yσ  are the Pauli matri-
ces and 0  σ the unit matrix. 

In the case when the Fermi velocity varies in space this 
Hamiltonian is not the Hermitian one [4,10]. Assume that 
the Fermi velocity depends on the coordinate x (only) and 
let 1= . As usual in the relevant cases, it is assumed also 
that the barrier width is much larger than the near-interface 
regions associated with the gradual change in the Fermi 
velocity. Then in accordance with the considerations made 

in [4,10] we may present the Hamiltonian of the problem 
as follows: 

 0( ( ) )F y F xH i x x U
x y

 ∂ ∂
= − σ −σ + σ ∂ ∂ 

v v , (2) 

and now it has the hermitian form [4,10]. We must keep in 
mind that the derivative acts on the product ( )F x ψ = φv  
where ψ  are the spinorial eigenfunctions. The conservation 
of the local current requires the function  φ to be continu-
ous at the interfaces [4,10], that is 
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where ,l rψ  and bψ  are the eigenfunctions in the left (l) and 
right (r) out-of-barrier and in the barrier (b) regions, re-
spectively, 1Fv , 2Fv  are the Fermi velocities in the barrier 
and out-of-barrier regions, respectively. 

If the electron wave moves along the axis Ox from the 
left to the right, then for the wave functions in the left and 
the right out-of-barrier regions it is possible to write, re-
spectively: 
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where ( ) / x yf k k E≡ +

 ; 
for the barrier area we have 
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 2 2   x yk E k= − ;     
( )2 2

2  x y
E U

q k
−

= −
α

; (6) 

 
2 1

cos , sin , arctan ( / ),

/ .
x y y x

F F

k E k E k q= θ = θ ϕ =

α = v v
 (7) 

Using the boundary conditions (3) we find the coefficients 
in expressions for the wave functions, and hence the trans-
mission coefficient 2  T t= : 

 ( ) ( ) ( )2 2, cos ( ) sin ( )x xT E q D q Dθ = + ×


  

( ) ( ) ( )
121 1cos sin sign tan tanE U
−

− − θ ϕ + − θ ϕ 


× 


. (8) 
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3. Results and discussion 

From the above formulas, it is clear that the difference 
in the values of the Fermi velocity in the barrier and the 
out-of-barrier regions has a definite influence on the 
transmission spectra of the considered structure. The ques-
tion is how essential this effect can be. 

Consider the case of the presence of the combined Fer-
mi velocity barriers and the electrostatic barriers. Figure 1 
depicts the dependence of the transmission coefficient T on 
an angle of the quasielectrons incidence onto the structure 
θ for their fixed energy E = 1.5 for several values of α, 
namely, the curves 1, 2, 3 correspond to values of α = 0.5; 
1; 2; other parameters are U = 3, D = 3. It is seen that the 
change in the Fermi velocity in the barrier region makes a 
strong influence on the transmission spectra. The non-
trivial feature of the given spectra is the manifestation of 
the phenomenon of supertunneling, which consists in the 
fact that for electron energy value equal to half the height 
of the potential barrier E = U/2, the transmission through 
the barrier region is perfect for any angle of incidence (see 
line 2 in Fig. 1). 

We emphasize that for the Fermi velocity values in a 
barrier with 1,α ≠  the phenomenon of supertunneling also 
occurs, but for energies other than E = U/2. As shown be-
low, for the case 1α ≠ , there are certain energies for which 
the transmission is ideal for any angle of incidence.  

Figure 1 shows also that in the considered structure, in 
addition to the effect of supertunneling, a phenomenon si-
milar to the Klein tunneling is observed: the barrier trans-
parency is perfect for particles that fall to the barrier nor-
mally. Klein tunneling takes place for any values of α, that 
is, the Fermi velocity barriers are absolutely transparent in 
the case of normal incidence of particles for any height of 
the velocity barriers and of the electrostatic barriers. 

The value of the transmission rates T for a fixed angle 
of incidence θ is an oscillating value, depending on the 
magnitude of α. The region of the angles of incidence θ for 
which T(θ) is high can be broad, see curve T1 in Fig. 1 for 
which α = 0.5. Although the general trend is such that, 
with increasing an angle of incidence the coefficient T de-

creases on average, but for certain values of α, the value of 
T can be significant even for large angles of incidence. 

Figure 2 shows the dependence T(θ) for the energy 
close to the electrostatic barrier height for three different 
values of α = 0.5; 1; 2 for curves 1, 2, 3, respectively. It is 
seen that the number of resonance peaks increases with 
decreasing α (for the case E U , the dependence T(θ) is 
described by a smooth line throughout the range of values 
of angles / 2 / 2−π < θ < π  (see Fig. 1)). For 1,α >  there is 
only a narrow range of values of angles θ — in the vicinity 
of θ = 0 — in which ( ) 0T θ ≠  and can reach large values. 
This is explained by the fact that for energies ~  E U  for most 
angles θ, the quasi-momentum q becomes imaginary and 
the electron wave becomes evanescent (see formulae (6)). 
The spectra for the case of large energies (in comparison 
with the height of the barrier) are characterized by the pre-
sence of many resonance peaks which correspond to 
the condition for formation of the resonance states of the 
Fabry–Perot type: 

 
2

2
2

( )
y

E UD k n−
− = π

α
. (9) 

These maxima are related to the so-called “magic angles”. 
It is obvious from the condition (9) that more resonances 
are formed at higher energies. The studied transmission 
spectra are characterized by the presence of a critical angle 
of the quasiparticles incidence on the structure θс. For an-
gles of incidence θ greater than θс, the quasiparticles can-
not penetrate through the barrier (see, in particular, the 
spectra in Figs. 1 and 2). The value of the critical angle can 
be found from the Snell law and it is equal to 

 θ arcsin  c
E U

E
 − 

= ±  
α 

. (10) 

Depending on the particles energy E and on the height 
of the potential barrier height U the critical angle may be 
formed for both cases of 1 α >  and 1α < . The values of 

Fig. 1. (Color online) Dependence of the transmission rates T on 
an angle of incidence for the parameters: E = 1.5, U = 3, D = 3, 
α = 0.5; 1; 2, respectively, for the curves Т1, Т2, Т3. 

Fig. 2. (Color online) T vs θ plot with the parameters: E = 4, U = 3, 
D = 3, α = 0.5; 1; 2, respectively, for the curves T1, T2, T3. 
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1 α >  are associated with the barriers for electrons and in 
this case the range of values of E and U for which there is 
a critical angle is rather broad — unlike for the case 1α <  
(which is associated with the quantum wells). 

The range of angles of incidence θ for which the value 
of T(θ) is significant as well as the values of the critical 
angle θc, are substantially reduced with increasing in α. 
Figure 3 shows the dependence of the coefficient T on en-
ergy E for a fixed angle of incidence / 4 θ = π  and values 
of α = 0.5; 1; 2 for the curves 1, 2, 3, respectively, and 
others the parameters are U = 3, D = 3. 

It is clearly seen that there exist the resonant values of 
energy Er for which the transparency of the structure is 
perfect, that is T(Er) = 1. For each value of α, there is such 
an energy for which the phenomenon of supertunneling is 
realized; we can deduce the expression for this energy 
from the above formulae and it reads 

 
1s

UE =
+α

 . (11) 

Consequently, the energy position associated with the 
phenomenon of supertunneling depends essentially on the 
ratio of the Fermi velocities in the barrier and in the out-of-
barrier regions. The value of Es decreases with increasing 
of α regardless of whether we are dealing with the barriers 
( 1α > ) or with the quantum wells ( 1α < ). 

Now we can state that the spectra T(E) have the follow-
ing structure in general: 

1. The presence of peaks in the dependence of T(E) 
(and also in the dependence of T(θ)) indicates that the 
transmission of quasielectrons in the structure considered 
has a resonant-tunneling character. 

2. For energy / (1 )sE U= +α , the transmission coeffi-
cient T = 1 for all θ (the effect of supertunneling). 

3. There is a plateau of energies with values of ~ 1T  in 
the vicinity of the point sE . 

4. There is a wide gap in the vicinity of energy ~E U . 
Its width sharply depends on an angle of incidence θ in-
creasing with increasing of θ. 

5.  Тhere are Fabry–Perot-like resonances with values 
T = 1 in the regions distant from the point sE  under the 
condition , sE U E< . If conditions for the formation of a 
critical angle are not fulfilled, similar resonances exist for 
energies E > U, sE . The Fabry–Perot-type resonances are 
placed on the axis of energy periodically. 

6. If there is a critical angle then T decreases sharply 
with E increasing. The steepness of the function T(E) de-
pends on the parameters of the problem. The critical ener-
gy Eс corresponds to the critical angle θc: for the electrons 
with energy сE E>  the barrier is insurmountable. Accord-
ing to formula (9), the critical energy is equal to 

 
sin 1c

c

UE =
α θ −

 . (12) 

In Figure 4, the dimensionless conductivity G (the quant-
ity that can be measured in experiment) is presented as the 
function of energy E. It takes into account the combined 
Fermi velocity barriers and the electrostatic barriers. The 
values of the parameters for this figure are as follows: 
D = 1, U = 2, lines 1, 2, 3 correspond to values of α = 0.5; 
1; 2, respectively. 

First of all, it is noteworthy that the function G(E) has 
an oscillating character, which corresponds to the depend-
ences of the transmission coefficient T on energy E. At the 
points / (1  )sE U= +α , the maximum values of conductiv-
ity due to the effect of supertunneling are realized and the 
given condition of maxima is performed precisely. In the 
energy region ~E U , there is a fairly wide range of ener-
gies in which the function G(E) has a minimal value — 
this region is associated with the gap in the T(E) depend-
ences. Its width increases markedly with an increase of α 
(compare curves 1, 2, 3). On average, the growth of α 
leads to a decrease in conductivity. 

At energies somewhat smaller and larger than those 
corresponding to the minimum G(E), oscillations of con-

Fig. 3. (Color online) T vs E plot for the following parameters: 
θ = π/4, U = 3, D = 3, α = 0.5; 1; 2, respectively, for the curves 
T1, T2, T3. 

Fig. 4. (Color online) Dependences of the dimensionless conduc-
tivity G on energy E for the following parameters: D = 1; U = 2; 
α = 0.5; 1; 2 for G1, G2, G3, respectively. 
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ductivity are observed. In the region of smaller energies, 
the value of G(E) reaches a maximum, and in the right side 
of the spectra the value of G is much smaller. These oscil-
lations are related to Fabry–Perot resonances in the de-
pendences T(E). The difference in the regions of smaller 
and larger energies is explained in this way: in the region 
of energies 0.5E U≅ , the half-widths of the resonances are 
substantially larger than those in the region 0.5E U  (see 
Fig. 3).  

Figure 5 shows the dependence of G(E) for a higher 
electrostatic barrier height: U = 6, other parameters as in 
Fig. 4. A greater value of U results in the shift of the max-
imum and minimum values of G towards higher energies, 
values of G(E) become lesser on average (except for the re-
sonance energies); the general characteristic of the spec-
trum is not changed. 

The dependence of the conductivity on energy for wider 
barrier is plotted in Fig. 6 for the following parameters: 
D = 6, U = 4, α = 0.5; 1; 2 for G1, G2, G3, respectively. 
It exhibits the pronounced maxima at the points sE =

/(1 )U= +α . Also the pattern of lines with the Fabry–Perot 
resonances is substantially changed in both regions: E > U 
and E <  sE ; both the period and the amplitude of the oscil-
lations are substantially reduced in comparison with the 

respective lines in Figs. 4 and 5. Values of G(E) decrease 
on average with increasing in the width of the barrier (ex-
cept for the resonance energies). 

4. Conclusions 

The object of our investigation is a 3D topological insu-
lator the surface states of which are described by the Dirac-
like equation. We use the continuum model and the trans-
fer matrix method for our evaluations. The transmission 
spectra, i.e., the dependences, of the transmission rates on 
the quasiparticles energy and on the angle of incidence 
through the Fermi velocity barrier and the electrostatic 
barrier are calculated. It is shown that these spectra display 
the resonant tunneling character. The dependence of spec-
tra on the magnitude of the electrostatic potential, as well 
as on the values of the Fermi velocity in the barrier and in 
the out-of-barrier regions, is studied. 

The most characteristic and interesting property of the 
investigated structures is the manifestation in them of a 
phenomenon known as the supertunneling: for some ener-
gy values, its quantum transparency is perfect for all angles 
of incidence of quasiparticles on the barrier. For the case of 
tunneling through the combined electrostatic and the Fermi 
velocities barriers the supertunneling takes place for ener-
gies not equal to half the electrostatic barrier (as in the case 
of absence of the velocity barriers), these values being de-
pendent on the Fermi velocity barrier magnitude. An ana-
lytical formula for this dependence is deduced. An import-
ant feature is also the presence in the transmission spectra 
of the critical angle of incidence of quasiparticles on the 
barriers. In a wide range of parameter values, barriers be-
come opaque for particles that fall on them at an angle that 
exceeds a critical angle. This feature allows to use the in-
vestigated structures, in particular, as the wavevector fil-
ters. The conductivity of the structure considered exhibits 
the features associated with the T(E) dependences. The 
results of our work can be applied for controlling the 
transmission spectra of the 3D topological insulators. 
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Вплив швидкості Фермі на транспортні властивості 
3D топологічних ізоляторів 

А.М. Король, Н.В. Медвідь 

Досліджується балістичний транспорт квазіелектронів на 
поверхні  3D топологічних  ізоляторів  крізь  бар’єри  різної 
природи: швидкості  Фермі  та  електростатичні  бар’єри.  Ці 
бар’єри  вважаються  прямокутними  та  одновимірними.  Кое-
фіцієнт трансмісії квазіелектронів Т в залежності від їх енер-
гії Е та кута падіння θ на структуру, що розглядається (спек-
три  трансмісії),  розраховується  за  допомогою  ефективного 
гамільтоніану. Провідність даної  структури G обчислюється 
із  використанням  формули  Ландауера–Буттікера.  Показано, 
що значення Т і G істотно залежать від відношення швидкос-
тей Фермі в бар’єрній та позабар’єрній областях α = vF2/ vF1. 
Аналізується залежність цих величин від електростатичного 
потенціалу. Показано,  зокрема, що в даній  структурі прояв-
ляється  ефект  супертунелювання,  який  істотно залежить від 
значення α. Наведено формулу, що визначає значення енергій, 
для  яких  має  місце  ефект  супертунелювання  для  різних α. 
У разі  нормального  кута  падіння  частинок  проявляється 

ефект, аналогічний клейнівському парадоксу. Спектри T(E,θ) 
та G(E) є вельми чутливими до співвідношення між α, енер-
гією  Е,  величиною  електростатичного  потенціалу.  Отже, 
змінюючи  параметри  даної  задачі,  можна  гнучко  варіювати 
залежності  T(E,θ)  та G(E)  в  широких  межах.  Одержані  ре-
зультати  можуть  бути  застосовані  в  наноелектроніці,  яка 
використовує топологічні ізолятори. 

Ключові  слова: топологічні  ізолятори,  потенційні  бар’єри, 
швидкість Фермі, спектри пропускання. 

Влияние скорости Ферми на транспортные 
свойства 3D топологических изоляторов 

А.Н. Король, Н.В. Медведь 

Исследуется  баллистический  транспорт  квазиэлектронов 
на поверхности 3D топологических изоляторов сквозь барье-
ры  различной  природы: скорости  Ферми  и  электростатиче-
ские  барьеры.  Эти  барьеры  считаются  прямоугольными  и 
одномерными. Коэффициент трансмиссии квазиэлектронов Т 
в зависимости от их энергии Е и угла падения на рассматри-
ваемую структуру θ (спектры трансмиссии) рассчитывается с 
помощью  эффективного  гамильтониана. Проводимость  дан-
ной  структуры  G вычисляется  с  использованием  формулы 
Ландауэра–Буттикера.  Показано, что  значения  Т и G суще-
ственно зависят от отношения скоростей Ферми в барьерной 
и внебарьерной областях α = vF2/vF1. Анализируется зависи-
мость этих величин от электростатического потенциала. По-
казано, в  частности, что  в  данной  структуре  проявляется 
эффект супертуннелирования, который существенно зависит 
от значения α. Приведена формула, определяющая значения 
энергий, для  которых  имеет  место  эффект  супертуннелиро-
вания для различных α. В случае нормального угла падения 
частиц  проявляется  эффект, аналогичный  клейновскому  па-
радоксу. Спектры T(E,θ) и G(E) весьма чувствительны к со-
отношению между α, энергией Е, величиной электростатиче-
ского потенциала. Следовательно, изменяя параметры данной 
задачи, можно гибко варьировать зависимости T(E,θ) и G(E) 
в  широких  пределах.  Полученные  результаты  могут  быть 
применены  в  наноэлектронике, которая  использует  тополо-
гические изоляторы. 

Ключевые слова: топологические изоляторы, потенциальные 
барьеры, скорость Ферми, спектры пропускания.
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