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We explore the transport of the surface states quasielectrons in the 3D topological insulators through the bar-
riers of various origin: the Fermi velocity and the electrostatic barriers. These barriers are believed to be the rec-
tangular and one-dimensional ones. The transmission coefficient T as the function of the quasiparticle energy E
and an angle of incidence 0 (transmission spectra) is evaluated with the help of the effective Hamiltonian; the
conductivity G is calculated on the base of the Landauer—Buttiker formula. It is shown that the value of T and G
significantly depends on the ratio of the Fermi velocities in the barrier and out-of-barrier regions o = vgy/ vg;.
The dependence of these quantities on the strength of the electrostatic potential is analyzed. We find in particular
that the effect of supertunneling manifests itself in the considered structure — being markedly dependent on the
value of a. The formula which points out the energy value for which the effect of supertunneling takes place, for
different o, is presented. For normal angle of the particle incidence, there is the effect analogous to the Klein
paradOx. The spectra T(E,0) and G(E) substantially depend on the interplay of o, energy E and the magnitude
of the electrostatic potential. Hence, by changing the problem parameters one can flexibly vary the spectra
of T(E,0) and G(E) in wide limits. The obtained results may be useful for the nanoelectronics based on the topo-

logical insulators.
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1. Introduction

Topological insulators belong to the new class of sub-
stances that have recently been called Dirac materials
([1] and references therein). These include very different
objects in their structure, in particular the low- and high-
temperature d-wave superconductors, superfluid phases 3He,
graphene, two- and three-dimensional insulators etc. [1].

The key concept that unites these different objects is a
linear dispersion relation that describes the low-energy
excitations of the quasiparticles. Due to the fact that the
Dirac materials have a number of non-trivial, interesting
properties, they — and topological insulators (TI) among
them — are actively studied in the last time (e.g., [2-13]).
The most important characteristic of TI is that they are
insulators in their volume, but are capable of conducting
the electric current on their surface. These surface states
can contribute to charge transport at low energies. Under
low energies, the surface states of Tl are described by a
massless Dirac equation in one or two dimensions, analo-
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gous to the equation for the quasielectrons in graphene.
The dispersion relation for the Dirac particles relates to
a cone in the three-dimensional case. Some properties of
surface states of T| are expressed in terms of topologically
invariant quantities and, importantly, are protected from
the influence of moderate perturbations due to the sym-
metry of inversion of time in the corresponding Hamiltoni-
an. Time reversal invariant perturbations such as lattice
imperfections or non-magnetic moderate disorder do not
produce a gap; at the same time the external magnetic field
can produce a gap for the surface states.

Quasielectrons in TI exhibit strong spin-orbital interac-
tion. Due to this and due to the time-reversal symmetry,
the surface states of Tls have an odd number of Dirac
cones and expose the chiral spin nature (as observed by the
angle-resolved photo-emission spectroscopy). Directions
of the linear and the spin-angular quasi-momenta of quasi-
electrons on the surface of TI are interconnected and per-
pendicular to each other. Also we should keep in mind that
the surface Hamiltonian of the 3D TI deals with the real
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spin (in contrast with the graphene where the respective
Hamiltonian comprises the pseudospin term).

There are two classes of topological insulators: two (2D)
and three-dimensional (3D) TI. The first ones are also call-
ed quantum spin Hall dielectrics, and they can be realized
in quantum wells of HgCdTe compounds. Three-dimensi-
onal Tls are represented by bismuth compounds BiSes,
BioTez and similar materials. There are also strong and
weak 3D TIs. Surface states in 2D and 3D Tls are one-
dimensional and two-dimensional, respectively.

It is known that the Dirac excitations in T1 exhibit the
Klein tunneling (as in graphene) for normal incidence of
the quasielectrons on the barrier.

It is convenient to control the behavior of fermions in
Dirac materials by means of external electric and magnetic
fields, and a lot of publications are devoted to the corre-
sponding problem for this reason.

At the same time, since the Fermi velocity fully charac-
terizes the Dirac cone slopes, i.e., the linear dispersion re-
lation, it is essential for applications. Therefore recently
one more way for controlling the electronic properties of
the Dirac materials namely by means of the spatial change
of the Fermi velocity (in particular with the help of doping)
was offered (e.g., [17-20] and references therein). A lot of
propositions to use this control in practice were also pub-
lished [14-21].

2D and 3D TI may be useful in practice in particular in
guantum computation and spintronics.

Motivated by the above mentioned statements we ana-
lyze here the transmission of the Dirac quasiparticles
through the velocity and electrostatic barriers in the 3D
topological insulators.

2. Model and formulae

Consider the motion of the quasielectrons of the topo-
logical insulator surface states along the Ox axis from the
left to the right. Assume that there is the rectangular one-
dimensional electrostatic potential barrier with the height
U and width D, the interfaces coordinates being x; = 0 and
xr = D for the left and the right interface, respectively.

The low-energy excitations of the surface states in TI
can be described by the following Hamiltonian [4,10]:

H = —iAvg (Gyai—(ix %j-ﬁ-GOU, (1)
X

where vg is the Fermi velocity, o,, o, are the Pauli matri-
ces and o the unit matrix.

In the case when the Fermi velocity varies in space this
Hamiltonian is not the Hermitian one [4,10]. Assume that
the Fermi velocity depends on the coordinate x (only) and
let #=1. As usual in the relevant cases, it is assumed also
that the barrier width is much larger than the near-interface
regions associated with the gradual change in the Fermi
velocity. Then in accordance with the considerations made

in [4,10] we may present the Hamiltonian of the problem
as follows:

H =-ivE (X) |:Gy;;X«/U|: (x) —oy %:|+GOU ., @

and now it has the hermitian form [4,10]. We must keep in
mind that the derivative acts on the product /o (X)y = ¢
where y are the spinorial eigenfunctions. The conservation
of the local current requires the function ¢ to be continu-
ous at the interfaces [4,10], that is

UFl\VI(XZO_)Z UF2Wb(X:0+)' -
sz\Vb(X = D_)= VF1Vy (X= D+)’

where y  and , are the eigenfunctions in the left (1) and
right (r) out-of-barrier and in the barrier (b) regions, re-
spectively, vgq, vg, are the Fermi velocities in the barrier
and out-of-barrier regions, respectively.

If the electron wave moves along the axis Ox from the
left to the right, then for the wave functions in the left and
the right out-of-barrier regions it is possible to write, re-
spectively:

L ke, r [ 1) ik
w0 ol J

4
t [ 1) ikx
X)=— grxt
‘Vr ( ) \/E(f_]
where f¥ = (ky +k,)/E;
for the barrier area we have
a (1) gu, b1
X)=—— e — e,
Vp ( ) \/E[g+ \/E g_
it 4k )
oF = F10x +Ky
(E-U)at

E-U
ke =yE°—ki: ay= (a—z)_k)zl; (6)

ky =Ecos0, ky=Esin®, ¢=arctan (k,/ay), o

o =VEgo /vFl‘
Using the boundary conditions (3) we find the coefficients

in expressions for the wave functions, and hence the trans-
mission coefficient T = |t|2 ;

T(E.0)= {(cos (qXD))2 +(sin (qy D))2 x

-1
x[(cose)_1 (sin (p)_l +sign(E-U)tan6tan (p] 2} . (8
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3. Results and discussion

From the above formulas, it is clear that the difference
in the values of the Fermi velocity in the barrier and the
out-of-barrier regions has a definite influence on the
transmission spectra of the considered structure. The ques-
tion is how essential this effect can be.

Consider the case of the presence of the combined Fer-
mi velocity barriers and the electrostatic barriers. Figure 1
depicts the dependence of the transmission coefficient T on
an angle of the quasielectrons incidence onto the structure
6 for their fixed energy E = 1.5 for several values of o,
namely, the curves 1, 2, 3 correspond to values of o = 0.5;
1; 2; other parameters are U = 3, D = 3. It is seen that the
change in the Fermi velocity in the barrier region makes a
strong influence on the transmission spectra. The non-
trivial feature of the given spectra is the manifestation of
the phenomenon of supertunneling, which consists in the
fact that for electron energy value equal to half the height
of the potential barrier E = U/2, the transmission through
the barrier region is perfect for any angle of incidence (see
line 2 in Fig. 1).

We emphasize that for the Fermi velocity values in a
barrier with o =1, the phenomenon of supertunneling also
occurs, but for energies other than E = U/2. As shown be-
low, for the case a =1, there are certain energies for which
the transmission is ideal for any angle of incidence.

Figure 1 shows also that in the considered structure, in
addition to the effect of supertunneling, a phenomenon si-
milar to the Klein tunneling is observed: the barrier trans-
parency is perfect for particles that fall to the barrier nor-
mally. Klein tunneling takes place for any values of «, that
is, the Fermi velocity barriers are absolutely transparent in
the case of normal incidence of particles for any height of
the velocity barriers and of the electrostatic barriers.

The value of the transmission rates T for a fixed angle
of incidence 0 is an oscillating value, depending on the
magnitude of a. The region of the angles of incidence 6 for
which T(6) is high can be broad, see curve T1 in Fig. 1 for
which o = 0.5. Although the general trend is such that,
with increasing an angle of incidence the coefficient T de-
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Fig. 1. (Color online) Dependence of the transmission rates T on
an angle of incidence for the parameters: E = 1.5, U =3, D = 3,
o =0.5; 1; 2, respectively, for the curves T1, 72, T3.
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creases on average, but for certain values of a, the value of
T can be significant even for large angles of incidence.

Figure 2 shows the dependence T(0) for the energy
close to the electrostatic barrier height for three different
values of a = 0.5; 1; 2 for curves 1, 2, 3, respectively. It is
seen that the number of resonance peaks increases with
decreasing o (for the case E <« U, the dependence T(0) is
described by a smooth line throughout the range of values
of angles —n/2<0<n/2 (see Fig. 1)). For a >1, there is
only a narrow range of values of angles 6 — in the vicinity
of 6 = 0 — in which T(6) = 0 and can reach large values.
This is explained by the fact that for energies E ~U for most
angles 0, the quasi-momentum g becomes imaginary and
the electron wave becomes evanescent (see formulae (6)).
The spectra for the case of large energies (in comparison
with the height of the barrier) are characterized by the pre-
sence of many resonance peaks which correspond to
the condition for formation of the resonance states of the
Fabry—Perot type:

2
D /%—ki —nm. )

These maxima are related to the so-called “magic angles”.
It is obvious from the condition (9) that more resonances
are formed at higher energies. The studied transmission
spectra are characterized by the presence of a critical angle
of the quasiparticles incidence on the structure 6.. For an-
gles of incidence 6 greater than 6., the quasiparticles can-
not penetrate through the barrier (see, in particular, the
spectra in Figs. 1 and 2). The value of the critical angle can
be found from the Snell law and it is equal to

0, =% alrcsin[| £ _EU |J . (10)

Depending on the particles energy E and on the height
of the potential barrier height U the critical angle may be
formed for both cases of o >1 and o <1. The values of

Tl

20/w

Fig. 2. (Color online) T vs 6 plot with the parameters: E=4, U =3,
D =3, a =0.5; 1; 2, respectively, for the curves T1, T2, T3.
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o >1 are associated with the barriers for electrons and in
this case the range of values of E and U for which there is
a critical angle is rather broad — unlike for the case o <1
(which is associated with the quantum wells).

The range of angles of incidence 6 for which the value
of T(0) is significant as well as the values of the critical
angle O¢, are substantially reduced with increasing in o.
Figure 3 shows the dependence of the coefficient T on en-
ergy E for a fixed angle of incidence 6 =n/4 and values
of o = 0.5; 1; 2 for the curves 1, 2, 3, respectively, and
others the parametersare U=3,D = 3.

It is clearly seen that there exist the resonant values of
energy E; for which the transparency of the structure is
perfect, that is T(Ey) = 1. For each value of a, there is such
an energy for which the phenomenon of supertunneling is
realized; we can deduce the expression for this energy
from the above formulae and it reads

U
E.=—. 11
S 1+a (1)

Consequently, the energy position associated with the
phenomenon of supertunneling depends essentially on the
ratio of the Fermi velocities in the barrier and in the out-of-
barrier regions. The value of Eg decreases with increasing
of o regardless of whether we are dealing with the barriers
(o >1) or with the quantum wells (o <1).

Now we can state that the spectra T(E) have the follow-
ing structure in general:

1. The presence of peaks in the dependence of T(E)
(and also in the dependence of T(0)) indicates that the
transmission of quasielectrons in the structure considered
has a resonant-tunneling character.

2. For energy Eg =U /(1+a), the transmission coeffi-
cient T = 1 for all 6 (the effect of supertunneling).

3. There is a plateau of energies with values of T ~1 in
the vicinity of the point E.

1.0 {\r-]
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72
0.6

T
0.4

L | »UUU

0 2 4 6

T1

E

Fig. 3. (Color online) T vs E plot for the following parameters:
0=mn/4,U=3, D=3, a=05;1; 2 respectively, for the curves
T1, T2, T3.

4. There is a wide gap in the vicinity of energy E ~U.
Its width sharply depends on an angle of incidence 6 in-
creasing with increasing of 6.

5. There are Fabry-Perot-like resonances with values
T=1 in the regions distant from the point Eg under the
condition E <U,E,. If conditions for the formation of a
critical angle are not fulfilled, similar resonances exist for
energies E > U, E;. The Fabry—Perot-type resonances are
placed on the axis of energy periodically.

6. If there is a critical angle then T decreases sharply
with E increasing. The steepness of the function T(E) de-
pends on the parameters of the problem. The critical ener-
gy E. corresponds to the critical angle 6¢: for the electrons
with energy E > E,_ the barrier is insurmountable. Accord-
ing to formula (9), the critical energy is equal to

¢ = L . (12)

| sin 6 —1]

In Figure 4, the dimensionless conductivity G (the quant-
ity that can be measured in experiment) is presented as the
function of energy E. It takes into account the combined
Fermi velocity barriers and the electrostatic barriers. The
values of the parameters for this figure are as follows:
D=1,U=2 lines 1, 2, 3 correspond to values of o = 0.5;
1; 2, respectively.

First of all, it is noteworthy that the function G(E) has
an oscillating character, which corresponds to the depend-
ences of the transmission coefficient T on energy E. At the
points Eg =U / (1+a ), the maximum values of conductiv-
ity due to the effect of supertunneling are realized and the
given condition of maxima is performed precisely. In the
energy region E ~U, there is a fairly wide range of ener-
gies in which the function G(E) has a minimal value —
this region is associated with the gap in the T(E) depend-
ences. Its width increases markedly with an increase of o
(compare curves 1, 2, 3). On average, the growth of o
leads to a decrease in conductivity.

At energies somewhat smaller and larger than those
corresponding to the minimum G(E), oscillations of con-

2.0r
15
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G 1.0F
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0.5F G3
I I I I |
0 2 4 6 8 10

E

Fig. 4. (Color online) Dependences of the dimensionless conduc-
tivity G on energy E for the following parameters: D = 1; U = 2;
o =0.5; 1; 2 for G1, G2, G3, respectively.
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Fig. 5. (Color online) Dependences of the dimensionless conduc-
tivity on energy E for the following parameters: D = 1; U = 6;
a =0.5; 1; 2 for G1, G2, G3, respectively.

ductivity are observed. In the region of smaller energies,
the value of G(E) reaches a maximum, and in the right side
of the spectra the value of G is much smaller. These oscil-
lations are related to Fabry—Perot resonances in the de-
pendences T(E). The difference in the regions of smaller
and larger energies is explained in this way: in the region
of energies E = 0.5U, the half-widths of the resonances are
substantially larger than those in the region E > 0.5U (see
Fig. 3).

Figure 5 shows the dependence of G(E) for a higher
electrostatic barrier height: U = 6, other parameters as in
Fig. 4. A greater value of U results in the shift of the max-
imum and minimum values of G towards higher energies,
values of G(E) become lesser on average (except for the re-
sonance energies); the general characteristic of the spec-
trum is not changed.

The dependence of the conductivity on energy for wider
barrier is plotted in Fig. 6 for the following parameters:
D=6,U=4,a=0.5;1; 2 for G1, G2, G3, respectively.
It exhibits the pronounced maxima at the points Eg =
=U/(+a). Also the pattern of lines with the Fabry—Perot
resonances is substantially changed in both regions: E > U
and E < Eg; both the period and the amplitude of the oscil-
lations are substantially reduced in comparison with the

2.0
1.5
Gl
G 1.0

G2

0.5- G3
|
0 2 4 6 8 10

E

Fig. 6. (Color online) G(E) dependence for wider barrier: D = 6;
U=4,a0=0.5;1,;2for Gl, G2, G3, respectively.

respective lines in Figs. 4 and 5. Values of G(E) decrease
on average with increasing in the width of the barrier (ex-
cept for the resonance energies).

4, Conclusions

The object of our investigation is a 3D topological insu-
lator the surface states of which are described by the Dirac-
like equation. We use the continuum model and the trans-
fer matrix method for our evaluations. The transmission
spectra, i.e., the dependences, of the transmission rates on
the quasiparticles energy and on the angle of incidence
through the Fermi velocity barrier and the electrostatic
barrier are calculated. It is shown that these spectra display
the resonant tunneling character. The dependence of spec-
tra on the magnitude of the electrostatic potential, as well
as on the values of the Fermi velocity in the barrier and in
the out-of-barrier regions, is studied.

The most characteristic and interesting property of the
investigated structures is the manifestation in them of a
phenomenon known as the supertunneling: for some ener-
gy values, its quantum transparency is perfect for all angles
of incidence of quasiparticles on the barrier. For the case of
tunneling through the combined electrostatic and the Fermi
velocities barriers the supertunneling takes place for ener-
gies not equal to half the electrostatic barrier (as in the case
of absence of the velocity barriers), these values being de-
pendent on the Fermi velocity barrier magnitude. An ana-
Iytical formula for this dependence is deduced. An import-
ant feature is also the presence in the transmission spectra
of the critical angle of incidence of quasiparticles on the
barriers. In a wide range of parameter values, barriers be-
come opaque for particles that fall on them at an angle that
exceeds a critical angle. This feature allows to use the in-
vestigated structures, in particular, as the wavevector fil-
ters. The conductivity of the structure considered exhibits
the features associated with the T(E) dependences. The
results of our work can be applied for controlling the
transmission spectra of the 3D topological insulators.

1. T.0. Wehling, A.M. Black-Schaffer, and A.V. Balatsky,
Adv. Phys. 63, 1 (2014).

2. Y. Tanaka, T. Yokohama, and N. Nagaosa, Phys. Rev. 103,

107002 (2009).

L. Fu, Phys. Rev. Lett. 103, 266801 (2009).

R. Takahashi and S. Murakami, Phys. Rev. 107, 166805 (2011).

A. lurov, G. Gumbs, O. Roslyak, and D. Huang, J. Phys.:

Condens. Matter 24, 015303 (2012).

A. lurov, G. Gumbs, O. Roslyak, and D. Huang, J. Phys.:

Condens. Matter 25, 135502 (2013).

7. M. Alos-Palop, P. Rakesh, and M. Blaauboer, Phys. Rev. B
87, 035432 (2013).

8. H. Li, J. Shao, H. Zhang, Y. Dao-Xin, and G. Yang, J. Appl.
Phys. 114,093703 (2013).

9. Y. Takagaki, J. Phys.: Condens. Matter 28, 025302 (2016).

o~ w

o

Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 10 1315


https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1103/PhysRevLett.103.166403
https://doi.org/10.1103/PhysRevLett.107.166805
https://doi.org/10.1088/0953-8984/24/1/015303
https://doi.org/10.1088/0953-8984/24/1/015303
https://doi.org/10.1088/0953-8984/25/13/135502
https://doi.org/10.1088/0953-8984/25/13/135502
https://doi.org/10.1103/PhysRevB.87.035432
https://doi.org/10.1063/1.4820268
https://doi.org/10.1063/1.4820268
https://doi.org/10.1088/0953-8984/28/2/025302

A.M. Korol and N.V. Medvid’

10. Diptiman Sen and Oindrila Deb, Phys. Rev. B 85, 245402

(2012).

11. Zhenhua Wu, F.M. Peeters, and Kai Chang, Phys. Rev. B 82,
115211 (2010).

12. Y.J. Zheng, J.T. Song, and Y.-X. Li, Chin. Phys. 25, 037301
(2016).

13. J.-T. Song, Y.-X. Li, and Q.-f. Sun, J. Phys:. Condens.
Matter 26, 185007 (2014).

14. L. Liu, Yu-Xian Li, and J. Liu, Phys. Lett. A 376, 3342 (2012).

15. Y. Wang, Y. Liu, and B. Wang, Physica E 53, 186 (2013).

16. L. Sun, C. Fang, and T. Liang, Chin. Phys. Lett. 30,047201
(2013).

17. A. Raoux, M. Polini, R. Asgari, A.R. Hamilton, R. Fasio,
and A.H. MacDonald, Phys. Rev. B 81, 073407 (2010).

18. A. Concha and Z. TeSanovi¢, Phys. Rev. B 82, 033413 (2010).

19. J.H. Yuan, JJ. Zhang, Q.J. Zeng, J.P. Zhang, and Z. Cheng,
Physica B 406, 4214 (2011).

20. P.M. Krstajic and P. Vasilopoulos, J. Phys.: Condens.
Matter 23, 135302 (2011).

21. A.M. Korol, A.l. Sokolenko, and I.V. Sokolenko, Fiz. Nizk.
Temp. 44, 1025 (2018) [Low Temp. Phys. 44, 803 (2018)].

Bnnue weunakocti ®epmi Ha TpaHCNOPTHI BNACTUBOCTI
3D TononoriyHmx isonaTopis

A.M. Koponb, H.B. Meagigb

JocnipkyeTsest GamicTHIHUE TPAHCIOPT KBa3ieIeKTPOHIB Ha
noBepxHi 3D TomoNOriYHUX i30JATOPIB Kpi3b Oap’epu pizHOI
npupou: mBHAKocTi Pepmi Ta enexrpocratHuHi Gap’epm. Lli
6ap’epy BBa)KAIOThCS MPSIMOKYTHHMH Ta ofHOBHMipHUMH. Koe-
¢imienT TpancMmicii kBa3ienekTpoHiB 7' B 3aJIEXHOCTI BiX X eHep-
rii £ Ta kyTa nagiass 0 Ha CTPYKTYypY, IO PO3IIISAAETHCS (CIIeK-
TPU TPAHCMICil), PO3PAXOBYETHCS 3a IOIOMOTOI0 €()EeKTHBHOIO
raminproniany. [IpoBigHicTe nanoi cTpykTypu G OOYHCIIOETHCS
i3 BukopucraHHaM ¢opmyin Jlannayepa—Byrrikepa. IToka3saHo,
o 3Ha4eHHs 7' 1 G icTOTHO 3aneXarh Bijl BiHOLICHHS LIBUJIKOC-
Teit @epmi B Gap’epHiii Ta mo3abap’epHiil 00IaCTIX O = Upyl Upy.
AHaNI3yeThCs 3ANICKHICTD [UX BEIUYUH Bijl IEKTPOCTATHYHOIO
noTeHuiaty. ITokazaHo, 30kpeMa, 10 B JaHill CTPYKTYpi MpOsiB-
JSI€TBCST €PeKT CYNepTyHEIIOBAaHHS, SIKUH ICTOTHO 3aJIeKHUTh Bij
3HaueHHs o. HaBeneHo GpopMyiy, 0 BU3HAYA€E 3HAYCHHS CHEPTii,
JUIsL SIKAX Mae Micue e(eKT CYyNepTYHEIIOBAaHHS Ui Pi3HHX OL.
V pa3zi HOpManbHOrO KyTa MNagiHHS YacTHHOK MPOSBISETHCS
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edexr, aHanoriyHmii KieiHiBcbkoMy napanokcy. Crexrpu T(E,0)
ta G(E) € BentbMU YYTIMBUMH [0 CIiBBiJHOLICHHS MiX O, CHEpP-
rieto E, BEIMYMHOIO EJIEKTPOCTAaTH4HOro moreHmiany. Orxe,
3MIHIOIOYH [ApaMeTpH JaHol 3a1adi, MOXKHA THYYKO BapiloBaTd
sanexxrnocti T(E,0) Ta G(E) B mmpokux mexax. Onepxani pe-
3yJIbTaTH MOXYTh OYTH 3aCTOCOBaHI B HAHOEJEKTPOHII, sKa
BHKOPUCTOBYE TOIOJIOTiYHI 130JITOPH.

KirowoBi cmoBa: TomoJorivHi i30JI1TOpH, MOTEHLiiHI Oap’epw,
mBUAKICTh DepMi, CIEKTPH IPOMYCKaHHSI.

BnusiHue ckopoctn ®epmm Ha TpaHCMOPTHbIE
ceomncTBa 3D Tononormyeckmx N3onAaTopos

A.H. Kopornb, H.B. MeaBeapb

Hccnenyercs GanaucTUUeCKHi TPAaHCHOPT KBAa3HMAJICKTPOHOB
Ha noBepxHocTH 3D TOmojIoruyeckux U30IATOPOB CKBO3b Oapbe-
PBI Pa3IMYHON NpUpPOIBI: ckopocTH DepMH U ANIEKTpOCTaTHe-
ckue Oapbepbl. OTH Oapbepbl CUHTAIOTCA IMPSIMOYTOJIbHBIMU H
oxHoMepHbIMU. K03 dHIueHT TpaHCMUCCH KBa3UAIIEKTPOHOB T
B 3aBUCHMOCTH OT WX SHEpruu E ¥ yriia naJieHus Ha paccMaTpH-
BaeMYIO CTPYKTYpY 0 (CIIEKTpbI TPAHCMHUCCHH) PACCUUTBIBACTCS C
nomouipio 3G GEeKTHBHOrO raMuiIbTOHHaHa. [IpoBOAMMOCTD JaH-
HOH CTpYKTypsl G BBIUHCISETCS C HCIOIB30BAHHEM (OPMYIIBI
Jlanpayspa—Bbyrrukepa. ITokasano, uto 3Hauenust T u G cyie-
CTBEHHO 3aBUCAT OT OTHOIICHHUS cKopocTelt Depmu B OapbepHOi
U BHEOAPBEPHOI 00JACTAX O = Upo/Up;. AHAIH3UPYETCS 3aBHCH-
MOCTb 3THX BEJIMYMH OT DJIEKTPOCTaTHYECKOro rnoreHnuana. Ilo-
Ka3aHO, B YaCTHOCTH, YTO B JaHHOIl CTPYKType MpOSBISETCS
3¢ deKT cynepTyHHEINPOBaHHs, KOTOPBIH CYIIECTBEHHO 3aBHCHT
oT 3HaueHus o. [IpuBezneHa Gpopmyia, onpenessionas 3HaueHHUs
SHEPrHui, ULl KOTOPBIX MMEeT MecTO 3(P(deKT cymepTyHHEIHpo-
BaHMS JUIS Pa3IMYHBIX O. B cilydae HOpMaJIbHOTO yria HaJeHHs
Y4acTHI] HPOsBIsieTCs Y(Q(HEKT, aHATOTHYHBINA KICHHOBCKOMY Ia-
panokcy. Crektpol T(E,0) u G(E) BecbMa 4yBCTBHTEIBHBI K CO-
OTHOIICHUIO MEXIY O, YHEepruel £, BeIMIMHOHN 3JIeKTpocTaTHIe-
ckoro noreHuuana. ClenoBareibHO, U3MEHsIS ITapaMeTpbl JaHHON
3aj1a4H, MOXXHO THOKO BapbupoBats 3aBucumoctr T(E,0) u G(E)
B WIMpOKUX mpenenax. [TosyuyeHHble pe3yiabTaThl MOTYT OBITh
MIPUMEHEHB! B HaHOAJIEKTPOHHKE, KOTOPAasi MCIIOJB3YET TOIOJIO-

TUYECKUE U30JIATOPBI.

Kitouessie ci0Ba: TONOIOIHYECKUE U3OATOPBL, TOTCHIIMAIBHBIC
6apbepsl, ckopocTh DepMu, CIIEKTPHI MPOIMYCKAHUS.
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