Экситонные спектры тонких пленок твердых растворов Cs_{1-x}Rb_xPbCl₃

Е.Н. Коваленко

Харьковский национальный университет радиоэлектроники, пр. Науки, 14, г. Харьков, 61166, Украина E-mail: olena.kovalenko@nure.ua

О.Н. Юнакова, Н.Н. Юнаков

Харьковский национальный университет, пл. Свободы, 4, г. Харьков, 61022, Украина E-mail: o.n.yunakova@gmail.com; nnyunakov@ukr.net

Статья поступила в редакцию 22 марта 2019 г., опубликована онлайн 27 августа 2019 г.

Исследованы экситонные спектры тонких пленок твердых растворов $Cs_{1-x}Rb_xPbCl_3$ в области спектра 2–6 эВ. Выявлено образование твердых растворов, устойчивых при комнатной температуре, в интервале концентраций $0 \le x \le 0,7$. Обнаружен линейный концентрационный ход параметров экситонных полос и ширины запрещенной зоны. При 310 и 320 К в температурных зависимостях спектрального положения $E_m(T)$ (x > 0) длинноволновой экситонной полосы наблюдаются изломы, характерные для фазовых переходов 2-го рода. Установлен трехмерный (3D) характер экситонных возбуждений в CsPbCl₃ и двумерный (2D) в твердых растворах $Cs_{1-x}Rb_xPbCl_3$ (x > 0).

Ключевые слова: твердые растворы, тонкие пленки, спектры поглощения, экситоны, структурные фазовые переходы.

Соединения с общей формулой APbX₃ (A = Cs, Rb; X = Cl, Br, I) кристаллизуются в искаженную структуру перовскита [1–3], имеют широкий диапазон запрещенных зон и высокую подвижность носителей заряда. В последнее время такие уникальные свойства вызвали повышенный интерес исследователей к этому классу соединений как потенциальному материалу для использования в солнечных батареях, светоизлучающих устройствах, нелинейной оптике, термисторах [4–7].

Соединение CsPbCl₃ кристаллизуется в структуру типа перовскита, при температуре свыше 320 К имеет кубическую решетку с параметром a = 5,605Å, z = 1(пр. гр. P_{m3m}) [8,9]. Структурным элементом кристаллической решетки являются октаэдры (PbCl₆)^{4–}. С понижением температуры CsPbCl₃ испытывает ряд фазовых структурных переходов с изменением симметрии решетки: при $T_{c1} = 320$ К — от кубической к тетрагональной (пространственная группа $P_{4/mbm}$), при $T_{c2} =$ = 315 К — к орторомбической (пр. гр. C_{mcm}), при $T_{c3} =$ = 310 К — к моноклинной (пр. гр. $P_{21/m}$) [10–12].

Соединение RbPbCl₃ при комнатной температуре не образуется, но при более высоких температурах испытывает фазовые переходы в структуры перовскита [13]. При $T_{c1} = 593$ K RbPbCl₃ кристаллизуется в тетраго-

нальную структуру искаженного перовскита (пр. гр. $P_{4/mbm}$), при $T_{c2} = 613$ К испытывает фазовый переход в кубическую структуру перовскита (пр. гр. P_{m3m}) [13]. При T < 593 К RbPbCl₃ разлагается на RbPb₂Cl₅ и Rb₆Pb₅Cl₁₆ [13]. Но, согласно [14], добавление Rb в кристаллическую решетку CsPbCl₃ приводит к образованию стабильных при комнатной температуре твердых растворов Cs_{1-x}Rb_xPbCl₃ (вплоть до x = 0,9) с орторомбической структурой перовскита (пр. гр. P_{nma}).

Спектры поглощения CsPbCl₃ исследовались ранее [15–17]. В настоящей работе изучены спектры поглощения твердых растворов $Cs_{1-x}Rb_xPbCl_3$ при T = 90 К и для отдельных концентраций в интервале температур 90–450 К для установления влияния примеси ионов Rb на спектр поглощения и фазовые переходы в CsPbCl₃.

Эксперимент

Тонкие пленки $Cs_{1-x}Rb_xPbCl_3$ приготавливались путем испарения смеси чистых порошков CsCl, RbCl и PbCl_2 заданного молярного состава на нагретые до 373 К кварцевые подложки с последующим отжигом образцов при той же температуре в течение двух часов. Смесь порошков предварительно расплавлялась под экраном, находящимся между испарителем и подложкой. Такие условия приготовления использовались ранее для получения монофазных пленок CsPbCl₃ [17]. Следует отметить, что при нагревании в вакууме смесь порошков Cs_{1-x}Rb_xPbCl₃ образует расплав в интервале $0 \le x \le 0.3$, при x > 0.3 сублимирует из порошка. Поэтому для x > 0,3 смесь порошков $Cs_{1-x}Rb_xPbCl_3$ предварительно отжигалась под экраном, затем испарялась медленно при максимально низкой температуре на нагретые кварцевые подложки. При таких условиях приготовления получаются наиболее качественные монофазные пленки Cs_{1-x}Rb_xPbCl₃ с хорошо выраженным экситонным спектром в интервале концентраций 0 ≤ x ≤ 0,7 (рис. 1). При x > 0,7 после охлаждения образцов до комнатной температуры в пленках Cs_{1-x}Rb_xPbCl₃ доминирует фаза Rb₆Pb₅Cl₁₆ (рис.1). Полученные таким способом пленки $Cs_{1-x}Rb_xPbCl_3$ $0 \le x \le 0,7$ стабильные при комнатной температуре, устойчивые к воздействию атмосферы, сохраняются длительное время на воздухе.

Рис. 1. Спектры поглощения тонких пленок $Cs_{1-x}Rb_xPbCl_3$ (T = 90 K): x = 0 (1), x = 0,1 (2), x = 0,3 (3), x = 0,5 (4), x = 0,7 (5), x = 0,8 (6) и $Rb_6Pb_5Cl_{16}$ (7).

Фазовый состав пленок контролировался по спектрам поглощения, измеренным при T = 90 К. В пленках $Cs_{1-x}Rb_xPbCl_3$, кроме примеси исходных компонент, могут при охлаждении до комнатной температуры образовываться соединения RbPb₂Cl₅ и Rb₆Pb₅Cl₁₆. Существенное различие спектрального положения длинноволновых экситонных полос в твердых растворах $Cs_{1-x}Rb_xPbCl_3$ (3,04–3,28 эВ), исходных компонентах PbCl₂ (4,6 эВ), CsCl (5,8 эВ), Rb₆Pb₅Cl₁₆ (4,475 эВ [18]) позволяет проводить контроль фазового состава пленок по их спектрам поглощения.

Спектры поглощения измеряли в спектральном интервале 2–6 эВ при T = 90 К на спектрофотометре СФ-46. В более узком спектральном интервале 2,4–3,7 эВ, в области длинноволновой экситонной полосы, спектр поглощения измеряли в широком интервале температур 90–450 К, включающем температуры фазовых переходов. Спектральная ширина щели в области наиболее узких длинноволновых экситонных полос составляла 0,02 эВ. Для измерений спектров использовались пленки толщиной 90–130 нм.

Для определения параметров длинноволновых экситонных полос проводилась их аппроксимация по методу [19] одноосцилляторным симметричным смешанным контуром, имеющим промежуточный вид между лоренцовым и гауссовым контурами и представляющим собой их линейную комбинацию. Параметры экситонных полос (положение E_m , полуширина Г и $\varepsilon_{2m} \equiv \varepsilon(E_m)$ — значение мнимой части диэлектрической проницаемости в максимуме экситонной полосы) подбирали такими, чтобы расчетный контур лучше всего согласовывался с измеренными спектрами на длинноволновом склоне полос.

Спектры поглощения тонких пленок Cs_{1-x}Rb_xPbCl₃

Спектры поглощения тонких пленок твердых растворов $Cs_{1-x}Rb_xPbCl_3$ $0 \le x \le 0,7$ приведены на рис. 1. По структуре спектры твердых растворов подобны спектру CsPbCl_3. В них, как и в CsPbCl_3 [17], наблюдается узкая интенсивная длинноволновая экситонная полоса A и более коротковолновые экситонные полосы C_1 , C_2 , C_3 и D. Для CsPbCl_3 установлена локализация экситонов в структурных элементах кристаллической решетки (PbCl₆)^{4–} и спектр поглощения трактуется исходя из электронных переходов в октаэдрах (PbCl₆)^{4–}, подобно спектрам примесных ионов Pb²⁺ в щелочногалоидных кристаллах [15–17]. По-видимому, и спектры тонких пленок твердых растворов $Cs_{1-x}Rb_xPbCl_3$ $0 \le x \le 0,7$ можно интерпретировать как электронные переходы в (PbCl₆)^{4–} октаэдрах.

Как видно на рис. 1, в спектре $Cs_{0,2}Rb_{0,8}PbCl_3$ доминирует фаза $Rb_6Pb_5Cl_{16}$. Спектр поглощения $Rb_6Pb_5Cl_{16}$ также обусловлен электронными переходами в ионах

Pb²⁺ [18]. Но, в отличие от спектров Cs_{1-x}Rb_xPbCl₃, в спектре Rb₆Pb₅Cl₁₆ более коротковолновый край поглощения и на краю расположены две интенсивные длинноволновые экситонные полосы A₁ и A₂. Отличие спектров обусловлено различным строением кристаллических решеток соединений. В Cs1-xRbxPbCl3 каждый ион Pb окружен шестью ионами Cl (координационное число (КЧ) равно 6), в кристаллической решетке Rb₆Pb₅Cl₁₆ имеются две неэквивалентные позиции ионов свинца с КЧ 8 и 9 [20], что и обусловливает наличие двух длинноволновых экситонных полос A1 и A2 в его спектре поглощения [18], а большее значение КЧ — более коротковолновый край поглощения, чем в Cs1-xRbxPbCl3. Заметное отличие спектров поглощения Cs1-xRbxPbCl3 и Rb6Pb5Cl16 позволяет по спектрам выявить примесь последнего в твердых растворах.

С ростом x край поглощения в твердых растворах сдвигается в коротковолновую область спектра (рис. 1, рис. 2(a)), что свидетельствует о росте ширины запре-

Рис. 2. Концентрационные зависимости спектрального положения $E_m(x)$ (а), полуширины $\Gamma(x)$ (б) длинноволновой экситонной полосы A и ширины запрещенной зоны $E_g(x)$ (в) в твердых растворах $Cs_{1-x}Rb_xPbCl_3$ $0 \le x \le 0,7$.

щенной зоны и увеличении ионности соединения. Концентрационные зависимости спектрального положения $E_m(x)$ и полуширины $\Gamma(x)$ (T = 90 K) длинноволновой экситонной полосы A (рис. 2) линейные:

$$E_m(x) = E_m(0) + dE_m/dx \cdot x \tag{1}$$

$$\Gamma(x) = \Gamma(0) + d\Gamma/dx \cdot x, \qquad (2)$$

где $E_m(0) = (3,024\pm0,003)$ эВ, $dE_m/dx = (0,37\pm0,007)$ эВ, $\Gamma(0) = (0,06\pm0,004)$ эВ, $d\Gamma/dx = 0,028$ эВ.

После отделения полосы A одноосцилляторным симметричным смешанным контуром по точке перегиба края собственной полосы поглощения были определены значения ширины запрещенной зоны E_g в твердых растворах $Cs_{1-x}Rb_xPbCl_3$, $0 \le x \le 0,7$. Концентрационная зависимость $E_g(x)$ (рис. 2(в)) также линейная:

$$E_g(x) = E_g(0) + dE_g/dx \cdot x, \tag{3}$$

где $E_g(0) = (3,073\pm0,003)$ эВ, $dE_g/dx = (0,428\pm0,008)$ эВ.

В твердых растворах бинарных соединений, как правило, концентрационный ход спектрального положения $E_m(x)$ и полуширины $\Gamma(x)$ нелинейный. В зависимости $E_m(x)$ наблюдается прогиб в область низких энергий при $x \approx 0,5$, а $\Gamma(x)$ достигает максимального значения при $x \approx 0,5$. Причиной нелинейности являются мелкомасштабные флуктуации состава из-за разупорядочения твердого раствора, а также крупномасштабная флуктуация, связанная с технологией приготовления образцов. Линейный концентрационный ход $E_m(x)$, $\Gamma(x)$ и $E_g(x)$ в твердых растворах $Cs_{1-x}Rb_xPbCl_3$ подтверждает локализацию экситонных возбуждений в подрешетке соединений, содержащей ионы Pb²⁺.

Фазовые переходы в твердых растворах Cs_{1-x}Rb_xPbCl₃

Экситонные спектры чувствительны к фазовым переходам. В температурных зависимостях параметров экситонных полос фазовые переходы проявляются в виде скачков и изломов [17,19,21]. С целью изучения влияния примеси ионов Rb на фазовые переходы в CsPbCl₃ спектры поглощения тонких пленок $Cs_{1-x}Rb_xPbCl_3 x = 0$; 0,1; 0,3 и 0,5 в области длинноволновой экситонной полосы *A* измеряли в интервале температур 90–450 К, включающем температуры фазовых переходов.

Температурные зависимости $E_m(T)$ и $\Gamma(T)$ приведены на рис. 3. В CsPbCl₃ (x = 0) длинноволновая экситонная полоса A с ростом температуры линейно сдвигается в коротковолновую область спектра с $dE_m/dT = 0.9 \cdot 10^{-4}$ эВ/К в интервале температур 90–300 К. Вблизи температуры фазового перехода в орторомбическую структуру $T_{c3} = 310$ К в зависимости $E_m(T)$ наблюдается скачкообразный сдвиг в коротковолновую область спектра на 0,01 эВ, далее до 315 К $E_m(T)$ растет

Рис. 3. Температурная зависимость спектрального положения $E_m(T)$ (а) и полуширины $\Gamma(T)$ (б) длинноволновых экситонных полос в твердых растворах $Cs_{1-x}Rb_xPbCl_3 x = 0$ (1), x = 0,1 (2), x = 0,3 (3), x = 0,5 (4); T_{c1}, T_{c2}, T_{c3} — температуры структурных фазовых переходов в CsPbCl₃. На рис. 3(б): точки — эксперимент, сплошные кривые — расчет по (5)–(7).

и вблизи 320 К скачкообразно уменьшается и далее до 493К $E_m(T)$ линейно увеличивается с $dE_m/dT =$ = 3,67.10⁻⁴ эВ/К. Фазовые переходы в зависимости $E_m(T)$ в CsPbCl₃ проявляются скачками при $T_{c3} = 310$ К и T_{c1} =320 К, что указывает на фазовые переходы 1-го рода. Вдали от температур фазовых переходов ход $E_m(T)$ линейный и определяется экситон-фононным взаимодействием (ЭФВ) [17]. В зависимостях $E_m(T)$ твердых растворов $Cs_{1-x}Rb_xPbCl_3$ (x = 0,1; 0,3; 0,5) фазовые переходы проявляются в виде изломов при тех же температурах, что и в CsPbCl₃ (рис. 3(а)), что указывает на фазовые переходы 2-го рода в отличие от CsPbCl₃. В интервале температур 90–300 К с ростом *x* температурный коэффициент сдвига *dE_m/dT* полосы *A* немного уменьшается от $0.9 \cdot 10^{-4}$ эВ/К (x = 0) до $0,5 \cdot 10^{-4}$ эВ/К (x = 0,5). В области фазовых переходов 310–320 К спектральное положение $E_m(T)$ не меняется с ростом *T* для всех концентраций *x* > 0. При *T* = 320 К наблюдается излом в зависимостях E_m(T), указывающий на фазовый переход 2-го рода. При T > 320 К значения dE_m/dT для x = 0 и 0,1 близкие, с ростом x dE_m/dT уменьшается до 2,1·10⁻⁴ эВ/К для x = 0,3 и $0,34 \cdot 10^{-4}$ эВ/К для x = 0,5. Как видно на рис. 3(а), с ростом x фазовые переходы в зависимостях $E_m(T)$ размываются и уже при x = 0,5 едва видны.

В твердых растворах Cs_{1-x}Rb_xPbCl₃, как и в CsPbCl₃, с ростом Т наблюдается коротковолновый сдвиг экситонной полосы А. В близком по молярному составу соединении Rb₆Pb₅Cl₁₆, напротив, с ростом температуры наблюдается длинноволновый сдвиг экситонных полос за счет ЭФВ [18], что характерно для большинства соединений. И хотя по мере увеличения примеси Rb в твердых растворах знак сдвига не меняется, но температурный коэффициент dE_m/dT в твердых растворах заметно уменьшается с ростом x, особенно в кубической фазе при T > 320 К (рис. 3(a)). Согласно расчетам [22], как длинноволновый, так и коротковолновый сдвиги экситонных полос с ростом T, а также отсутствие сдвига, объясняются в рамках расширенной модели экситон-фононной системы, если наряду с линейным учесть и квадратичное взаимодействие по фононным операторам в гамильтониане экситон-фононной системы.

В температурных зависимостях $\Gamma(T)$ (рис. 3(б)) структурные фазовые переходы проявляются только в CsPbCl₃ (x = 0). Вдали от температур фазовых переходов ход $\Gamma(T)$ (x = 0) нелинейный и определяется ЭФВ [17]. Для x > 0 температурный ход $\Gamma(T)$ во всем интервале температур обусловлен ЭФВ. Экситон-фононная составляющая в $\Gamma(T)$ для экситонов различной размерности d (d = 1, 2, 3), согласно теории [23], определяется как

$$\Gamma(T) \approx \left[\frac{\pi D^2}{\gamma(d/2)(2\pi B)^{d/2}}\right]^{\frac{2}{4-d}},$$
(4)

где $\gamma(d/2)$ — гамма-функция, зависящая от d, B — ширина экситонной зоны и $D^2 = 0.5 C^2 \hbar \omega_{LO} \text{cth}(\hbar \omega_{LO}/2kT), C^2/2$ энергия релаксации решетки при возбуждении экситона, $\hbar \omega_{LO} = 27,77$ мэВ — энергия продольных оптических фононов (LO) в CsPbCl₃ [24]. Полная полуширина в случае гауссова контура экситонной полосы с учетом остаточного уширения $\Gamma(0)$ за счет дефектов решетки определяется соотношением

$$\Gamma = \left[\Gamma^{2}(0) + \Gamma^{2}(T)\right]^{1/2},$$
(5)

где $\Gamma(T)$ подчиняется (4) с неизвестным множителем *Q*, не зависящим от *T*. Форма экситонной полосы *A* в Cs_{1-x}Rb_xPbCl₃ при низких температурах близка к гауссовой, при высоких *T* — полностью гауссова. Обработка экспериментальной зависимости $\Gamma(T)$ (*x* = 0) в интервалах температур 90–300 К и 360–493 К с помощью (4) для разных *d* дала наилучшее согласие расчета с экспериментом при *d* = 3 [17]. Для *d* = 3

$$\Gamma(T) = Q \operatorname{cth}^{2}(\hbar \omega_{LO}/2kT), \qquad (6)$$

и зависимость $\Gamma(T)$ в координатах Γ^2 от cth⁴($\hbar\omega_{LO}/2kT$) линейная. Обработка этой зависимости методом наи-

меньших квадратов дает значения $\Gamma(0) = (0,0597 \pm 0,001)$ эВ и $Q = (0,017 \pm 0,0002)$ эВ.

В твердых растворах $Cs_{1-x}Rb_xPbCl_3$ (x = 0,1; 0,3 и 0,5) наилучшее согласие расчета с экспериментом достигается при d = 2 (рис. 3(б)). В этом случае

$$\Gamma(T) = Q \operatorname{cth}(\hbar \omega_{LO}/2kT).$$
(7)

Обработка зависимостей Γ^2 от cth²($\hbar\omega_{LO}/2kT$) методом наименьших квадратов дает значения $\Gamma(0) = 0,021$; 0,07; 0,05 эВ и Q = 0,055; 0,064; 0,056 эВ для x = 0,1; 0,3 и 0,5 соответственно. Рассчитанные по (5)–(7) температурные зависимости полуширин с найденными значениями $\Gamma(0)$ и Q (сплошные кривые на рис. 3(б)) хорошо согласуются с экспериментальными зависимостями.

Из анализа температурного хода $\Gamma(T)$ следует трехмерный (3D) характер экситонов в CsPbCl₃ и двумерный (2D) в твердых растворах Cs_{1-x}Rb_xPbCl₃. Двумерный характер экситонов в твердых растворах согласуется со строением их кристаллической решетки. Согласно [14], твердые растворы Cs_{1-x}Rb_xPbCl₃ при комнатной температуре имеют орторомбическую структуру (пр. гр. P_{nma}) с близкими параметрами решетки *а* и *с*, и существенно большим параметром b. Например, для $Cs_{0,4}Rb_{0,6}PbCl_3$ параметры решетки a = 7,914 Å, b == 11,102 Å, *c* = 7,716 Å [14]. Расстояние между эквивалентными ионами Pb^{2+} вдоль оси **b** существенно больше, чем вдоль а и с, соответственно, перенос энергии экситонов происходит в плоскости ас. В [14] и для CsPbCl₃ установили орторомбическую структуру при комнатной температуре (пр. гр. P_{nma}) с параметрами решетки a = 7,902 Å, b = 11,247 Å, c = 7,899 Å, z = 4. Однако по другим данным [1] структура CsPbCl₃ орторомбическая (пр. гр. Р_{ттт}) с близкими параметрами решетки a = 5,607 Å, b = 5,575 Å, c = 5,572 Å, z = 4. В такой решетке экситоны трехмерные (3D).

Заключение

Исследованы спектры поглощения тонких пленок твердых растворов $Cs_{1-x}Rb_xPbCl_3$ (T = 90 K) в спектральном интервале 2–6 эВ. Установлено образование твердых растворов, устойчивых при комнатной температуре, в интервале концентраций $0 \le x \le 0.7$. Из анализа спектров поглощения твердых растворов установлена локализация экситонов в структурных элементах кристаллической решетки соединений ($PbCl_6$)^{4–}. Линейные концентрационные зависимости $E_m(x)$, $\Gamma(x)$ и $E_g(x)$ подтверждают локализацию экситонов в подрешетке соединений, содержащей ионы Pb^{2+} .

В температурном ходе спектрального положения $E_m(T)$ длинноволновой экситонной полосы в тонких пленках $Cs_{1-x}Rb_xPbCl_3$ (x = 0,1; 0,3; 0,5) выявлены фазовые переходы 2-го рода при тех же температурах, что и в CsPbCl₃. С ростом *x* фазовые переходы размываются и практически исчезают уже при x = 0,5.

Из анализа температурной зависимости полуширины длинноволновой экситонной полосы $\Gamma(T)$ установлен 2D характер экситонов в твердых растворах $Cs_{1-x}Rb_xPbCl_3$ (x = 0,1; 0,3; 0,5) и 3D характер экситонов в CsPbCl₃.

- K. Nitsch, M. Dušek, M. Niki, K. Polák, and M. Rodová, *Prog. Crystal Growth Charact.* 30, 1 (1995).
- C.C. Stoumpos, C.D. Malliakas, J.A. Peters, Z. Liu, M. Sebastian, J. Im, T.C. Chasapis, A. C. Wibowo, D. Yo. Chung, A.J. Freeman, B.W. Wessels, and M.G. Kanatzidis, *Cryst. Growth Des.* 13, 2722 (2013).
- D.M. Trots and S.V. Myagkota, J. Phys. Chem. Sol. 69, 2520 (2008).
- P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, and Y. Lu, J. Phys. Chem. Lett. 7, 3603 (2016).
- J.B. Hoffman, G. Zaiats, I. Wappes, and P.V. Kamat, *Chem. Mater.* 29, 9767(2017).
- G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, and H.J. Snaith, *J. Mater. Chem. A* 3, 19688 (2015).
- Y. Huang, Wan-Jian Yin, and Y. He, J. Phys. Chem. C 122, 1345 (2018).
- 8. C.K. Møller, *Nature* 182, 1436 (1958).
- 9. К.С. Александров, Б.В. Безносиков, в сб.: Фазовые переходы в кристаллах, Красноярск (1975), с. 68.
- Y. Fujii, S. Hoshino, Y. Yamada, and G. Shirane, *Phys. Rev. B* 9, 4549 (1974).
- 11. S. Hirotsu, J. Phys. Soc. Jpn. 31, 552 (1971).
- 12. A.R. Lim and S.Y. Jeong, *Physica B* 304, 79 (2001).
- H. Monzel, M. Schramm, K. Stöwe, and H.P. Beck, Z. Anorg. Allgem. Chem. 626, 408 (2000).
- Matthew R. Linaburg, *Thesis «Studies of Halide Perovskites* CsPbX₃, RbPbX₃ (X = Cl⁻, Br⁻, I⁻), and *Their Solid Solutions»*, The Ohio State University (2015), p. 105.
- K. Heidrich, H. Künzel, J. Treusch, *Solid State Commun.* 25, 887 (1978).
- H. Ito, H. Onuki, and R. Onaka, J. Phys. Soc. Jpn. 45, 2043 (1978).
- О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко, В.В. Коваленко, *ФНТ* 40, 888 (2014) [*Low Temp. Phys.* 40, 690 (2014)].
- E.N. Kovalenko, O.N. Yunakova, and N.N. Yunakov, *Func. Mater.* 26, 295 (2019).
- 19. О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко, *Опт. спектр.* **104**, 631 (2008).
- H.P. Beck, M. Schramm, and R. Haberkorn, Z. Anorg. Allgem. Chem. 624, 393 (1998).
- О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко, ФНТ 29, 922 (2003) [Low Temp. Phys. 29, 691 (2003)].
- 22. Н.В. Ткач, В.М. Ницович, Я.М. Вороняк, УФЖ 24, 67 (1979).
- M. Schreiber, and Y. Toyasawa, J. Phys. Soc. Jpn. 51, 1528 (1982).
- 24. S. Hirotsu, Phys. Lett. A 41, 55 (1972).

Екситонні спектри тонких плівок твердих розчинів $Cs_{1-x}Rb_xPbCl_3$

Exciton spectra of thin films of solid solutions $Cs_{1-x}Rb_xPbCl_3$

О.М. Коваленко, О.М. Юнакова, М.М. Юнаков

Досліджено екситонні спектри тонких плівок твердих розчинів $Cs_{1-x}Rb_xPbCl_3$ в області спектру 2–6 еВ. Виявлено утворення твердих розчинів, стійких при кімнатній температурі, у інтервалі концентрацій $0 \le x \le 0,7$. Виявлено лінійний концентраційний хід параметрів екситонних смуг та ширини забороненої зони. При 310 та 320 К у температурних залежностях спектрального положення $E_m(T)$ (x > 0) довгохвильової екситонної смуги спостерігаються заломи, які характерні для фазових переходів 2-го роду. Установлений тривимірний (3D) характер екситонних збуджень в CsPbCl₃ та двовимірний (2D) у твердих розчинах Cs_{1-x}Rb_xPbCl₃ (x > 0).

Ключові слова: тверді розчини, тонкі плівки, спектри поглинання, екситони, структурні фазові переходи.

E.N. Kovalenko, O.N. Yunakova, and N.N. Yunakov

The exciton spectra of $Cs_{1-x}Rb_xPbCl_3$ solid solutions thin films are studied in the spectral range 2–6 eV. The formation of solid solutions, which are stable in the room temperature, was detected in the concentration range $0 \le x \le 0.7$. A linear concentration dependence on the parameters of the exciton bands and the width of the forbidden band were found. At 310 and 320 K temperature dependences of the long-wave excitonic band spectral position $E_m(T)$ (x > 0) have kinks which are characteristic of second order phase transition. Three-dimensional (3D) character of exciton excitations in CsPbCl₃ and two-dimensional (2D) in Cs_{1-x}Rb_xPbCl₃ solid solutions (x > 0) have been established.

Keywords: solid solutions, thin films, absorption spectra, excitons, structural phase transitions.