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The depletion of a quasi-two-dimensional (quasi-2D) dipolar Bose condensed gas in the presence of both con-
tact and long-range 1/r interactions is investigated in the framework of Hartree—Fock—Bogoliubov (HFB) ap-
proximation. When the characteristic wavelength of a mode is much larger than the trap size, the dipole-dipole
(DD) interaction can be treated as a contact interaction and in the low momentum limit the long-range nature of
the 1/r interaction has the dominant contribution and leads to the nonlinear (nonphononic) dispersion relation.
We will show that quantum depletion is temperature independent and is determined by the contact, DD and long-
range 1/r coupling constants (gqq = gg/g and C). The small momentum behavior of the quantum depletion is af-
fected by long-range 1/r interaction and at large momentum limits the momentum dependence of quantum deple-

tion unaffected by 1/r interaction.
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1. Introduction

Due to the fact that the physics of low-dimensional sys-
tems is fundamentally different from those in three dimen-
sions, low-dimensional ultracold dipolar atoms have attract-
ed attention both theoretically and experimentally [1-3]. At
finite temperature strong quantum phase fluctuations pre-
vent to occur Bose—Einstein condensation (BEC) in a ho-
mogeneous two-dimension system but when temperature is
lowered enough the Berezinskii—Kosterlitz—Thouless (BKT)
transition can be occur in these systems [4,5].

Novel guantum phases and many-body phenomena can
be observed in bosonic systems with the dipole-dipole (DD)
interaction [6-8]. Compared to a Bose gas with short-range
interactions, a dipolar Bose gas qualitatively has different
physics due to the anisotropic and nonlocality nature of the
long-range, DD interaction. Especially the long-range nature
of the dipolar interaction may be relating the BKT transition
and phase coherence. Interplay between the nonlocal DD
interaction and the usual local short-range contact interac-
tion, leads to the possibility of experimental realization of
highly controllable and stable solitary structures in BEC
[9]. The anisotropic nature of the DD interaction introduc-
es novel phenomena such as geometry-dependent mechan-
ical stability [10], d-wave collapse [11] and a roton-maxon
dispersion relation in quasi-2D systems [12].

Another impressive long-range interaction is 1/r potential
which depends on its sign could be a repulsive Coulomb
interaction of charged atoms or an attractive gravitational
interaction. The former exists in charged boson systems but
the latter is only possible in nature on stellar scales and it is
too weak in dilute atom gases that cannot be detected ex-
perimentally.

The attractive form of this potential which can be creat-
ed by certain laser configuration [13], is similar to gravita-
tion but up to 17 orders of magnitude stronger. Because the
attractive 1/r interaction balances both the kinetic energy
and the contact interaction a self-binding situation can oc-
cur. Such enormous attractive gravitational forces are only
possible in nature on stellar scales. Therefore, it provides
conditions to study gravitational effects on the stellar scale
which customarily only important in the laboratory. Such
ultracold quantum gases can also be used to investigate the
possibility of a Bose star which, so far, has only been dis-
cussed theoretically [14,15].

By means of the Kubo formalism, low-temperature
shear viscosity of a spin polarized two-component quasi-
2D dipolar Fermi gas with long-range 1/r interaction in the
BEC limit, was calculated [16]. By using the time-dependent
mean-field approach based on the Popov approximation, the
Landau damping in a Bose—Fermi superfluid mixture in the
presence of a long-range 1/r interaction between bosons
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for three and two dimensions at finite temperature was also
studied [17].

A theory of damping of low energy, collective excita-
tions in a quasi-2D, homogenous, dipolar Bose gas at zero
temperature, via processes whereby an excitation decays
into two excitations with lower energy was developed [18].
In the Bogoliubov—de Gennes (BDG) theory beyond mean-
field approximation, properties of both homogeneous and har-
monically trapped dipolar Bose gases, focusing on the low-
lying excitations have been theoretically investigated [19].

Thermal and quantum fluctuations of confined Bose-
Einstein condensate beyond the Bogoliubov approximation
were considered [20]. Using Bogoliubov theory beyond
mean field, correction to the equation of state of a weakly
interacting Bose gas in the presence of a tight 2D optical
lattice was calculated [21].

To the best of our knowledge thermal and quantum de-
pletion of a dipolar quasi-2D Bose gas in the presence of
long-range 1/r interaction have not yet been considered. In
this paper by generalizing the Bogoliubov approximation
which assumes that most of the atoms are in the Bose con-
densate which is applicable near zero temperature to the
finite temperatures where the condensate is strongly deplet-
ed, the effect of the noncondensate atoms in a self-consistent
manner is included. From the resulting correlation functions
the thermal and quantum depletions of homogeneous quasi-
2D dipolar Bose gas in the presence of both contact and
long-range 1/r interactions are obtained.

2. Formalism

For an ultracold, dilute gas of interacting bosons, the
many body Hamiltonian in terms of the Bose field opera-
tors (\u,\uT), can be written as

H :jd rqﬁ(r)[—%vz +U (r)J\y(r)+

+%J.d rId 'y (N (1) Vop (r=r)w (rw(r), @

where M is the mass of a single boson, U(r) is the external,
or trapping potential, and Vop (r —r’) is the two-body in-
teraction potential. The factor of 1/2 in the interaction term
corrects for a double counting that is inherent in the inte-
gration.

The two-body interaction potential includes contact,
DD and long-range 1/r interactions in momentum space is

Vop (k) = ngD(k)+U3gD(k)+VZCDOUI(k)’ (2
where

2
v (k):CTﬂ. )

Here C is the coupling constant (C>0 and C <0 corre-
sponding to Coulomb interaction for charged bosons and
gravitational interaction for neutral particles, respectively).

1398

In the regime in which we refer to the condensate as be-
ing quasi-2D, the harmonic oscillator trap size I, =

= /il mo, in the tightly confined direction is much larger

than the three dimension scattering length azp of the sys-

tem, i.e., the scattering processes still take place in three
dimensions. In this regime the contact potential has the
form [22]

2212 ag

i ()
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Within the 2D mean field regime the effective quasi-
2D, DD interaction can be written as [23,24]

I I
udd (k) =—9%4_| ¢ (—ZJCOSZG-F [—stinza, 5
20 () o, | V2 % ©)
where gq =4mh?agy /M with the dipole lengths agy =

=Md? /342 (d is the dipole moment), q = /g2 +q5 and
the dimensionless functions F, and F, respectively, are

F, (k) =2 3Jmke¥ erfe k), (6)

2
R (k):—1+3\/EkTXek2erfc(k). @

We assume the DD interaction is isotropic(a = 0) in the
xy plane and only depends on the magnitude of momentum
in the momentum-space. In this case Eqg. (5) becomes

Kl
U9 (k)=—29_F [—Zj ©)
2D ( ) \/EIZ 1 \/E
Including the above interactions the full quasi-2D mo-
mentum-space interaction potential takes the form

2\/%?!28.54_ 9q F (&
M,  Jorl, “\V2

Vap (K) = ]+v§3u'<k> _

:ﬁ(usdd F (%Dw% )

where ¢ :4rtash2 IM andeqq =94 /9.

In the ultracold regime (T <<T.), where T, is the criti-
cal temperature for BEC, the number of bosons occupying
the condensed state is macroscopic to a good approxima-
tion, we can treat the condensate part of the field operator
as a c-number and write the field operator as

w(r)=(w(r)+o(r)=do(r)+e(r),  (10)

where ¢q (r) is a classical wave function that describes the
macroscopic state of condensed atoms, and ¢(r) corre-
sponds to the excited, non-condensed states, or the so-
called quantum fluctuations. An important consequence of
the Bogoliubov approximation is that due to replacement
of the operators by a number the particle number is no
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longer conserved. Thus we work in the grand-canonical
ensemble by introducing the chemical potential u as a La-
grange multiplier to conserve particle number [25].

By using equation (10) the grand-canonical Hamiltoni-
an K=H-puN in the HFB approximation can be ex-

hz

Ko :Idr ¢3(r)(—mvz +U (r)—H]%(r)*

pressed perturbatively in orders of the condensate occupa-
tion as K = Ky + Ky + K, +..., where K; contains the terms
that are ith order in the quantum fluctuations ¢(r). The
first term Ky which contains only the condensate wave
function is given by

%J‘drj.dr'cl)’{) (r)do (r'Vap (r=r")dg (r')do (r)- 11)

Minimized K, with respect to small variations in the condensate field ensures that K, vanishes which leads to the non-

local Gross—Pitaevskii equation (GPE) [26]:

o (r)= {—%VZ +U (r)+fdr’¢3 (r')Vop (r=r")do (r')}q)o (r). (12)

Assuming the interaction potential has the even symmetry V,p (r—r') =V,p (r'—r), the second order term in the ex-

pansion of K can be written as

Ky = Idr(PT (r)[—%vz +U (r)—pJ(p(r)+%'|.erdrV2D (r—r’)x

(0T (10" (1) b0 ()0 (r)+ 20" (r)(r) a5 () do (r)+o(r) o(r') 5 (r') 5 (r)}- (13)

Expression (13) can be diagonalized by means of the Bogoliubov linear transformation for the non-condensed operators

o(r)= (u(r)

]

o' (r)=3 (u]

j

aj+vj(r) at), (14)

] J

a]f+uj(r)ocj), (15)

where o j and cx]f are quasiparticle annihilation and creation operators which satisfy the usual Bose commutation relations
from which the normalization condition for the u; (r) and v; (r) wave functions can be obtained as

[ar( v (r) uj(r)+vf (1) vj(r) =8 (16)

Inserting the transformations (14) and (15) into Eq. (13) in the Popov mean-field approximation [27], the quasiparticle
energies are obtained from the solutions of the coupled BDG equations

2

hoy; (r) =£—2h—MV2 +U (r)—pJui (r)+ [drVap (r=r) {0 (1) v (') + 0o (') v; ()} 60 (r), 17

hZ

—haojv; (1) =(—WV2 +U (r)—u]ui (r)+ [drvap (r=r){ 65 (1) vi (') + 90 () i (1)} 6o (1). (18)

The coupled Egs. (17) and (18) account for quasiparticle-condensate interactions while neglecting quasiparticle-
quasiparticle. In a dilute gas at approximately zero temperature, the quasiparticle-quasiparticle interactions can be neglect-
ed since depletion is always smaller than one percent of the total number of atoms in the condensate [28]. On the other
hand, the quasiparticle-condensate interactions cannot be negligible and they are characterized by direct and exchange
terms which respectively describes a quasiparticle scattering off of the condensate and a quasiparticle scattering into or out
of the condensate.

At finite temperatures the quasiparticle wave functions are required to construct the thermal and anomalous correlation
functions. At equilibrium the coupled BDG equation can be written as

72

hoyu; (r) = (—mvz +U (r)—u+jdr'n(r')V2D (r- r’)]ui (r)+

+Idr’[n0 (r=r)+A(r—r’) Vop (r=r’u; (r')—jdr’mo (r=r"WVop (r=r)uv;(r), (19)
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h2
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+Jdr No (r—=r")+A(r—r")Vap (r—r)uv(

Idr (r=r"Vop (r=r)ui(r), (20)

where n(r) = ny(r) +A(r) is the total density with ng(r,r") = g (r)do (r') and A(r,r’) = < (pT(I’)(p(r')> is the thermal corre-

lation function; ny(r) =ny(r,r) and A(r) =A(r,r),

respectively, are the local condensed and thermal densities;

mo (r—r')= (¢0 (r)do (r)> is the anomalous condensate correlation function.

Form Egs. (14) and (15), the thermal correlation func-
tions can be written as
A(r,r') =

)+ () 0} (1) fle o1 (1) w7 (1)},

(21)
where  fge =[ exp (ho; /kBT)—l]_lwith kg is Boltz-
mann’s constant.

The thermal and quantum depletions are describes, re-
spectively, by the first and second terms of Eq. (21). At
zero temperature the Bose distribution function becomes
zero( 3z =0) and depletion of the condensed is deter-
mined only by quantum fluctuations.

The total number of particles satisfies

N =Jdr[no(r)+ﬁ(r)}. (22)
Here we consider a quasi-2D geometry, which can be

performed in harmonically trapped gases with a trapping
potential of the form

-2 {fe

U(r):;m(m§x2+myy + 027 2), (23)

where ®, >> @y, ®
For the homogeneous case (o, =y =0), the field op-
erators may be expanded in a plain wave basis

v = ZEik'rak
k
and Bogoliubov transformation
ag = ukbk + Uikbjk’ (24)

aI =uy blzr +u_h (25)

leads to the diagonal form of the Hamiltonian as
H=Ep+) ho(k )b! by, (26)
k
where Ep is the ground state (pure condensate) energy and

the Bogoliubov, or quasiparticle dispersion relation for
quasi-2D Bose gas is given by

ho(k)=

n%k?% | n k2 < 4n
\/ZM |: 2D\/_ (1+8ddFl[T;]]+n2DC?‘|.

(27)

1400

The quasiparticle amplitudes u, and v, satisfying the
relations

Ug =
1h2k? g [ j
4Ny | L+gggF | =~ | |+n C—
ot oM 2D \/ﬁh[ dd "L \/— 2D +1
hco(k) '
(28)
Uk =
LS k2 +n l+e4qF K, +n CE
. 1 2D\/— dd "L «/E 2D K L
2 ho(k) '
(29)

In this case the density of the excited particles is
“:J.dzk{[ufﬂ)ﬁ] fBE(k)+uﬁ}. (30)

From Eq. (30) we can separate the thermal and quantum
depletion respectively as

A =fr +fig: (31)
nT =
12Kk? [ (kl )] 2n
——+n l+egqFy | =% | [+npC—
=J‘d2k oM 2D\/7 dd™L \/E 2D k f (k)
ho (k) BEV
(32)
fig =
12k? [ [m j] 2n
+n l+eyqF +n C—
J‘d kl 2|\/| 2D\/— Edd ML \/E 2D K .
hm(k) '
(33)

When the characteristic wavelength of a mode is much

larger than the trap size, we have lim FL(qI /f)
ql;—

and Eq. (9) becomes

1+ 28dd)+c%. (34)

VZD(k) Zﬁ(
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In this limit the DD interaction can be treated as a con-
tact interaction with coupling 2e44. From Eq. (34) in the
absence of long-rang interaction we see that for the quasi-
2D BEC to be energetically stable the interaction couplings
must be such that e4q >-1/2, i.e., quasi-2D dipolar BEC
is energetically stabilized for ag > —2a4q.

The number of particles in the condensate can be ob-
tained as

N :n—ﬁ:n—jdzk{[uﬁwﬂ fBE(k)ﬂJE}. (35)

In the small momentum limit, k <<1/&, where

&= h/(\/EMCZD) is the healing length of the condensate,

the quasiparticle dispersion relation (Eq. (27)) becomes a
nonphononic dispersion:

hoo(k — 0) = 1 /Z“C% k = iy k. (36)

By using Egs. (27), (29), (30) and (36) we can see that
the contribution of quantum depletion to the particle num-

ber changes as k=32 (UE oc k‘3/2).

In the absence of long-range 1/r interaction the quasi-
particle dispersion relation (Eq. (27)) becomes a phononic
dispersion:

ho(k — 0) =ACypk, (37)
where

g
C = n ———(1+2¢
2D \/ZD”/—Z Iz( dd)

is the speed of sound in 2D dipolar Bose gas.

In this case Egs. (27), (28), (30) and (37) lead to the real
particle occupation number at small momentum regime
which varies as k‘l(uﬁ oc k_l) due to quantum depletion.

On the other hand, in the large momentum limit k >1/¢&
the quantum depletion disappears according to the law of
k~* in the presence and absence of long-range 1/r interaction.

Thus only the small momentum behavior of the quan-
tum depletion is affected by long-range 1/r interaction and
at large momentum limit the momentum dependence of
quantum depletion unaffected by 1/r interaction.

Quantum depletion is temperature-independent and is
determined by the coupling constants of interactions
(eqq =94 / 9 and C). Clearly in the absence of 1/r interac-
tion depletion the quantum fluctuations proportional to
sound velocity C, which means that the quantum deple-
tion increases as the contact and DD coupling constants in-
crease. In this case the same result for the quantum depletion
was obtained in the regime of dipole interaction dominated
condensates [24].

In order to calculate the real particle occupation number
due to thermal depletion in the low-momentum regime, we
can use Egs. (27)-(30), (36), and (37) and the low-energy
expansion of the Bose-Einstein distribution fgg (k)=
~kgT / (k) which in both the presence and absence of

the long-range 1/r interaction lead to the k=2 variation of
the occupation number due to thermal depletion. At large
momentum limit the thermal depletion disappears expo-
nentially with temperature.

At temperature T << p the main contribution to the in-
tegral in Eq. (32) comes from the long wavelength excita-
tions and in the presence and absence of 1/r interaction,
Eq. (32) respectively leads to

. N C2n/k 1
k—>0)=[d% 2D -
P ) l mk | g Bk _q

:wln(l—e‘ﬁ"”ﬁ ) (38)
h

ﬁT(k_)O)ZofdzknzDg/\/ﬂh(“Zde)[ 1 ]:
0 hkCZD eBhkCZD -1
- w In (1— e PAkC2p ) (39)
h

In both cases the divergent of the integral implies that a
true BEC is not present in a quasi-2D Bose gas. The origin of
this infrared divergence is related to long-wave fluctuations
of the phase. In the low-temperatures limit, similar to a qua-
si-2D Bose gas with contact interaction the long-wave
fluctuations of the phase destroy the long-range order and
true BEC and this behavior unaffected by long-range 1/r
interaction.

3. Conclusion

In this paper we have calculated the contributions of
thermal and quantum fluctuations to the depletion of a di-
polar quasi-2D trapped Bose condensed gas in the presence
of long-range 1/r interaction. In the HFB approximation we
expressed the grand-canonical Hamiltonian perturbatively
in orders of the condensate occupation which leads to the
nonlocal GPE. In the Popov mean-field approximation
from the solutions of the coupled BDG equations we ob-
tained the quasiparticle dispersion relation. The long-range
nature of the 1/r interaction leads to significant modifica-
tions (nonphononic) of dispersion. To construct the thermal
and anomalous correlation functions the quasiparticle wave
functions at finite temperatures were also obtained. From
these correlation functions the thermal and quantum deple-
tions of homogeneous quasi-2D dipolar Bose gas were
calculated.
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Bnnue ganekopito4oi 1/r-B3aemogii Ha Tennose
Ta KBAHTOBE BMCHAaXXEHHS1 OUMNONSAPHOro
KBasigBOBUMIpHOro 603e-rasy

Moulud Tamaddonpur, Heshmatollah Yavari,
Zahra Saeidi

VY pamkax HaOmwkeHHs Xaptpi—Doka-boromobosa (XDb)
JIOCITI/KEHO BHCHAXKECHHsSI KBa3iaBOBUMIipHOTO (kBaszi-2D) mwurmo-
JSIPHOTO ©03€-KOHJICHCOBAHOTO a3y IPU HASBHOCTI SIK KOHTAKT-
HOI, Tak i ganexopitouoi 1/r-Bzaemonii. Komu xapakrepHa qoB-
JKMHA XBHJII MOIM Habarato Oiiplre po3Mipy NMAacTKH, JHIONb-
qunonbHy (DD) B3aeMofil0 MOXKHA PO3MUISATH SK KOHTAKTHY
B3a€EMOJIIFO, 1 B MEXI MaJIOr0 IMITyJIbCY BHECOK, IO JOMIHYE,
BHOCHTH JajeKojiroya 1/r-B3aemMomisi, 10 NPHU3BOJUTH 10 HEli-
HilfHOTO (HepoHOHHOTO) AUCTIepCiiiHOTO criBBiHOmEeHHs. [Toka-
3aHO, 1110 KBAHTOBE BUCHAKCHHS HE 3aJIGXKUTh BiJl TEMIEPaTypH i
BU3HAYAETbCS KOHCTAHTaMH KOHTakTy, DD Ta manexkoniro4oro
1/r-cniaproBanns (¢4q = gg/g ta C). Ha moBexiHKy KBaHTOBOTrO
BUCHA)KCHHS TIPU MaJMX iMIIyJbcax BIUIMBA€ Hanekonirouya 1/r-
B3a€EMO/Iisl, @ B MEXaX BEJIMKUX IMIIYJIbCIB BIUIMB IMITYJIbCY Ha
KBaHTOBE BUCHA)KCHHSI 0OMEXEHHI Ta 1/r-B3aeMO/isi Ha HbOTO HE
BILIMBAE.

KirodoBi cioBa: aumonspHUiA 003e-KOHIEHCAT, JalleKOiroda
B3a€EMO/Iisl, KBAHTOBE Ta TEIJIOBE BUCHAKCHHSI.

BrnivsiHne ganbHogencTByowero 1/r-B3aMMoaencTBuIS
Ha TennoBoe 1 KBaHTOBOE MUCTOLLEHME ANMONSAPHOrO
KBa3naByMepHoro 603e-rasa

Moulud Tamaddonpur, Heshmatollah Yavari,
Zahra Saeidi

B pamkax npubmmxenus Xaptpu—®Poka—boromobosa (XDPb)
WCCIICIOBAHO HUCTOILCHHUE KBa3uAByMepHOro (kBasu-2D) mumo-
JISIpHOTO 003€-KOHAEHCUPOBAHHOTO ra3a NpH HATMYUM KaK KOH-
TaKTHOTO, TaK W JAIbHOACUCTBYIOIIETrO 1/r-B3aMMOJCHCTBHSL.
Korna xapakrepHas 1iHa BOJIHBI MOZIBI HAMHOTO OOJBIIIE pa3Mepa
JIOBYIIKH, AANONB-qumonbHoe (DD) B3aumopeiicTBie MOXKHO pac-
CMaTpUBaTh KaK KOHTAaKTHOE B3aMMOJICHCTBUE, U B MpEENe Majo-
TO UMITYJIbCA IOMHHUPYIOIINI BKJIAJI BHOCUT JATBHOICHCTBYIOIICE
1/r-B3auMopeiicTBrE, YTO MPUBOIKUT K HEJIMHCHHOMY (HE(OHOHHO-
MYy) JHCIEPCHOHHOMY COOTHOMEHHUI0. [loka3aHo, 4TO KBAaHTOBOE
HCTOILEHUE HE 3aBHUCUT OT TEMIIEPaTypbl U ONpEAEISIETCS KOH-
CTaHTaMH KOHTakTa, DD U JanbHOeCTBYIomEero 1/r-cnapusanust
(¢dd = 9d¢/g u C). Ha moBezieHie KBAHTOBOTO MCTOLICHHS MPH Ma-
JBIX MMITYJIbCaX BIUSIET IajbHOACHCTBYIOIIEE 1/r-B3aUMOJICHCT-
BUE, a B Ipezene OOJBLIMX HMITYJIbCOB BIMSHHE HMITyJbca Ha
KBaHTOBOE HCTOINCHHE OTPAaHWYCHO W 1/r-B3aMMOJICHCTBHE Ha
HETO HE BIIHSIET.
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