Влияние высокотемпературного отжига на температурную зависимость псевдощели монокристаллов YBa₂Cu₃O_{7-δ}, облученных высокоэнергетическими электронами

Г.Я. Хаджай, Р.В. Вовк, З.Ф. Назыров

Харьковский национальный университет им. В.Н. Каразина пл. Свободы, 4, г. Харьков, 61022, Украина E-mail: george.ya.khadjai@univer.kharkov.ua rvvovk2017@gmail.com

Статья поступила в редакцию 15 июля 2019 г., после переработки 9 сентября 2019 г., опубликована онлайн 27 сентября 2019 г.

Исследовано влияние высокотемпературного отжига на проводимость в базисной плоскости ВТСП монокристаллов YBa₂Cu₃O_{7-δ} после их облучения высокоэнергетическими электронами. Установлено, что избыточная проводимость $\Delta\sigma(T)$ монокристаллов YBa₂Cu₃O_{7-δ} в широком интервале температур $T_f < T < T^*$ подчиняется экспоненциальной температурной зависимости. При этом описание избыточной проводимости с помощью соотношения $\Delta\sigma \sim \exp(\Delta_{ab}^*/T)$ может быть интерпретировано в терминах теории среднего поля, где T^* представлена как среднеполевая температура перехода в псевдощелевое (ПЩ) состояние, а температурная зависимость псевдощели удовлетворительно описывается в рамках теории кроссовера БКШ–БЭК. Высокотемпературный отжиг приводит к необычному эффекту увеличения абсолютного значения величины псевдощели и общему уменьшению величины избыточной проводимости по сравнению с исходным необлученным образцом.

Ключевые слова: избыточная проводимость, облучение электронами, монокристаллы YBaCuO, кроссовер, псевдощелевое состояние.

Как было установлено в работах [1-3], температурная зависимость избыточной проводимости ВТСП соединений системы 1–2–3 RBa₂Cu₃O_{7– δ} (где R = Y или другой РЗМ элемент) весьма чувствительна к различного рода экстремальным воздействиям таким, как высокие давления [1,3-5], быстрый [2,6] и долговременный [7,8] отжиг, скачкообразное изменение температуры [9,10] и т. д. Данное соединение является весьма востребованным как с прикладной, так и с фундаментальной точек зрения, поскольку имеет достаточно высокую критическую температуру $T_c \approx 90$ К, превышающую температуру кипения жидкого азота [11,12], высокий критический ток [13-15] и достаточно отработанные технологии получения [3,16] керамических, пленочных, текстурированных и монокристаллических образцов. При этом его электрофизические характеристики можно достаточно просто варьировать путем изменения морфологии дефектного ансамбля [17,18] и элементного состава [19] конкретного экспериментального образца.

Несмотря на то, что в литературе имеется достаточно большое число работ, посвященных изучению влияния внешних экстремальных воздействий на псевдощелевую (ПЩ) аномалию в системе 1–2–3 (см., например, обзоры [3,16]), только в малой части этих работ рассматривается влияние облучения на избыточную проводимость [20] и практически не встречаются работы, в которых бы изучалось влияние облучения на ПЩ аномалию.

При этом преимуществом применения высокоэнергетического облучения является то, что оно позволяет контролируемым образом менять дефектную структуру экспериментального образца без изменения его состава [15]. Следует также отметить, что многим современным устройствам и приборам, созданным с применением ВТСП материалов, зачастую приходится работать в условиях воздействия ионизирующих излучений, что, безусловно, поднимает вопрос об устойчивости их технологических параметров в условиях такого рода экстремальных воздействий [1–10]. С учетом вышесказанного, в настоящей работе были проведены исследования влияния облучения высокоэнергетическими электронами на температурную зависимость ПЩ высокосовершенных монокристаллов $YBa_2Cu_3O_{7-\delta}$ с применением дозы облучения от 0 до $8,8\cdot10^{18}$ см⁻² и последующим высокотемпературным отжигом.

Монокристаллы YBa2Cu3O7-6 выращивали по раствор-расплавной методике в золотом тигле [2]. Технология получения экспериментальных образцов и проведения резистивных измерений, а также анализ транспортных свойств образцов в нормальном и сверхпроводящем состоянии детально описаны нами в [2,5]. Облучение электронами с энергиями 0,5-2,5 МэВ проводили при температурах T < 10 К. Дозе облучения $\phi = 10^{18} \text{ см}^{-2}$ электронами с энергией 2,5 МэВ соответствует усредненная по всем подрешеткам концентрация дефектов 10⁻⁴ смещ/ат [15,20]. Последовательность измерений была следующей. Вначале измеряли температурные зависимости сопротивления образцов до облучения. Затем понижали температуру до 5 К и проводили облучение. Интенсивность пучка была такой, что температура образца в процессе облучения не превышала 10 К. После облучения образца дозой его нагревали до температуры 300 К и, постепенно понижая температуру образца, проводили измерения температурных зависимостей сопротивления при T < 300 К. После достижения максимальной дозы образец отжигали при 400 К в течение 1 ч и также измеряли его электросопротивление. Параметры экспериментальных образцов представлены в табл. 1.

Таблица 1. Параметры экспериментальных образцов

Образец	<i>Т</i> _{с,} К	ρ _{<i>ab</i>} (300), мкОм∙см	<i>Т</i> [*] , К	Δ _{ab} , мэВ	$T_{f,}$ K	$t^* = (T^* - T_f) / T_f$
До облучения	91,7	199	137	97,1	95,5	0,4345
После облучения	86,8	332	175	66,9	89,8	0,9488
После отжига	89,2	269	159	103,8	90,1	0,7647

Температурные зависимости удельного электросопротивления в *ab*-плоскости, $\rho_{ab}(T)$, кристалла YBa₂Cu₃O_{7-δ} до и после облучения, а также после отжига показаны на рис. 1. Как видно на рис. 1, радиационное воздействие приводит к аномально сильному (по сравнению с изменением состава [21]) подавлению сверхпроводимости (уменьшению T_c) в высокотемпературном сверхпроводнике YBa₂Cu₃O_{7-δ} (кривая 2). Однако характер изменения электрических и сверхпроводящих свойств ВТСП при изменении состава [2,3,21] и под действием облучения несколько различен. Основное различие заключается в следующем: в то время как при изменении состава понижение T_c до 86 K, как правило, сопровождается изменением вида кривых $\rho(T)$ от металлическо-

Рис. 1. Температурные зависимости электросопротивления $\rho_{ab}(T)$ (а) и избыточной проводимости в координатах $\ln(\Delta\sigma) - 1/T$ (б) монокристалла $YBa_2Cu_3O_{7-\delta}$ до и после обучения электронами, а также после высокотемпературного отжига — кривые *1–3.* Пунктирными линиями на рисунке (а) показана интерполяция линейных участков в область низких температур. Стрелочками показаны температуры перехода в псевдощелевой режим T^* . Пунктирными линиями на рисунке (б) показана аппроксимация экспериментальных кривых уравнением (2).

го к так называемой, «*S*-образной кривой» с характерным термоактивационным прогибом [21], при облучении такое же, по абсолютной величине, понижение T_c при заметном возрастании ρ в интервале температур T = 300 К не сопровождается появлением *S*-образной зависимости $\rho(T)$. Термоактивационное поведение электросопротивления у облученных образцов проявляется только при достаточно низких значениях T_c [22]. Одной из причин, приводящих к сильному понижению T_c облученных образцов, может быть возникновение под действием облучения диэлектрических включений, обусловленных перераспределением кислорода между позициями O(4) и O(5) (в обозначениях работы [23]) и образованием локальных областей с тетрагональной структурой.

Высокотемпературный отжиг при 400 К в течение 1 ч приводит к частичному улучшению проводящих характеристик. При этом электросопротивление уменьшается от 332 до 269 мкОм·см, а критическая температура увеличивается от 86,8 до 89,2 К.

Видно, что на зависимостях $\rho_{ab}(T)$ в области относительно высоких температур у обоих кристаллов сохраняется достаточно широкий линейный участок, что, согласно теории NAFL [24], служит достоверным признаком нормального состояния системы. При понижении температуры ниже некоторого характерного значения T^* происходит отклонение $\rho_{ab}(T)$ от линейной зависимости, что свидетельствует о появлении избыточной проводимости, которая, как уже отмечалось выше, обусловлена переходом к псевдощелевому режиму [2,3].

Температурная зависимость избыточной проводимости обычно [25] находится из равенства

$$\Delta \sigma = \sigma - \sigma_0, \tag{1}$$

где $\sigma_0 = {\rho_0}^{-1} = (A+BT)^{-1}$ — проводимость, определяемая экстраполяцией высокотемпературного линейного участка в нулевое значение температуры, а $\sigma = \rho^{-1}$ — экспериментальное значение проводимости.

Полученные экспериментальные зависимости $\Delta\sigma(T)$ представлены на вставке рис. 1 в координатах $\ln\Delta\sigma - 1/T$ [25]. Видно, что в достаточно широком температурном интервале эти зависимости имеют вид прямых, что соответствует их описанию экспоненциальной зависимостью вида [25]

$$\Delta \sigma \sim \exp(\Delta_{ab}^* / T), \qquad (2)$$

где Δ_{ab}^{*} — величина, определяющая некоторый термоактивационный процесс через энергетическую щель — «псевдощель». Величина Δ^{*} , полученная из (2) для наших экспериментальных образцов, приведена в таблице 1. Видно, что облучение электронами приводит к значительному понижению абсолютного значения величины псевдощели $\Delta_{before}^{*} / \Delta_{after}^{*} \approx 1,45$. В то же время высокотемпературный отжиг при 400 К в течение 1 ч приводит к необычному эффекту некоторого увеличения абсолютного значения величины псевдощели $\Delta_{an}^{*} / \Delta_{before}^{*} \approx 1,07$ по сравнению с исходным, необлученным образцом, о чем более подробно будет сказано ниже.

Экспоненциальная зависимость $\Delta \sigma(T)$ уже наблюдалась ранее на необлученных образцах YBaCuO [25,26]. Как было установлено [25], аппроксимация экспериментальных данных может быть существенно расширена посредством введения сомножителя $(1-T/T^*)$. В этом случае избыточная проводимость оказывается пропорциональной плотности сверхпроводящих носителей $n_s \sim (1-T/T^*)$ и обратно пропорциональной числу пар, разрушенных тепловым движением, $\exp(-\Delta^*/kT)$:

$$\Delta \sigma \sim (1 - T / T^*) \exp(\Delta_{ab}^* / T), \qquad (3)$$

Рис. 2. Температурные зависимости псевдощели в приведенных координатах $\Delta^*(T) / \Delta^*_{max} - T / T^*$ (Δ^*_{max} — значение Δ^* на плато вдали от T^*). Нумерация экспериментальных кривых соответствует нумерации на рис. 1. Сплошными линиями 4 и 5 показана зависимость $\Delta^*(T)/\Delta(0)$ от T/T^* , рассчитанная согласно [27].

В теоретической работе [27] температурные зависимости псевдощели были получены ранее в приближении среднего поля в рамках теории кроссовера БКШ–БЭК для случая слабого (предел БКШ) (4) и сильного (предел БЭК) (5) спаривания:

$$\Delta(T) = \Delta(0) - \Delta(0)\sqrt{2\pi\Delta(0)T} \exp\left[-\frac{\Delta(0)}{T}\right], \qquad (4)$$

$$\Delta(T) = \Delta(0) - \frac{8}{\sqrt{\pi}} \sqrt{-x_0} \left(\frac{\Delta(0)}{T}\right)^{3/2} \exp\left[-\frac{\sqrt{\mu^2 + \Delta^2(0)}}{T}\right], \quad (5)$$

где $x_0 = \mu/\Delta(0)$ (μ — химпотенциал системы носителей; $\Delta(0)$ — величина энергетической щели при T = 0).

Зависимости $\Delta^*(T)/\Delta(0)$ от T/T^* , рассчитанные согласно (4) и (5) для значений параметра кроссовера $\mu/\Delta(0) = 10$ (предел БКШ) и $\mu/\Delta(0) = -10$ (предел БЭК), показаны на рис. 2 сплошными линиями 4 и 5. Видно, что в случае необлученного оптимально допированного кислородом беспримесного образца YBaCuO температурная зависимость псевдощели испытывает значительное расхождение с теорией [27], как это уже наблюдалось ранее в случае образцов УВаСиО с близким уровнем отклонения от кислородной стехиометрии [26]. В то же время, для монокристалла YBa₂Cu₃O_{7-δ} после облучения, учитывая некоторую условность определения величины открытия псевдощели T* по отклонению зависимости R(T) от линейного поведения, согласие эксперимента с теорией можно считать вполне удовлетворительным.

На рис. 2 видно, что экспериментальная кривая 2, полученная после максимального облучения, хорошо описывается теоретической кривой 4, соответствующей слабому спариванию — $\mu/\Delta(0) = 10$; экспериментальная

кривая 3, полученная после отжига, удовлетворительно описывается при $T/T^* < 0,9$ теоретической кривой 5, соответствующей сильному спариванию — $\mu/\Delta(0) = -10$; исходная кривая I может быть описана, по крайней мере качественно, сильным спариванием при $\mu/\Delta(0) < -10$. Таким образом, увеличение дефектности образца под облучением (без изменения состава) приводит к переходу от сильного спаривания — предел БЭК, к слабому спариванию — предел БКШ, что согласуется с результатами нашего анализа применимости формулы Мак-Миллана [28] — по мере увеличения концентрации Pr в Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} электрон-фононная связь уменьшается, стремясь к таким значениям, которые характерны для БКШ.

Как видно на рис. 1(б), по мере приближения к T_c происходит резкое возрастание величины $\Delta \sigma$. Из теории [29] известно, что вблизи T_c избыточная проводимость обусловлена процессами флуктуационного спаривания носителей. Если определять температуру перехода из ПЩ в ФП режим, T_f , по точке отклонения величины $\ln\Delta\sigma$ вверх от линейной зависимости $\ln\Delta\sigma(1/T)$ [26] можно оценить относительную протяженность существования ПЩ режима как: $t^* = (T^* - T_f)/T_f$. Результаты расчетов показывают, что после облучения происходит общее относительное расширение температурной области реализации ПЩ более чем в два раза, от $t^* = 0,4345$ до 0,9488, а в процессе высокотемпературного отжига наблюдается обратный эффект сужения этой области до $t^* = 0,7647$.

Как отмечалось выше, высокотемпературный отжиг при 400 К в течение 1 ч приводит к необычному эффекту увеличения абсолютного значения величины псевдощели $\Delta_{an}^{\bar{}}$ / $\Delta_{before}^{\bar{}} \approx 1,07$ и общему уменьшению величины избыточной проводимости по сравнению с исходным необлученным образцом (рис. 1). Следует отметить, что при исследовании влияния отжига на ПЩ необлученных образцов YBa2Cu3O7-6 с малым отклонением от кислородной стехиометрии наблюдался обратный эффект [2]. Одной из возможных причин такого необычного поведения зависимостей $\Delta \sigma(T)$ облученных образцов YBa2Cu3O7-6 в процессе отжига могут служить специфические механизмы квазичастичного рассеяния [30-34] и релаксации дефектного ансамбля, которые более подробно обсуждаются нами в [35,36]. Для окончательного выяснения этого вопроса необходимо проведение дополнительных исследований процессов высокотемпературного отжига образцов YBa2Cu3O7-6 в более широком диапазоне доз облучения, а также времен и температур отжига.

В заключение кратко просуммируем основные результаты, полученные в настоящей работе. Избыточная проводимость $\Delta \sigma(T)$ монокристаллов YBa₂Cu₃O_{7- δ} до и после облучения электронами в широком интервале температур $T_f < T < T^*$ подчиняется экспоненциальной температурной зависимости. При этом описание избыточной проводимости посредством соотношения $\Delta \sigma \sim (1 - T / T^*) \exp(\Delta_{ab}^* / T)$ может быть интерпретировано в терминах теории среднего поля, где Т представлена, как среднеполевая температура сверхпроводящего перехода [37], а температурная зависимость псевдощели удовлетворительно описывается в рамках теории кроссовера БКШ-БЭК. Увеличение дефектности образца (здесь из-за облучения электронами) приводит к кроссоверу БЭК (сильное спаривание) → БКШ (слабое спаривание). Облучение монокристала YBa2Cu3O7-6 электронами приводит к эффекту расширения температурного интервала реализации ПЩ режима, тем самым, сужая область линейной зависимости $\rho(T)$ в *ab*плоскости. Высокотемпературный отжиг приводит к необычному эффекту увеличения абсолютного значения величины псевдощели при одновременном увеличении Тс, что может быть обусловлено специфическими механизмами релаксации дефектного ансамбля.

- P. Pureur, Costa R. Menegotto, R. Rodrigues, J. Schaf, Jr., and J.V. Kunzler, *Phys. Rev. B* 47, 11420 (1993).
- Р.В. Вовк, А.Л. Соловьев, *ΦΗΤ* 44, 111 (2018) [Low Temp. Phys. 44, 81 (2018)].
- A.L. Solovjov, E.V. Petrenko, L.V. Omelchenko, R.V. Vovk, I.L. Goulatis, and A. Chroneos, *Scientific Rep.* 9, 9274 (2019).
- H.A. Borges and M.A. Continentino, *Solid State Commun.* 80, 197 (1991).
- A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, Z.F. Nazyrov, S.N. Kamchatnaya, and D.M. Sergeyev, *Physica B* 493, 58 (2016).
- R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, and V.M.P. Simoes, *J. Alloys Comp.* 509, 4553 (2011).
- B. Martinez, F. Sandiumenge, S. Pinol, N. Vilalta, J. Fontcuberta, and X. Obradors, *Appl. Phys. Lett.* 66, 772 (1995).
- R.V. Vovk, N.R. Vovk, G.Ya. Khadzhai, O.V. Dobrovolskiy, and Z.F. Nazyrov, *J. Mater. Sci. Mater. Electron.* 25, 5226 (2014).
- J.D. Jorgencen, Pei Shiyou, P. Lightfoot, H. Shi, A.P. Paulikas, and B.M.W. Veal, *Physica C* 167, 571 (1990).
- G.Y. Khadzhai, R.V. Vovk, N.R. Vovk, S.N. Kamchatnaya, and O.V. Dobrovolskiy, *Physica C* 545, 14 (2018).
- M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, *Phys. Rev. Lett.* 58, 908 (1987).
- R.V. Vovk, N.R. Vovk, G.Ya. Khadzhai, I.L. Goulatis, and A. Chroneos, *Physica B* 422, 33 (2013).
- W.K. Kwok, S. Fleshler, U. Welp, V.M. Vinokur, J. Downey, G.W. Crabtree, and M.M. Miller, *Phys. Rev. Lett.* 69, 3370 (1992).
- A.V. Bondarenko, V.A. Shklovskij, M.A. Obolenskii, R.V. Vovk, A.A. Prodan, M. Pissas, D. Niarchos, and G. Kallias, *Phys. Rev. B* 58, 2445 (1998).
- A.V. Bondarenko, A.A. Prodan, Yu.T. Petrusenko, V.N. Borisenko, F. Dworschak, and U. Dedek, *Phys. Rev. B* 64, 092513 (2001).

- A.A. Kordyuk, *Fiz. Nizk. Temp.* **41**, 417 (2015) [*Low Temp. Phys.* **41**, 319 (2015)].
- H. Lutgemeier, S.Schmenn, P. Meuffels, O. Storz, R. Schollhorn, C. Niedermayer, I. Heinmaa, and Y. Baikov, *Physica C* 267, 191 (1996).
- R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, Z.F. Nazyrov, I.L. Goulatis, V.V. Kruglyak, and A. Chroneos, *Modern Phys. Lett. B* 25, 2131 (2011).
- D.A. Lotnyk, R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, J. Kováč, M. Kaňuchová, M. Šefciková, V. Antal, P. Diko, A. Feher, and A. Chroneos, *J. Low Temp. Phys.* 161, 387 (2010).
- G.Ya. Khadzhai, Yu.V. Litvinov, R.V. Vovk, S.F. Zdorovko, I.L. Goulatis, and A. Chroneos, *J. Mater. Sci. Mater. Electron.* 29, 7725 (2018).
- M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, and N.N. Chebotaev, *Fiz. Nizk. Temp.* **32**, 746 (2006) [*Low Temp. Phys.* **32**, 571 (2006)].
- J.M. Valles, Jr., A.E. White, K.T. Short, R.C Dynes., J.P. Garno, A.F.J. Levi, M. Anzlowar, and K. Baldwin, *Phys. Rev. B* 39, 11599 (1989).
- 23. T. Siegrist, S. Sunshince, D.W. Murphy, R.J. Cava, and S.M. Zahurak, *Phys. Rev. B* **35**, 7137 (1987).
- 24. B.P. Stojkovic and D. Pines, Phys. Rev. B 55, 8567 (1997).
- Д.Д. Прокофьев, М.П. Волков, Ю.А. Бойков, ФТТ 45, 1168 (2003).
- R.V. Vovk, A.A. Zavgorodniy, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, and V.M. Pinto Simoes, *Modern Phys. Lett. B* 24, 2295 (2010).
- 27. E. Babaev and H. Kleinert, Phys. Rev. B 59, 12083 (1999).
- R.V. Vovk, G.Ya. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, and I.L. Goulatis, *Mater. Res. Exp.* 1, 026303 (2014).
- 29. L.G. Aslamazov and A.I. Larkin, Phys. Lett. A 26, 238 (1968).
- O.V. Dobrovolskiy, M. Huth, V.A. Shklovskij, and R.V. Vovk, *Scientific Rep.* 7, 13740 (2017).
- R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, A. Chroneos, E.V. Biletskiy, *J. Alloys Comp.* 485, 121 (2009).
- O.V. Dobrovolskiy, R. Sachser, M. Huth, V.A. Shklovskij, R.V. Vovk, V.M. Bevz, and M. Tsindlekht, *Appl. Phys. Lett.* 112, 152601 (2018).
- O.V. Dobrovolskiy, V.M. Bevz, M.Yu. Mikhailov, O.I. Yuzephovich, V.A. Shklovskij, R.V. Vovk, M.I. Tsindlekht, R. Sachser, and M. Huth, *Nature Commun.* 9, 4927 (2018).
- O.V. Dobrovolskiy, R. Sachser, T. Brächer, T. Fischer, V.V. Kruglyak, R.V. Vovk, V.A. Shklovskij, M. Huth, B. Hillebrands, and A.V. Chumak, *Nature Phys.* 15, 477 (2019).
- M.A. Hadi, M. Roknuzzaman, A. Chroneos, S.H. Naqib, A.K.M.A. Islam, R.V. Vovk, and K. Ostrikov, *Comp. Mater. Sci.* 137, 318 (2017).
- Г.Я. Хаджай, В.И. Белецкий, Р.В. Вовк, ФНТ 45, 1336 (2019) [Low Temp. Phys., No 9 (2019)].
- 37. V.J. Emery and S.A. Kivelson, *Nature London* 374, 434 (1995).

Вплив високотемпературного відпалу на температурну залежність псевдощілини монокристалів YBa₂Cu₃O_{7-δ}, які опромінені високоенергетичними електронами

Г.Я. Хаджай, Р.В. Вовк, З.Ф. Назиров

Досліджено вплив високотемпературного відпалу на провідність у базисній площині ВТНП монокристалів YBa2Cu3O7-6 після їх опромінення високоенергетичними електронами. Встановлено, що надлишкова провідність $\Delta \sigma(T)$ монокристалів YBa₂Cu₃O_{7- δ} у широкому інтервалі температур $T_f < T < T$ підкоряється експоненційній температурній залежності. При цьому опис надлишкової провідності за допомогою співвідношення $\Delta \sigma \sim \exp(\Delta_{ab}^* / T)$ може бути інтерпретовано в термінах теорії середнього поля, де Т представлено, як середньопольову температуру переходу в псевдощілинний стан, а температурна залежність псевдощілини задовільно описується в рамках теорії кросовера БКШ-БЕК. Високотемпературний відпал призводить до незвичайного ефекту збільшення абсолютного значення величини псевдощілини та загального зменшення величини надлишкової провідності в порівнянні з вихідним неопроміненим зразком.

Ключові слова: надлишкова провідність, опромінення електронами, монокристали YBaCuO, кросовер, псевдощілинний стан.

The influence of high-temperature annealing on the temperature dependence of the pseudogap of $YBa_2Cu_3O_{7-\delta}$ single crystals irradiated with high-energy electrons

G.Ya. Khadzhai, R.V. Vovk, and Z.F. Nazyrov

The influence of high-temperature annealing on the conductivity in the basal plane of HTSC YBa₂Cu₃O_{7- δ} single crystals after their irradiation with high-energy electrons is investigated. It was found that the excess conductivity $\Delta\sigma(T)$ of YBa₂Cu₃O_{7- δ} single crystals in a wide temperature range $T_f < T < T^*$ is subject to an exponential temperature dependence. Moreover, the description of excess conductivity using the relation $\Delta\sigma \sim \exp(\Delta_{ab}^*/T)$ can be interpreted in terms of the mean-field theory, where T^* is presented as the average field temperature of the transition to the pseudogap state, and the temperature dependence of the pseudogap is satisfactorily described in the framework crossover theory BCS–BEC. High-temperature annealing leads to an unusual effect of increasing the absolute value of the pseudogap value and a general decrease in the excess conductivity compared to the initial unirradiated sample.

Keywords: excess conductivity, electron irradiation, YBaCuO single crystals, crossover, pseudogap state.