Спиновая кинетика жидкого ³Не в системе аэрогель–наночастицы DyF₃

Е.М. Алакшин¹, Е.И. Кондратьева^{1,2}, В.В. Кузьмин¹, К.Р. Сафиуллин^{1,2}, А.А. Станиславовас¹, Г.А. Долгоруков¹, А.В. Клочков¹, М.С. Тагиров^{1,2}

¹Казанский (Приволжский) федеральный университет, Институт физики, Казань, 420008, Россия

²Институт прикладных исследований АН РТ, Казань, 420011, Россия E-mail: alakshin@gmail.com

Статья поступила в редакцию 14 января 2019 г., после переработки 2 августа 2019 г., опубликована онлайн 25 октября 2019 г.

Методом импульсного ЯМР исследована спиновая кинетика жидкого ³Не в образце ориентированного Al₂O₃ аэрогеля, содержащего наночастицы DyF₃ со средним размером частиц 5 нм при температурах 1,5–3 К. Соединение DyF₃ — дипольный диэлектрический ферромагнетик с температурой фазового перехода $T_C = 2,55$ К, в то время как диамагнитный ориентированный Al₂O₃ аэрогель выступает в качестве магнитного разбавителя для оптимальных условий наблюдения ядерного магнитного резонанса ³Не в данной системе. Аномалий в спиновой кинетике ³Не в контакте с этим образцом, связанных с фазовым переходом, не обнаружено. Предложена методика внесения парамагнитных примесей в аэрогель.

Ключевые слова: ЯМР, ³Не, DyF₃, наночастицы, аэрогель, ядерная магнитная релаксация, низкие температуры.

Существует множество работ по исследованию магнитных взаимодействий ядер ³Не и твердотельных образцов с помощью ядерного магнитного резонанса (ЯМР) [1–3]. Однако работ по изучению влияния фазовых переходов в магнитно-упорядоченные состояния в твердых телах на спиновую кинетику ³Не и механизмов их взаимодействий с ядерными спинами ³Не почти нет.

В литературе приводится случай наблюдения влияния магнитного фазового перехода в твердотельном субстрате на ядерную магнитную релаксацию ³He [4]. Автором обнаружен фазовый переход моногидрата сульфата тетраамминмеди (II) Cu(NH₃)₄SO₄·H₂O из парамагнитного в антиферромагнитное состояние при температуре $T_N = 0,43$ K с помощью стационарного ЯМР ³He. Было показано, что вследствие взаимодействия ядер ³He с магнитными моментами ионов меди вблизи температуры фазового перехода наблюдается ярко выраженный экстремум (максимум) в температурной зависимости скорости продольной релаксации намагниченности ядер ³He.

Ранее методом импульсного ЯМР нами была исследована спиновая кинетика жидкого ³Не в контакте со смесью микроразмерных порошков диамагнитного LaF₃ (99,67%) и магнитно-концентрированного DyF₃ (0,33%) в температурном диапазоне 1,5-3 К и обнаружено влияние фазового перехода в дипольное ферромагнитное состояние. Фазовый переход сопровождался существенным изменением характера флуктуаций магнитных моментов ионов Dy³⁺, к которым чувствительна спиновая кинетика ³He. В частности, было выявлено существенное изменение скоростей продольной и поперечной ядерной намагниченности 'Не в области магнитного упорядочения в твердотельной матрице [5]. В работе [6] по температурной зависимости намагниченности было показано отсутствие признаков фазового перехода из парамагнитного в ферромагнитное состояние вплоть до 1,8 К для наноразмерного образца DyF3 со средним размером частиц 5 нм. Также по температурной зависимости намагниченности переход в ферромагнитное состояние не наблюдался для наноразмерного образца DyF₃ со средним размером частиц 20 нм [7,8]. Наиболее вероятные объяснения этого поверхностные эффекты или суперпарамагнетизм наночастиц.

Цель данной работы — апробация методики изучения магнитных фазовых переходов с помощью измерений времен релаксации ядер ³Не при низких температурах в наноразмерных системах. В настоящей работе

© Е.М. Алакшин, Е.И. Кондратьева, В.В. Кузьмин, К.Р. Сафиуллин, А.А. Станиславовас, Г.А. Долгоруков, А.В. Клочков, М.С. Тагиров, 2019

проведено экспериментальное исследование процессов ядерной магнитной релаксации жидкого ³Не в контакте с образцом ориентированного Al_2O_3 аэрогеля, содержащего наночастицы DyF₃ (d = 5 нм).

Ранее в работе [5] было обнаружено, что величина сигнала спинового эха жидкого ³Не в контакте с DyF₃ крайне мала, вероятно, ввиду сильных неоднородных магнитных полей, создаваемых DyF₃, поэтому в данной работе в качестве разбавителя использовался диамагнитный ориентированный аэрогель Al₂O₃. Образец представлял собой наночастицы фторида диспрозия DyF_3 (d = 5 нм), помещенные в ориентированный аэрогель Al₂O₃ (Nafen Technology). Аэрогель был вымочен в коллоидном растворе DyF₃ (синтез подробно описан в статье [6]) концентрацией 0,179 10⁻⁵ моль/л в течение 5 минут в ультразвуковой ванне. Данная концентрация была выбрана, чтобы в образце среднее расстояние между наночастицами DvF₃ было порядка микрометра. Далее аэрогель был высушен на плоской поверхности. Плотность аэрогеля до сжатия составляла 82 мг/см³, а после — 597 мг/см³. После сушки аэрогель был выточен в форме цилиндра диаметром 6 мм (внутренний диаметр ампулы 6 мм) и высотой 11 мм. Данная методика сжатия аэрогеля водой и другими жидкостями была предложена в статье [9]. Идея модификации азрогеля в данной статье заключалась в замене воды на водный коллоидный раствор наночастиц DyF₃. Предложенная методика может быть использована для внедрения необходимого количества парамагнитных примесей в аэрогели.

ЯМР эксперименты проводились на импульсном спектрометре лабораторного изготовления [10,11] при температурах 1,5–3 К на ларморовской частоте ³Не 8,02 МГц. Низкие температуры достигались с помощью откачки паров жидкого ⁴Не из криостата. Ампула с образцом герметично соединялась с системой газовых коммуникаций ³Не/⁴Не. Концентрация примеси ⁴Не в ³Не не превышала 0,018%. Непосредственно перед каждым экспериментом образец подвергался многократной циклической промывке газообразным ⁴Не при температуре 365 К с последующей откачкой до давления как минимум 10⁻² мбар. Соленоидальная однослойная медная катушка длиной 11 мм была намотана с шагом через виток на поверхность ампулы. Диаметр медного провода составлял 0,25 мм.

Были проведены измерения температурных зависимостей амплитуды спинового эха, времен спинрешеточной T_1 и спин-спиновой T_2 релаксации ядер жидкого ³Не в контакте с образцом аэрогель–DyF₃. Частота ЯМР, на которой проведены эксперименты, выбрана исходя из того, что T_C при увеличении внешнего магнитного поля смещается в область более высоких температур [5].

Для измерения скорости продольной релаксации ³Не использована последовательность насыщение-вос-

становление, для скорости поперечной релаксации использована последовательность СРМG. Длительность типичного π/2 импульса составляла 3 мкс.

На рис. 1 представлены характерные кривые восстановления продольной и спада поперечной ядерной намагниченности жидкого ³Не в контакте с образцом аэрогель–DyF₃. Аппроксимация экспериментальных данных проводилась при помощи следующих формул [12,13]:

$$M_{z} = A_{0} + A \left(1 - \exp\left(-\frac{\tau}{T_{1a}}\right) \right) + B \left(1 - \exp\left(-\frac{\tau}{T_{1b}}\right) \right), \quad (1)$$

$$M_{xy} = A \exp\left(-\frac{\tau}{T_{2a}}\right) + B \exp\left(-\frac{\tau}{T_{2b}}\right).$$
(2)

На рис. 1 показаны два вклада в сигнал ЯМР жидкого ³Не. Для короткой компоненты характерные времена составляли $T_1 \sim 200$ мс, $T_2 \sim 10$ мс, для длинной — $T_1 \sim 2.5$ с, $T_2 \sim 250$ мс, причем в короткой компоненте сосредоточено более 75% всего сигнала. Наличие двух вкладов, скорее всего, связано со структурными неоднородностями образца аэрогеля — небольшими полостями внутри образца, появившимися после сушки. Оценив диффузионную длину пробега атома ³Не за наблюдаемое время релаксации T_1 длинной компонен-

Рис. 1. Кривые восстановления продольной (а) и спада поперечной (б) намагниченностей ядер жидкого ³Не в контакте с образцом аэрогель–DyF₃ на частоте 8,02 МГц. Сплошными линиями показан результат аппроксимации формулами (1) и (2).

ты в полости по формуле, используя модель «грязной» стенки, в которой T_1 определяется временем между двумя последовательными столкновениями атомов ³ Не со стенками

$$R = \sqrt{6DT_1}.$$
 (3)

получаем характерный размер полостей порядка R = 0,3 мм.

На рис. 2 представлена температурная зависимость амплитуды спинового эха жидкого ³Не в контакте с образцом аэрогель–DyF₃ на частоте 8,02 МГц.

Как видно на рис. 2, признаков фазового перехода из парамагнитного в ферромагнитное состояние не наблюдается. Интенсивность сигнала увеличивается с понижением температуры по закону Кюри.

На рис. 3 и 4 представлены температурные зависимости обеих компонент релаксации продольной T_1 и поперечной T_2 ядерных намагниченностей жидкого ³Не в контакте с образцом аэрогель–DyF₃.

Как видно на рис. 3 и 4, никаких аномалий в области магнитного фазового перехода ($T_C = 2,55$ K) не наблюдается. Измеренные температурные зависимости ведут себя монотонно в отличие от полученных ранее подобных зависимостей в смеси микроразмерных порошков LaF₃ и DyF₃ [5].

Оценка времени продольной релаксации ³Не на поверхности наночастиц DyF₃ через адсорбированный слой (исходя из времени T_{1a} и отношения количества ³Не на поверхности наночастиц к объемному ³Не) дает значение $T_{1s} = 60$ мкс, хотя измеренные времена релаксации в адсорбированном слое в системе аэрогель– DyF₃ составляют 10–20 мс и почти не отличаются от релаксации адсорбированного ³Не в аэрогеле без наночастиц. Таким образом, модель поверхностной релаксации несостоятельна в данном случае.

Рис. 2. Температурная зависимость амплитуды сигнала спинового эха жидкого ³Не в контакте с образцом аэрогель—DyF₃ на частоте 8,02 МГц. Сплошная линия соответствует изменению интенсивности сигнала по закону Кюри.

Рис. 3. Температурные зависимости короткой T_{1a} (а) и длинной T_{1b} (б) компонент релаксации продольной ядерной намагниченности T_1 жидкого ³Не в контакте с образцом аэрогель–DyF₃ на частоте 8,02 МГц. Линиями показаны расчеты для модели, учитывающей изменение диффузии жидкого ³Не от температуры.

На рис. 3 нанесена аппроксимация, учитывающая изменение диффузии жидкого ³Не от температуры. Данные по температурной зависимости диффузии жидкого ³Не

Рис. 4. Температурные зависимости короткой T_{1a} (■) и длинной T_{1b} (○) компонент релаксации поперечной ядерной намагниченности T_2 жидкого ³Не в контакте с образцом аэрогель–DyF₃ на частоте 8,02 МГц.

взяты из статьи [14], далее полученные экспериментальные данные аппроксимированы функцией вида $T_1 = \alpha/D$. Исходя из угла наклона прямых, оценены диффузионные длины пробега атома 'Не для короткой и длинной компонент времени спин-решеточной релаксации: 70 и 300 мкм соответственно. Оцененная диффузионная длина свободного пробега атома ³Не для короткой компоненты (70 мкм) намного больше среднего расстояния между наночастицами DyF₃ (1 мкм), рассчитанного из концентрации коллоидного раствора. Исходя из приведенных оценок, можно сделать несколько предположений: либо не все наночастицы из коллоидного раствора вошли в структуру аэрогеля, либо в образце они собираются в небольшие агломераты со средним количеством частиц порядка восьми штук (подобная самосборка наночастиц описана в статье [6]), либо модель грязной стенки не совсем применима и для релаксации ³Не нужно несколько соударений с наночастицами.

Другим возможным механизмом релаксации может быть релаксация, вызванная движением ³Не в квазипериодическом магнитном поле, обусловленным намагниченностью отдельных наночастиц DyF_3 . Подобный механизм релаксации описан в работе [15].

Таким образом, можно предположить два варианта объяснения полученных данных. Фазовый переход в данных экспериментах не наблюдается из-за влияния поверхностных эффектов [16] и сильного разупорядочения кристаллических полей. Возможно, ядро наночастицы переходит в ферромагнитное состояние, а оболочка остается парамагнитной из-за дефектов кристаллической структуры на поверхности наночастиц [16]. Другим возможным объяснением полученных результатов является суперпарамагнетизм наночастиц. Когда размер частиц достаточно мал, однодоменное состояние становится предпочтительным [17]. Направление магнитного момента такой частицы может измениться из-за тепловых флуктуаций, и в отсутствие магнитного поля усредненная намагниченность будет равна нулю. В этом состоянии внешнее магнитное поле поляризует намагниченность наночастиц. Температурное поведение статической восприимчивости суперпарамагнитных наночастиц аналогично парамагнетику даже при температурах ниже T_C [17,18]. Поэтому весьма вероятно, что ферромагнитный переход имеет место в каждой одиночной наночастице при $T_C = 2,55$ K, но для ансамбля наночастиц все еще проявляется парамагнитное поведение. Отсутствие фазовых переходов в температурных зависимостях намагниченностей наночастиц DyF₃ и TbF₃ наблюдалось в работах [6,8,19].

Для более детального изучения необходимо апробировать методику подготовки образцов наночастиц в широком диапазоне размеров, чтобы проследить изменения при постепенном уменьшении размеров частиц.

Работа выполнена за счет средств гранта РФФИ (проект # 16-32-60155 мол_а_дк).

- Е.М. Алакшин, Р.Р. Газизулин, М.Ю. Захаров, А.В. Клочков, Е.В. Морозов, Т.М. Салихов, Т.Р. Сафин, К.Р. Сафиуллин, М.С. Тагиров, О.В. Шабанова, *ФНТ* 41, 52 (2015) [*Low Temp. Phys.* 41, 39 (2015)].
- E.M. Alakshin. R.R. Gazizulin, A.V. Klochkov, S.L. Korableva, V.V. Kuzmin, A.M. Sabitova, T.R. Safin, K.R. Safiullin, and M.S. Tagirov, *JETP Lett.* 97, 579 (2013).
- V.V. Kuzmin, K.R. Safiullin, G.A. Dolgorukov, A.A. Stanislavovas, E.M. Alakshin, T.R. Safin, B.V. Yavkin, S.B. Orlinskii, A.G. Kiiamov, M.Yu. Presnyakov, A.V. Klochkov, and M.S. Tagirov, *Phys. Chem. Chem. Phys.* 20, 1476 (2018).
- 4. S. Saito, Phys. Rev. Lett. 36, 975 (1976).
- E.M. Alakshin, E.I. Kondratyeva, V.V. Kuzmin, K.R. Safiullin, A.A. Stanislavovas, AV. Savinkov, A.V. Klochkov, and M.S. Tagirov, *JETP Lett.* 107, 111 (2018).
- E.M. Alakshin, E.I. Kondratyeva, D.S. Nuzhina, M.F. Iakovleva, V.V. Kuzmin, K.R. Safiullin, A.T. Gubaidullin, T. Kikitsu, K. Kono, A.V. Klochkov, and M.S. Tagirov, *J. Nanoparticle Res.* 20, 332 (2018).
- E.M. Alakshin, A.V. Klochkov, E.I. Kondratyeva, S.L. Korableva, A.G. Kiiamov, D.S. Nuzhina, A.A. Stanislavovas, M.S. Tagirov, M.Yu. Zakharov, and S. Kodjikian, *J. Nanomater.* 2016, 7148307 (2016).
- E.M. Alakshin, E.I. Kondratyeva, D.S. Nuzhina, M.F. Iakovleva, I.F. Gilmutdinov, V.V. Kuzmin, K.R. Safiullin, A.G. Kiiamov, A.V. Klochkov, and M.S. Tagirov, *Magn. Reson. Solids* 19, 17204 (2017).
- V.V. Volkov, V.V. Dmitriev, D.V. Zolotukhin, A.A. Soldatov, and A.N. Yudin, *Instrum. Exper. Techniq.* 60, 737 (2017).
- E.M. Alakshin, R.R. Gazizulin, A.V. Klochkov, V.V. Kuzmin, A.M. Sabitova, T.R. Safin, and M.S. Tagirov, *Magn. Reson. Solids* 15, 13104 (2013).
- G.A. Dolgorukov, V.V. Kuzmin, A.V. Bogaychuk, E.M. Alakshin, K.R. Safiullin, A.V. Klochkov, and M.S. Tagirov, *Magn. Reson. Solids* 20, 18206 (2018).
- R.R. Gazizulin, A.V. Klochkov, V.V. Kuzmin, K.R. Safiullin, M.S. Tagirov, A.N. Yudin, V.G. Izotov, and L.M. Sitdikova, *Appl. Magn. Reson.* 38, 271 (2010).
- E. Alakshin, R. Gazizulin, A. Klochkov, E. Kondratyeva, A. Laski, and M. Tagirov, *Appl. Magn. Reson.* 48, 723 (2017).
- 14. H.R. Hart, Jr., and J.C. Wheatley, *Phys. Rev. Lett.* **4**, 3 (1960).
- 15. N.F. Fatkullin, Sov. Phys. JETP 74, 833 (1992).
- 16. R.H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999).
- B. Issa, I.M. Obaidat, B.A. Albiss, and Y. Haik, Int. J. Mol. Sci. 14, 21266 (2013).
- G.F. Goya, T.S. Berquo, F.C. Fonseca, and M.P. Morales, *J. Appl. Phys.* 94, 3520 (2003).
- X. Zheng, Y. Wang, L. Sun, N. Chen, L. Li, S. Shi, S. Malaisamy, and C. Yan, *Nano Res.* 9, 1135 (2016).

Спінова кінетика рідкого ³Не в системі аерогель–наночастинки DyF₃

Е.М. Алакшін, Є.І. Кондратьєва, В.В. Кузьмін, К.Р. Сафіуллін, А.А. Станіславовас, Г.А. Долгоруков, А.В. Клочков, М.С. Тагіров

Методом імпульсного ЯМР досліджено спінову кінетику рідкого ³Не у зразку орієнтованого Al₂O₃ аерогеля, що містить наночастинки DyF₃ із середнім розміром частинок 5 нм при температурах 1,5–3 К. Сполука DyF₃ є дипольним діелектричним феромагнетиком з температурою фазового переходу $T_C = 2,55$ К, в той час як діамагнітний орієнтований Al₂O₃ аерогель виступає як магнітний розчинник для оптимальних умов спостереження ядерного магнітного резонансу ³Не в даній системі. Аномалій у спіновій кінетиці ³Не в контакті з цим зразком, пов'язаних з фазовим переходом, не виявлено. Запропоновано методику внесення парамагнітних домішок в аерогель.

Ключові слова: ЯМР, ³Не, DyF₃, наночастинки, аерогель, ядерна магнітна релаксація, низькі температури.

Spin kinetics of liquid ³He in the system aerogel–DyF₃ nanoparticles

E.M. Alakshin, E.I. Kondratyeva, V.V. Kuzmin, K.R. Safiullin, A.A. Stanislavovas, G.A. Dolgorukov, A.V. Klochkov, and M.S. Tagirov

The spin kinetics of liquid ³He in a sample of oriented Al₂O₃ aerogel containing DyF₃ nanoparticles with an average particle size of 5 nm at temperatures of 1.5–3 K was studied using pulsed NMR method. The DyF₃ is a dipole dielectric ferromagnet with a magnetic phase transition temperature of $T_C = 2.55$ K, whereas diamagnetic oriented Al₂O₃ aerogel is a diluting substance for optimal observation conditions for nuclear magnetic resonance of ³He. Anomalies in the spin kinetics of ³He in contact with this sample associated with the magnetic phase transition were not detected. The method that allows to introduce paramagnetic impurities into aerogel in a controllable way was proposed.

Keywords: NMR, 3 He, DyF₃, nanoparticles, aerogel, nuclear magnetic relaxation, low temperatures.