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Resolving the puzzle of sound propagation
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Experimental data suggests that, at temperatures below 1 K, the pressure in liquid helium has a cubic depend-

ence on density. Thus the speed of sound scales as a cubic root of pressure. Near a critical pressure point, this

speed approaches zero whereby the critical pressure is negative, thus indicating a cavitation instability regime.

We demonstrate that to explain this dependence, one has to view liquid helium as a mixture of three quantum

Bose liquids: dilute (Gross—Pitaevskii-type) Bose—Einstein condensate, Ginzburg—Sobyanin-type fluid, and loga-

rithmic superfluid. Therefore, the dynamics of such a mixture is described by a quantum wave equation, which

contains not only the polynomial (Gross—Pitaevskii and Ginzburg—Sobyanin) nonlinearities with respect to a

condensate wavefunction, but also a non-polynomial logarithmic nonlinearity. We derive an equation of state

and speed of sound in our model, and show their agreement with the experiment.

Keywords: superfluid helium, quantum Bose liquid, equation of state, speed of sound.

1. Introduction

The velocity of ordinary (“first”) sound in liquid helium
at temperatures below 1 K was measured with great accura-
cy as a function of both temperature [1,2] and pressure [3,4].
An analysis of experimental data by Abraham et al. reveals
that sound velocity ¢y decreases with pressure as a cubic
root, cf. Fig. 1:

¢ =K"3(P-R,)Y, v==2001, M

where the critical pressure being about P, =-9.52 and
~3.11atm for *He and >He, respectively, whereas
K =1.41-10° and 1.93-10°cm* -g_1 -s~! for “*He and 3He,
respectively; negative values indicate that zero-velocity of
sound occurs in the cavitation regime where nucleation of
bubbles causes a macroscopic instability. On the other hand,
conventional arguments imply that in the vicinity of the cri-
tical pressure point P, the speed of sound should scale as
a quartic root of pressure, C oc (P —F; )1/ 4, which disagrees
with both experiment and numerical simulations [5—12].
These arguments rely heavily on approximations and per-

© Tony C. Scott and Konstantin G. Zloshchastiev, 2019

turbation techniques, which are usually pertinent to sys-
tems of weakly interacting bosons, such as dilute Bose—Ein-
stein condensates, where two-body contact interactions are
predominant and non-perturbative effects are neglected.
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Fig. 1. Profile of cg’, in units of 1013 cm3/53, versus pressure P,
in atm. The experimental data was taken from Refs. 3, 4, for 4He
(circles, solid fitting curve) and 3He (triangles, dashed fitting

curve).
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In this paper, we propose a non-perturbative approach,
which takes into account multi-body interactions in liquid
helium and explains the experimental data by Abraham
et al., including an equation of state and the relation (1).

2. Model

After the discovery of Bose—Einstein condensation and
related phenomena, it was established that quantum Bose
liquids are not a discrete set of particles, such as helium
atoms, interacting via some interparticle potential. Instead,
a new phenomenon occurs: the discreteness of the atoms is
averaged out, collective degrees of freedoms emerge, which
are no longer identical to constituent particles, and the whole
system becomes essentially nonlocal and continuous [13].
Correspondingly, wavefunctions describing these new de-
grees of freedom are to be considered fundamental within
the frameworks of the collective approach. Even for
ground states, these condensate wavefunctions do not obey
the conventional (linear) Schrodinger equations, but some
nonlinear quantum wave equations in which nonlinearities
account for many-body effects [14—16]. Our task here will
be to determine a form of those equations, starting from
some minimal model assumptions followed by fixing their
parameters using experimental data.

In a theory of quantum Bose liquids and Bose—Einstein
condensates, one introduces a complex-valued condensate
wavefunction ¥ = W¥(x,t), which obeys a normalization
condition

j|ly\2dv=jpdv=M=mN, @)
\ \%

where M,V and N are, respectively, the total mass, volume,
and particles’” number of the fluid, p=|¥ |2 is the fluid
mass density, and m = my, is the mass of the constituent
particle. This condition imposes restrictions upon the con-
densate wavefunctions, which reveals its quantum mechan-
ical nature: the set of all normalizable functions ¥ which
constitutes a Hilbert space, such as L2.

For physical configurations, the function ¥ must mini-

mize the action functional ”V LdVdt, where the Lagrangian
density has a Galilean-invariant U (1)-symmetric form:

c :i—h(\lfa ¥ oo ‘{’)+ﬁ|V‘P P Ve W+ V(¥ P
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where Vext = Vext (X,1) is an external or trapping potential,
and V(| ¥ [?) is an effective many-body interaction poten-
tial density. We write the latter in the series form, to be ex-
plained as follows:

N
V(P) = Yy (®)+ D Vi (0, (4)
k=2

Viny(P) = €Canyp[ 1-In(p /)],

— —k
Vo) =eCuyp(p/P)

where € and p are scale constants with the dimensions of
energy and mass density, respectively, and the C’s are
dimensionless coupling coefficients whose values are to be
established below; the index k labels the kth-order contact
interaction potential with respect to p. The couplings C’s
do not depend on the mass density p, but they can be func-
tions of the thermodynamic parameters of the fluid.

By applying the Euler—Lagrange variational principle
to Egs. (3) and (4), we obtain the following quantum wave
equation:

2
—ind, —§—V2 Vo (XD+F(Y )P =0, (5
m

where
d N
F(P) = =V(P) = Funy (P)+ 2 Figo () (6)
P k=2

Fan)(P) = —€Ciny In(p/P),
k-l
Fio(P) =ekCqy (p/P)"

Equations (4)—(6) indicate that the Bose liquid in our model
has the following multi-component structure:

First, the potential term V) o[ ¥ \2 [l—ln (3 |2/§)J
describes the logarithmic fluid component and induces
the logarithmic nonlinearity F,) oc In (| ¥ |2/ p) in the wave
equation (5). Nonlinearity of this type often occurs in field
theories of particles and gravity [17-26], as well as in the clas-
sical and quantum mechanics of various fluids [22,27-34].
The reason for such universality is that logarithmically non-
linear terms readily emerge in evolution equations for those
dynamical systems in which interparticle interaction energies
dominate kinetic ones [31]. Such systems include not only
low-temperature gases and liquids [27,28], but also hot dense
matter and effectively lower-dimensional flows [32,34].

In particular, a significant amount of experimental evi-
dence supports universal applicability of logarithmic mo-
dels in the theory of superfluidity of “He. The logarith-
mic fluid turns out to be very instrumental for describing
the microscopic properties of the superfluid component
of *He: it analytically reproduces with high accuracy the
three main observable facts of this liquid — the Landau
spectrum of excitations, the structure factor, and the speed
of sound at normal pressure, while using only one non-
scale parameter to fit the excitation spectrum’s experi-
mental data [28].

It should be mentioned here that the logarithmic nonlin-
earity readily occurs if one attempts to renormalize per-
turbative models of liquid helium and take into account
zero-point oscillations therein [6]. From that prospective,
the logarithmic term can be interpreted as a cumulative
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macroscopical effect of the quantum interaction between
the collective degrees of freedom of superfluid helium and
virtual particles, which correlates with an idea of using
the logarithmic fluids for a non-perturbative description of
the physical vacuum as such [22].

Second, the component described by the Ginzburg—Lan-
dau-type (quartic) potential V(Z) o |V |4, represents a well-
known Gross—Pitaevskii (GP) condensate where the inter-
particle interaction can be well approximated by a 2-body
potential made of a contact (delta-singular) shape [35,36].
This approximation is robust in dilute Bose—Einstein con-
densates, but for strongly-interacting quantum liquids, it
cannot be used as a leading-order approximation. However,
it can still make a viable contribution.

Third, the fluid described by the sextic term,
])(3) o |V |6, is another beyond-GP approximation term, as
discussed by Ginzburg and Sobyanin [14,15]. This term is
related to three-particle interactions: for instance, it can be
induced by the trimer bound states in liquid helium discov-
ered by Efimov [37,38]; a recent review of literature can be
found in [39]. Another source of six-order terms with re-
spect to | ¥ | could be fermionic admixtures [40,41] and the
reduction of a fluid’s effective dimensionality [42].

Finally, the higher-order polynomial potential terms
V(k) o | Y |2k, where k > 3, can also occur in strongly-inter-
acting Bose liquids. However, their substantial influence
on the physics of liquid helium has, to the best of our know-
ledge, not been reported yet. Below it will be demonstrated
that such terms can be neglected for the purposes of this
paper.

Using the Madelung representation of a wavefunction,
one can rewrite any nonlinear wave equation of the type (5)
in hydrodynamic form. One can show that the correspond-
ing fluid has an equation of state and speed of sound cq,
which are given by the following general formulae [22]:

P(p) = Py~ [ pdF (o), ™
__ [PG) _ [hpdF(p) -
s dp m dp ’

where P, is an arbitrary constant, and the approximation
symbol means that we keep only the leading-order terms
with respect to the Planck constant; a detailed derivation of
these formulae can be found, e.g., in Sec. 3.1 of [43].

When evaluated for the function (6), formulae (7) and
(8) yield an equation of state and speed of sound for our
model:

he _N —\ k
P~R e Camp—p Y., k=DCuo(p/P)" |. (9
k=2

22 —-ﬁ k(k—=D)Coy (/D) <1 |. (10
s~ | Can =P k=DCuy(p/P)" " | (10)
k=2
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Notice here that the logarithmic nonlinearity induces
a linear term in the equation of state and a constant term
in an expression for a speed of sound squared, which con-
firms the earlier results [22]. Therefore, if one regards (9)
as a series expansion of a general function P(p) then the lo-
garithmic fluid component provides a first-order approxi-
mation, which corresponds to an ideal fluid.

In the next section, our aim will be to further specify
and narrow the model (3) and (4), by fixing values of its
parameters Cj,y and Cy to fit the experimental data. If
some of those parameters turn out to be zero then the corre-
sponding component in our model can be safely neglected.

3. Theory vs experiment

In order to fit the experimental data of Ref. 3, we com-
pare their empirical formulae for an equation of state and a
speed of sound with our equations (9) and (10). Since their
empirical equation of state is a cubic polynomial, one can
immediately deduce that our model must be truncated at
the k = 3 term:

N:3<:>C(k):0,V|(>3, (11)

and we derive constraints for the remaining coefficients.
One can show that those coefficients can be rewritten in
the form

2 3
C(ln) =, C(z) = —(1/3, C(3) = —1/(23 ), (12)

where o is a real constant, which indicates that the cou-
plings Cy,y and C ) are not independent from each other,
as experimental data suggest. This particular choice of co-
efficients also ensures that the speed of sound and the pres-
sure difference PP, share a single common real root in p,
as we would anticipate from Eq. (1).

Correspondingly, Egs. (4) and (6) become

V(P) = Yimy () + Y2y (P) + Y3 () (13)
Vim (p) = 2a’p[1-In(p/7)],
1 _ _

Vo) (p) = —gsap(p/ P)2 ,

Y3y () = ———ep(p/B)’

¥ 233 ’

and
2

2op 1p° (14)

- 2 =
F(p)=—-¢|a”"In(p/p)+ 3 5+1852 .
One can immediately verify that the total many-body po-
tential density (13) is regular in a finite domain, and has
a typical Mexican-hat shape which opens either up or down,
depending on the sign of g, cf. Fig. 2. This indicates the
possibility of spontaneous symmetry breaking, which indeed
occurs in the theory of both Gross—Pitaevskii condensates
and logarithmic fluids, as discussed in Refs. 22, 27, 28, 34.
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Fig. 2. Potential (13) divided by ep versus Re ¥ in units of \/ﬁ for the following values of a: +0.5 (solid curve), +1 (dashed), +1.4
(dash-dotted), £1.5 (dash-double-dotted), +2 (dash-triple-dotted). Vertical dotted lines represent an infinite well occurring due to

the condition | W |<| W nax | <o, which follows from the wavefunction’s normalization (2).
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Fig. 3. Relative values of different terms in the potential (13) versus density in units of p: [Miny 1/1Y2) | (solid curve), [ Wiy |/ Y3y |
(dashed), and | Wiy | /| W2y + U3 | (dash-dotted). The horizontal dotted line indicates an equality.
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Note that the many-body potentials W2) and W3) can be
either repulsive or attractive here, depending on the sign
of ea.; but the potential 1,y can switch between attractive
and repulsive behaviors when the fluid density crosses the
value ep, with e being the base of the natural logarithm.
This property is essentially the one giving logarithmic fluid
the majority of its important features mentioned above.

Figure 3 illustrates how much components V), Yy
and )3 contribute at different values of density. One can
see that the logarithmic component predominates over the
polynomial ones for quite a considerable range of density
values, but there is always a threshold density, above
which polynomial terms catch up with and overtake the
logarithmic term. However, this threshold only exists if its
value does not exceed a maximum density value occurring
due to the condition p <| ¥ .« > <oo; the latter follows
from Eq. (2). The domination of the logarithmic component
explains, along with its natural applicability for conden-
sate-like systems [31], why the logarithmic fluid is so ro-
bust as a leading-order approximation model for a super-
fluid component of helium II [28].

Using Egs. (7)—(14), one can easily obtain the equation
of state and speed of sound:

3
P~P, +p9 wiil , G~ 9 a+ ] s
3p 3p

where 3 =+/e/m is a characteristic velocity scale.

Note that in the vicinity of its critical pressure point,
liquid helium can undergo a cavitation-type phase transi-
tion, which is similar to the above-mentioned topological
structure transition in logarithmic superfluids. Therefore,
the total many-body potential (13) flips, which corresponds
to a value ¢ turning negative. In that case, the speed of
sound can formally take imaginary values, which indicates
the occurrence of an instability regime.

Furthermore, by eliminating the density p from formu-
lae (15), we recover the experimentally measured behavi-
our of the speed of sound cg in (1) with v=1/3 where
K =39/p. Moreover, in the case of 4He, formulae (15)
allow us to assign values to the following combinations of
hitherto free parameters:

Y S Lt

where the values of A’s and p, for *He are given in Refs. 3, 6:
A= 5.6-10° atm-cmS-g_l, A = 1.097-10% atm-cm6-g72,
A= 7.33-10* atm-cm’ ~gf3, and py =0.14513 g-cm_3, while
o remains an unfixed dimensionless parameter of the model.
This means that our model still has some flexibility left,
because o can be used to fit our model for other experi-
ments if necessary. In this paper, a can be set to any nega-
tive number, which reflects a scale nature of the parameter p.
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We therefore obtain 9=-427a""-10*cm-s™! and
p=-(1/30) p; ~-3.0la"'-102 g-em™, where p; is the
density corresponding to the critical negative pressure P;
thus, the ratio $/p =K = 1.41 -10° cm4-g_1's_1 does not de-
pend on a. These numerical values finalize the fitting of
the model (3), (13) for the case of 4He; the case of bosoniz-
ed liquid 3He can be done by analogy.

4. Conclusion

A fundamental sound velocity pressure dependence hold-
ing up for superfluid helium at low temperatures was exa-
mined in the context of the nonlinear wave equation ap-
proach for a fluid’s wavefunction. We demonstrated that to
explain this dependence, one has to view liquid helium as a
mixture of three quantum Bose liquids: a dilute (Gross—Pi-
taevskii-type) Bose—Einstein condensate, a Ginzburg—So-
byanin-type fluid, and a logarithmic superfluid, where
the latter two components can occur due to topological and
non-perturbative quantum effects, Efimov trimer states, and
fermionic admixtures.

Consequently, the dynamics of such systems is described
by a quantum wave equation, which contains both the po-
lynomial (cubic and quintic) nonlinearities with respect to
a condensate wavefunction, and an essential non-polyno-
mial logarithmic nonlinearity. Using the hydrodynamic re-
presentation of Schrodinger-type equations and experimen-
tal data by Abraham et al., we constrained the hitherto free
parameters of this multi-component fluid model, and theo-
retically reproduced the empirical formulae for an equation
of state and speed of sound.
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Po3B’si3aHHA 3a4adyi Npo NOLUMPEHHS 3BYKY
B pigkomy renii npu HU3bKUX Temnepartypax

Tony C. Scott, Konstantin G. Zloshchastiev

ExcniepuMeHTasbHI aHi CBiT4aTh Opo Te, IIO MPU TeMIepa-
typax HIk4e 1 K Tnck B pigkomy renii Mae KyOiuHy 3aJISKHICTD
BiJt ryctiHH. TakuM YMHOM, WIBUAKICT 3BYKY MacIITaOyeThCs K
KyOiuHHH KOpiHb THUCKY. [1001M3y KpUTHYHOI TOUKHM THUCKY IIBHU-
JKICTh 3BYKY HAOJIVDKAEThCSA 10 HYJsA, BHACTIZOK HOrO KPUTHY-
HUH THCK BiJl’€MHHH, 1[0 BKa3ye Ha PEXKXHUM KaBiTalilfHOT HEeCTiH-
kocTi. ITokazaHo, 1110 I MOSCHEHHS i€l 3aIeXHOCTI He0OXiIHO
PO3TISLIATH PiIKHUH Telii K CyMilll TPhOX KBaHTOBUX 003e-piluH
posBenenoro (tumy I'pocca—IlitaeBcbkoro) 0603e-eHHIITEIHIB-
CBKOTO KOH/IeHcaTy, piauan tuiy 'in30ypra—CobsHina Ta jora-
pudmiuHOT HaamuMHHOI pigvHu. ToMy AMHaMiKa Takoi CyMilii
OIMCYETHCSI KBAHTOBMM XBHJIOBHUM DIBHSHHSM, SIKE MICTUTh HE
TinbKH nodinoMianbHi (Tuny I'pocca—IlitaeBchkoro ta I'iH30yp-
ra—Co0siHIHA) HeNMHIMHOCTI 010 XBUIIbOBOT (DYHKIIIT KOH/IEHCA-
Ty, a ¥ HenomiHOMiaJIbHY JorapuMidHy HemiHiitHICcTh. BuBeneno
PIBHSIHHS CTaHy Ta LIBHUJKOCTI 3BYKY I PO3TILIHYTOI MoOZeli Ta
HOKa3aHO IX 3rofly 3 eKCIIEPUMEHTOM.

KirouoBi ciioBa: HaqmIMHHMIL Teuiil, kBaHTOBa 003e-pinuHa, piB-
HSHHS CTaHy, IIBUKICTb 3BYKY.

PelueHne 3agaun 0 pacnpocTpaHeHun 3ByKa
B XKMOKOM renuu npu HU3KUX Temneparypax

Tony C. Scott, Konstantin G. Zloshchastiev

OKCrnepuMeHTalbHbIE JTAaHHBIE CBHIETEIbCTBYIOT O TOM, YTO
npu temmeparypax Hmwke 1 K naBienue B KHAKOM TeUH MMEET
KyOMUYECKyI0 3aBHCHMOCTb OT INIOTHOCTH. Takum oOpaszoM, cKo-
POCTb 3BYKa MacIITabupyeTcs Kak KyOM4ecKnuil KOpeHb JaBICHHSI.
B6mm3n KpUTHUECKOH TOUKH IaBIEHUS] CKOPOCTh 3BYKa MPHOIH-
JKaeTcsl K HYIIO, BCIEACTBHE YET0 KPUTUYECKOE JABICHHUE OTPHU-
LATEJIbHOE, YTO YKa3bIBA€T HA PEXHUM KaBUTALlMOHHON HEYCTOM-
uynBocTH. [lokazaHo, 4To ISt OOBSICHEHUS STOI 3aBUCHMOCTH He-
00XOIMMO paccMaTpUBaTh JKUIKHN TelHil KaKk CMeCh TPeX KBaH-
TOBBIX 003e-kuaKocTed: pasbasnenHoro (tuma I'pocca—IIntaes-
CKOr0) 003e-3UHIITEHHOBCKOrO KOHACHCATA, XKUIKOCTH TUMA [ MH3-
Oypra—CoOsiHHHA ¥ JIOTapu(pMUIECKOH CBEPXTEKydeil KUIAKOCTH.
IToaToMy IMHAMMKa TaKOH CMeCH OIHCHIBAETCS KBAHTOBBIM BOJ-
HOBBIM ypaBHEHHEM, KOTOPOE COAEPKUT HE TOJBKO MOJIMHOMU-
anbHble (Tuna I'pocca—IlutaeBckoro u I'muz0ypra—CoOsiHuHA) He-
JIMHEIHOCTH OTHOCHTENILHO BOJHOBOH (pyHKIIMM KOHAEHCATa, HO
U HENOJIMHOMHAJIbHYIO JIOTapu(pMHYECKYI0 HEIMHEHHOCTb. BbI-
BE/ICHBI YPAaBHEHHSI COCTOSIHUSI M CKOPOCTH 3ByKa JUISI PacCMOT-
PEHHOM MOJIENH U MTOKA3aHO UX COTJIACHE C IKCIIEPUMEHTOM.

KiroueBbie ciI0Ba: CBEPXTEKYYHH TelMil, KBAaHTOBas GO3¢-KH[-
KOCTb, YPaBHCHHE COCTOSHHS, CKOPOCTh 3BYKa.
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