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Microwave induced tunable subharmonic steps
in superconductor—ferromagnet—superconductor
Josephson junction
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We investigate the coupling between ferromagnet and superconducting phase dynamics in superconductor—
ferromagnet—superconductor Josephson junction. The current-voltage characteristics of the junction demonstrate
a pattern of subharmonic current steps which forms a devil’s staircase structure. We show that a width of the
steps becomes maximal at ferromagnetic resonance. Moreover, we demonstrate that the structure of the steps and
their widths can be tuned by changing the frequency of the external magnetic field, ratio of Josephson to magnet-

ic energy, Gilbert damping and the junction size.
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1. Introduction

Josephson junction with ferromagnet layer (F) is widely
considered to be the place where spintronics and supercon-
ductivity fields interact [1]. In these junctions the super-
current induces magnetization dynamics due to the coupl-
ing between the Josephson and magnetic subsystems. The
possibility of achieving electric control over the magnetic
properties of the magnet via Josephson current and its
counterpart, i.e., achieving magnetic control over Joseph-
son current, recently attracted a lot of attention [1-7]. The
current-phase relation in the superconductor—ferromagnet—
superconductor (SFS) junctions is very sensitive to the mu-
tual orientation of the magnetizations in the F layer [8,9].
In Ref. 10 the authors demonstrate a unique magnetization
dynamics with a series of specific phase trajectories. The
origin of these trajectories is related to a direct coupling
between the magnetic moment and the Josephson oscilla-
tions in these junctions.

External electromagnetic field can also provide a cou-
pling between spin wave and Josephson phase in SFS junc-
tions [11-17]. Spin waves are elementary spin excitations
which considered to be as both spatial and time dependent
variations in the magnetization [18,19]. The ferromagnetic

resonance (FMR) corresponds to the uniform precession of
the magnetization around an external applied magnetic
field [18]. This mode can be resonantly excited by ac mag-
netic field that couples directly to the magnetization dy-
namics as described by the Landau-Lifshitz—Gilbert (LLG)
equation [18,19].

In Ref. 18 the authors show that spin wave resonance at
frequency ®, in SFS implies a dissipation that is manifest-
ed as a depression in the current-voltage (/-V) characteris-
tic of the junction when hw, =2el, where # is the
Planck’s constant, e is the electron charge and V is the
voltage across the junction. The ac Josephson current pro-
duces an oscillating magnetic field and when the Joseph-
son frequency matches the spin wave frequency, this reso-
nantly excites the magnetization dynamics M (¢) [18]. Due
to the nonlinearity of the Josephson effect, there is a recti-
fication of current across the junction, resulting in a dip in
the average dc component of the supercurrent [18].

In Ref. 13 the authors neglect the effective field due to
Josephson energy in LLG equation and the results reveal
that even steps appear in the /-V characteristic of SFS
junction under external magnetic field. The origin of these
steps is due to the interaction of Cooper pairs with even
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number of magnons. Inside the ferromagnet, if the Cooper
pairs scattered by odd number of magnons, no Josephson
current flows due to the formation of spin triplet state [13].
However, if the Cooper pairs interact with even number of
magnons, the Josephson coupling between the s-wave su-
perconductor is achieved and the spin singlet state is formed,
resulting in flows of Josephson current [13]. In Ref. 20
we show that taking into account the effective field due to
Josepshon energy and at FMR, additional subharmonic cur-
rent steps appear in the /-J characteristic for overdamped
SFS junction with spin-wave excitations (magnons). It is
found that the position of the current steps in the /- charac-
teristics form the devil’s staircase structure which follows
the continued fraction formula [20]. The positions of those
fractional steps are given by

m*
pE..

where Q= o/ ., o is the frequency of the external radia-
tion, o, is the characteristic frequency of the Josephson
junction and N, n, m, p are positive integers.

In this paper, we present a detailed analysis of the /-
characteristics of SFS junction under external magnetic field
and show how we can control the position of the subhar-
monic steps and alter their widths. The coupling between
spin-wave and the Josephson phase in SFS junction is
achieved through the Josephson energy and gauge invari-
ant phase difference between the S layers. In the frame-
work of our approach, the dynamics of the SFS junction is
fully described by the resistively shunted junction (RSJ)
model and LLG equation. These equations are solved nu-
merically by the 4th order Runge—Kutta method. The ap-
pearance and position of the observed current steps depend
directly on the magnetic field and junction parameters.

2. Model and methods

In Fig. 1 we consider a current biased SFS junction
where the two superconductors are separated by the ferro-
magnet layer with thickness d. The area of the junction is
L, L. An uniaxial constant magnetic field H is applied in z
direction, while the magnetic field is applied in xy plane
H,. =(H,. cosot, H,. sinot,0) with amplitude /,. and
frequency ®. The magnetic field is induced in the F layer
through B(#) = 4nM(¢), and the magnetic fluxes in z and y
directions are @ () = 4ndL,M (1), (1) = 4ndL.M ,(t),
respectively. The gauge-invariant phase difference in the junc-
tion is given by [21]

2nd
v, 00,z,0)= —FOB(t)xn, )

1474

I

Fig. 1. SFS Josephson junction. The bias current is applied in x
direction, an external magnetic field with amplitude H,. and
frequency o is applied in xy plane and an uniaxial constant mag-
netic field H is applied in z direction.

where O is the phase difference between superconducting
electrodes, ®( = &/ 2e is the magnetic flux quantum and n
is a unit vector normal to yz plane. The gauge-invariant
phase difference in terms of magnetization components
reads as

2 8n2dM (¢
8n dMZ(t)y+ y()z_

0(y,z,t)=0(t) -
(v,2,0)=0(1) g o,

3

According to RSJ model, the current through the junc-
tion is given by [13]

@
io= sine(y,z,z)+—gM, (4)
I 2nl R dt

c c

where / 3 is the critical current and R is the resistance in
the Josephson junction. After taking into account the gauge
invariance including the magnetization of the ferromagnet
and integrating over the junction area the electric current
reads [13]

4n’dM (1)L 4n*dM ()L
d)(z) sin (0(¢)) sin -0 Y |sin y() :
7 0 )
0 4.2 *
19 16m*d>L LM ()M , (1)
@ . d8(y,2,1) )
2nRI;  dt

The applied magnetic field in the xy plane causes the pre-
cessional motion of the magnetization in the F layer. The dy-
namics of magnetization M in the F layer is described by
LLG equation

aM o}
(1+(X,2)7: =Y MXHeff —|’}1V[—|[M><(M><Heff)]. (6)
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The total energy of junction in the proposed model is
givenby E = E_ + E), + E,. where E is the energy stored
in Josephson junction, £, is the energy of uniaxial dc mag-
netic field (Zeeman energy) and E,,. is the energy of ac mag-
netic field:

@
E, = —Ee(y,z,t)I+EJ [l—cose(y,z,t)],

N

Ey =-VepHoM (1),

Eqe ==VeM(1)H 4 cos(ot) —VpM , (t)H . sin(ot).  (7)

Here, E; = CDOIS /27 is the Josephson energy, Hy = wgy/y,
g is the FMR frequency, and Vy is the volume of the
ferromagnet. We neglect the anisotropy energy due to de-
magnetizing effect for simplicity. The effective field in
LLG equation is calculated by

1
Heff :—V—VME. (8)
F

Thus, the effective field H,, due to microwave radiation
H . and uniaxial magnetic field H, is given by

H,, = H,. cos (wf) €, + H,. sin(or) €, +Hye,, (9)

while the effective field H, due to superconducting part is

found from

E; .

H, = —V—sm(e(y, Z,))V 110(y, z,1). (10)
F

One should take the integration of LLG on coordinates,
however, the superconducting part is the only part which
depends on the coordinate so, we can integrate the effective
field due to the Josephson energy and insert the result into
LLG equation. Then, the y and z components are given by

_ Ej cos(0(1)) sin(nd, (1)/D) ~
R4 VerM , (., (1) [qyo cos(n®y (0/®0)
~ 5 sin(nd , (1)/Dg) |,
q)o—nCDy(t) é,, (11)
By cos(6(t))sin(nd)y(t)/(l)0) o cos(xb (1) e
* VerM_ (DO (1) 0 COSER AU 0
o2 sin (n(DZ(t)/®0)}éz. a2
nd_ (1)

As a result, the total effective field is Hee = H,, + Hy. In

the dimensionless form we use t > tw,, ©, = 2rt1£R/CD0
is the characteristic frequency, m=M/M,, My =|M|,
heff:Heff/HO’ SJ:EJ/VFMoHo,h :Hac/Ho,Q:(J)/(DC,

ac
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Qp =0yl by =4n°L,dMy/0), 6 =4n’LdMy/D.
Finally, the voltage V() = d0/dt is normalized to hiw,./(2e).
The LLG and the effective field equations take the form

dm _ Q

dt  (1+a?)

(mxhgg +o[mx(mxhgg)])  (13)

with

hoy = Ay, cos(Qe)e, +(haC sin(Q¢) + ;& cos G)éy +

+(1+1"jl-sjcose)éz, (14)
- sin(¢simj) sin(¢g;m;)
QR T B

where i = y, j = z. The RSJ in the dimensionless form is
given by

10 = Sin(d)sy mz)Sin(d)“my )sin6+%. (16)

‘ (O5pmm. ) (b5,

The magnetization and phase dynamics of the SFS
junction can be described by solving Eq. (16) together with
Eq. (13). To solve this system of equations, we employ the
fourth-order Runge—Kutta scheme. At each current step,
we find the temporal dependence of the voltage V(¢),
phase 0(¢), and m; (i = x, y, z) in the (0, T,,, ) interval.
Then the time-average voltage V'is given by

1

V= 7 jV(r)dt,

Ty

where 7; and 7, determine the interval for the temporal

averaging. The current value is increased or decreased by a
small amount of &/ (the bias current step) to calculate the
voltage at the next point of the /-V characteristics. The
phase, voltage and magnetization components achieved at
the previous current step are used as the initial conditions
for the next current step. The one-loop /-V characteristic is
obtained by sweeping the bias current from / =0 to /=3
and back down to / = 0. The initial conditions for the mag-
netization components are assumed to be m, =0,

2 2

m,, =0.01 and m, =[l—m; —m; , while for the voltage

and phase we have V;,; =0, 6;,; =0. The numerical pa-

ini
rameters (if not mentioned) are taken as a.=0.1, A, =1,
gy = bs; =4, 8, =0.2 and Q; = 0.5.

3. Results and discussions

It is well-known that Josephson oscillations can be syn-
chronized by external microwave radiation which leads to
Shapiro steps in the /- characteristic [22]. The position of
the Shapiro step is determined by relation V = (n/m) Q,
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where n, m are integers. The steps at m =1 are called har-
monics, otherwise we deal with synchronized subharmonic
(fractional) steps. We show below the appearance of sub-
harmonics in our case.

First we present the simulated /-V characteristics at dif-
ferent frequencies of the magnetic field. The I~V character-
istics at three different values of Q are shown in Fig. 2(a).

As we see, the second harmonic has the largest step
width at the ferromagnetic resonance frequency Q =Q,,
i.e., the FMR is manifested itself by the step’s width. There
are also many subharmonic current steps in the /-V charac-
teristic. We have analyzed the steps position between
V=0 and 0.7 for Q=0.7 and found different level con-
tinued fractions, which follow the formula given by Eq. (1)
and demonstrated in Fig. 2(b). We see the reflection of the
second level continued fractions 1/n and 1-1/n with N =1.
In addition to this, steps with third level continued frac-
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Fig. 2. (a) I-V characteristic at three different values of Q. For
clarity, the /- characteristics for Q= 0.5 and Q2= 0.7 have been
shifted to the right, by A/ = 0.5 and 1, respectively, with respect to
0 =0.2; (b) An enlarged part of the /~V characteristic with
Q=0.7. To get step voltage multiply the corresponding fraction
with Q=10.7.

tions 1/(n—1/m) with N =1 is manifested. In the inset we
demonstrate part of the fourth level continued fraction
1-1/(n+1/(m+1/p)) with n=2 and m = 2.

In case of external electromagnetic field which leads to
the additional electric current /,, = Asin ¢, the width of
the Shapiro step is proportional to o« J,, (4/Q), where J,, is
the Bessel function of first kind. The preliminary results
(not presented here) show that the width of the Shapiro-
like steps under external magnetic field has a more com-
plex frequency dependence [20]. This question will be dis-
cussed in detail somewhere else.

The coupling between Josephson phase and magnetiza-
tion manifests itself in the appearance of the Shapiro steps
in the -V characteristics at fractional and odd multiplies of
Q [20]. In Fig. 3 we demonstrate the effect of the ratio of
the Josephson to magnetic energy €; on appearance of the
steps and their width for Q = 0.5 where the enlarged parts
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Fig. 3. (a) An enlarged part of the I~V characteristic at different
values of ¢ in the interval between V" =1 and 1.5; (b) The same
in the interval between V' =1.75 and 2. For clarity, the I~V cha-
racteristics for €7 =0.3 and 0.5 have been shifted to right, by
Al =0.07 and 0.14, respectively, with respect to the case with
€y = 0.05.
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of the I-V characteristics at three different values of ¢ ; are
shown. As it is demonstrated in the figures, at £; = 0.05
only two subharmonic steps appear between V' =1 and 1.5
(see hollow arrows). An enhanced staircase structure ap-
pears by increasing the value of €;, which can be see at
€7 =0.3 and 0.5. Moreover, intense subharmonic steps
appear between V' =1.75 and 2 for ¢; = 0.5. The positions
for these steps reflect third level continued fraction
(N-1)+1/(n+1/m) with N=4 and n =1 [see Fig. 3(b)].

Let us now demonstrate the effect of Gilbert damping
on the devil’s staircase structure. The Gilbert damping o is
introduced into LLG equation [23,24] to describe the relaxa-
tion of magnetization dynamics. To reflect the effect of Gil-
bert damping, we show an enlarged part of the /- charac-
teristic at three different values of o in Fig.4.

The width of the current step at J' =2Q is almost the
same at different values of a (e.g., see upward inset V' = 2Q)).
The subharmonic current step width for V' = (n/m)Q (n is
odd, m is integer) is decreasing with increasing o. In addi-
tion a horizontal shift for the current steps occurs. We see
the intense current steps in the /- characteristic for the small
value of oo = 0.03 (see black solid arrows). With the increase
in Gilbert damping (see o =0.1, 0.16 and 0.3) the higher
level subharmonic steps disappear. It is well-known that at
large value of a the FMR linewidth becomes more broad-
ening and the resonance frequency is shifted from Q. Ac-
cordingly, the subharmonic steps disappear at large value
of a.. Furthermore, using the formula presented in Ref. 20
the width at Q=Q, for the fractional and odd current
steps is proportional to [4oc2 +oc4)_q/2 X (12+30c2 )_k/z,
where ¢ and k are integers.

Finally, we demonstrate the effect of the junction size
on the devil’s staircase in the /- characteristic under ex-
ternal magnetic field. The junction size changes the value

L 104
171 102
>
1651 (o8
1.6:- 0.960:370.9 11213
>
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1.5:_ 0.=0.03
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Lsp o7

L
1.55 1.6 1.(}5 1.7 1.75

Fig. 4. (Color online) An enlarged part of /-V characteristic for
four different values of Gilbert damping for Q =0.5. The inset
shows an enlarged part of current step with constant voltage at
V=2Q.

of ¢, and ¢.. In Fig. 5(a) we demonstrate the effect of
the junction thickness by changing ¢, (¢, is qualitatively
the same).

We observe an enhanced subharmonic structure with
the increase of junction size or the thickness of the fer-
romagnet. In Ref. 13 the authors demonstrated that the cri-
tical current and the width of the step at V' = 2Q as a func-
tion of L./L, follow Bessel function of the first kind. In
Fig. 5(b), we can see the parts of continued fraction se-
quences for subharmonic steps between V' =1 and 2 at
- = ¢y, = 6. Current steps between /=1 and 1.5 reflect
the two second-level continued fractions (N —1)+1/n and
N —1/n with N =3 in both cases, while for the steps be-
tween V' =1.5 and 2 follow the second-level continued
fraction (N —1)+1/n with N = 4.

Finally, we discuss the possibility of experimentally ob-
serving the effects presented in this paper. For junction size
d=5nm, L, =L, =80nm, critical current I{ ~200 pA,
saturation magnetization M = 5.10° A/m, Hy =40 mT

(@)
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18 (N-D+n 72
i N=4 10/3—=
>"6,‘ 2=
| (N-D)+1/n N-1/n
141 N= N=
12
1k L P
12 1.4 1.6 13

Fig. 5. (Color online) (a) I-V characteristic at three different va-
lues of ¢, =0.7,3,6 and ¢y, = ¢g. (b) An enlarged part of the
[~V characteristic at ¢, = gy = 6. The hollow arrows represent
the starting point of the sequences. To get step voltage we multi-
ply the corresponding fraction by Q =0.5.
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and gyromagnetic ratio y =31 MHz/T, we find the value
Of g2y = 4n° L) dMo /o =4.8 and &, =0.1. With the
same junction parameters, one can control the appearance
of the subharmonic steps by tuning the strength of the con-
stant magnetic field /,. Estimations show that for f; =10 mT,
the value of € ; = 0.4, and the fractional subharmonic steps
are enhanced. In general, the subharmonic steps are sensi-
tive to junction parameters, Gilbert damping and the fre-

quency of the external magnetic field.

4. Conclusions

In this work, we have studied the /-V characteristics
of superconductor—ferromagnet—superconductor Josephson
junction under external magnetic field. We used a modified
RSJ model which hosts magnetization dynamics in F layer.
Due to the external magnetic field, the coupling between
magnetic moment and Josephson phase is achieved through
the effective field taking into account the Josephson energy
and gauge invariant phase difference between the super-
conducting electrodes. We have solved a system of equa-
tions which describe the dynamics of the Josephson phase
by the RSJ equation and magnetization dynamics by Lan-
dau-Lifshitz—Gilbert equation. The /-V characteristic de-
monstrates subharmonic current steps. The pattern of the
subharmonic steps can be controlled by tuning the fre-
quency of the ac magnetic field. We show that by increas-
ing the ratio of the Josephson to magnetic energy an en-
hanced staircase structure appears. Finally, we demonstrate
that Gilbert damping and junction parameters can change
the subharmonic step structure. The observed features
might find an application in superconducting spintronics.
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MikpoxBuni, iHaykOBaHi cyorapMoHiYHUMMU
CTyneHamu, Wwo nepebyaoByoTbes,
B 1»K03e(PCOHIBCbKOMY KOHTaKTi
HaanNpoBiAHNK—hepomMarHe TuK—HaanpoBiaHNK

M. Nashaat, Yu.M. Shukrinov, A. Irie, A.Y. Ellithi,
Th.M. El Sherbini

JocnimpkeHo 3B'130K MK (epOMarHiTHOI Ta HaIIpPOBITHOIO
($a30BOI0 AMHAMIKOIO B J1K03e(pCOHIBCHKOMY KOHTAKTI HaIIpo-
BiTHUK—(hepoMarHeTHK—HaAIpOBITHUK. Bonbpr-ammepni xapakte-
PUCTHKH 1K03e()COHIBCHKOTO MEPEX0.Ly IEMOHCTPYIOTh HAsBHICTh
Kackajy CyOrapMOHIYHHX CTPYMOBHX CTYIICHIB, SKi yTBOPIOIOTBH
CTPYKTYpY AUSBOJIbCHKUX cxoniB. [TokazaHo, 110 MIUpHUHA CTYIe-
HIB CTa€ MaKCHMAaJBHOIO Ipu (epomarHiTHOMY pe3oHaHci. Kpim
TOTr0, MPOJIEMOHCTPOBAHO, 1110 CTPYKTYpa CTYIIEHIB Ta IX IIMpUHA
MOXYTb IepeOyIoBYBaTUCS IILIIXOM 3MiHH 9acTOTH 30BHIIIHBO-
r0 MarHiTHOTO I10JIsI, BiTHOIICHHS JHK03e()COHIBCHKOI JO MarHit-
HOi eHeprii, nemn¢ipyBanns [inpbepra Ta HiHIHHOTO poO3Mipy
KOHTAKTYy.

KirowoBi cioBa: pKO3e()COHIBCHKUI KOHTAaKT, (epoMarHiTHUH
pe3onasc, piBasiHus [inbbepra—Jlangay—Jlidurmis.
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Microwave induced tunable subharmonic steps in superconductor—ferromagnet—superconductor Josephson junction

MUKPOBOIHbI, MHOYLMPOBAHHbIE NepecTpanBaemMbiMm
CcybrapMoHNYECKMMU CTYNEHSIMM
B 4)K03e(PCOHOBCKOM KOHTaKTe
CBEPXNPOBOAHUK—(EPPOMArHETUK—CBEPXNPOBOAHMK

M. Nashaat, Yu.M. Shukrinov, A. Irie, A.Y. Ellithi,
Th.M. El Sherbini

HccnenoBana cBsi3b MexIy (heppoOMarHUTHOH M CBEpPXIpPO-
Bosiiel (ha30BOW JUHAMHUKON B KO3e()COHOBCKOM KOHTAKTE
CBEPXIIPOBOAHUK—(EePPOMarHeTHK—CBEPXIPOBOJHUK. BoibT-am-
MEPHBbIE XaPAKTEPUCTUKU J[KO3€()COHOBCKOTO Mepexoja IEeMOH-

CTPHUPYIOT HaJIMYHE Kackaja CyOrapMOHHYECKHX TOKOBBIX CTY-
TIeHEeH, KOTOpble 00pa3yloT CTPYKTYPY IbSIBOJIBCKOM JIECTHHIIBL.
[loxa3zaHo, 4TO IIMPHHA CTYNEHEH CTAHOBUTCS MaKCHUMAaJlbHOM
npu GeppoMarHUTHOM pe3oHaHce. Kpome Toro, mpojaeMoHCTpH-
pPOBaHO, YTO CTPYKTypa CTyNEHeH M UX MIMPUHA MOTYT Iiepe-
CTpauBaThCs IIyT€M U3MEHEHHS 4acTOThl BHELIHEIO MAarHUTHO-
IO HOJIsL, OTHOLICHUS HKO3E(COHOBCKOM K MarHUTHOM 3HEPTHH,
nemnduposanus ['mapbepra n IHHEHHOTO pa3Mepa KOHTAKTa.

KitoueBsie cioBa: mK03eCOHOBCKHH KOHTAKT, (heppOMarHuT-
HBII pe3oHaHc, ypaBHenue [ mbsoepra—Jlannay—JIudmmrma.
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