
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 12, pp. 1473–1479 

Microwave induced tunable subharmonic steps 
in superconductor–ferromagnet–superconductor 

Josephson junction 

M. Nashaat1,2, Yu.M. Shukrinov2,3, A. Irie4, A.Y. Ellithi1, and Th.M. El Sherbini1 
1Department of Physics, Cairo University, Cairo, 12613, Egypt 

E-mail: majed@sci.cu.edu.eg 
2BLTP, JINR, Dubna, Moscow Region, 141980, Russian Federation

3Dubna State University, Dubna, 141982, Russian Federation 
E-mail: shukrinv@theor.jinr.ru 

4Department of Electrical and Electronic Systems Engineering Utsunomiya University, Utsunomiya, Japan

Received September 2, 2019, published online October 25, 2019 

We investigate the coupling between ferromagnet and superconducting phase dynamics in superconductor–
ferromagnet–superconductor Josephson junction. The current-voltage characteristics of the junction demonstrate 
a pattern of subharmonic current steps which forms a devil’s staircase structure. We show that a width of the 
steps becomes maximal at ferromagnetic resonance. Moreover, we demonstrate that the structure of the steps and 
their widths can be tuned by changing the frequency of the external magnetic field, ratio of Josephson to magnet-
ic energy, Gilbert damping and the junction size. 
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1. Introduction

Josephson junction with ferromagnet layer (F) is widely 
considered to be the place where spintronics and supercon-
ductivity fields interact [1]. In these junctions the super-
current induces magnetization dynamics due to the coupl-
ing between the Josephson and magnetic subsystems. The 
possibility of achieving electric control over the magnetic 
properties of the magnet via Josephson current and its 
counterpart, i.e., achieving magnetic control over Joseph-
son current, recently attracted a lot of attention [1–7]. The 
current-phase relation in the superconductor–ferromagnet–
superconductor (SFS) junctions is very sensitive to the mu-
tual orientation of the magnetizations in the F layer [8,9]. 
In Ref. 10 the authors demonstrate a unique magnetization 
dynamics with a series of specific phase trajectories. The 
origin of these trajectories is related to a direct coupling 
between the magnetic moment and the Josephson oscilla-
tions in these junctions. 

External electromagnetic field can also provide a cou-
pling between spin wave and Josephson phase in SFS junc-
tions [11–17]. Spin waves are elementary spin excitations 
which considered to be as both spatial and time dependent 
variations in the magnetization [18,19]. The ferromagnetic 

resonance (FMR) corresponds to the uniform precession of 
the magnetization around an external applied magnetic 
field [18]. This mode can be resonantly excited by ac mag-
netic field that couples directly to the magnetization dy-
namics as described by the Landau–Lifshitz–Gilbert (LLG) 
equation [18,19]. 

In Ref. 18 the authors show that spin wave resonance at 
frequency rω  in SFS implies a dissipation that is manifest-
ed as a depression in the current-voltage (I–V) characteris-
tic of the junction when = 2r eVω , where  is the 
Planck’s constant, e is the electron charge and V  is the 
voltage across the junction. The ac Josephson current pro-
duces an oscillating magnetic field and when the Joseph-
son frequency matches the spin wave frequency, this reso-
nantly excites the magnetization dynamics ( )M t  [18]. Due 
to the nonlinearity of the Josephson effect, there is a recti-
fication of current across the junction, resulting in a dip in 
the average dc component of the supercurrent [18]. 

In Ref. 13 the authors neglect the effective field due to 
Josephson energy in LLG equation and the results reveal 
that even steps appear in the I–V characteristic of SFS 
junction under external magnetic field. The origin of these 
steps is due to the interaction of Cooper pairs with even 

© M. Nashaat, Yu.M. Shukrinov, A. Irie, A.Y. Ellithi, and Th.M. El Sherbini, 2019 



M. Nashaat, Yu.M. Shukrinov, A. Irie, A.Y. Ellithi, and Th.M. El Sherbini 

number of magnons. Inside the ferromagnet, if the Cooper 
pairs scattered by odd number of magnons, no Josephson 
current flows due to the formation of spin triplet state [13]. 
However, if the Cooper pairs interact with even number of 
magnons, the Josephson coupling between the s-wave su-
perconductor is achieved and the spin singlet state is formed, 
resulting in flows of Josephson current [13]. In Ref. 20 
we show that taking into account the effective field due to 
Josepshon energy and at FMR, additional subharmonic cur-
rent steps appear in the I–V characteristic for overdamped 
SFS junction with spin-wave excitations (magnons). It is 
found that the position of the current steps in the I–V charac-
teristics form the devil’s staircase structure which follows 
the continued fraction formula [20]. The positions of those 
fractional steps are given by  

1= ,
1

1
...

V N
n

m
p

 
 
 
 ± Ω 
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 (1) 

where = / cΩ ω ω , ω is the frequency of the external radia-
tion, cω  is the characteristic frequency of the Josephson 
junction and N , n, m, p are positive integers. 

In this paper, we present a detailed analysis of the I–V 
characteristics of SFS junction under external magnetic field 
and show how we can control the position of the subhar-
monic steps and alter their widths. The coupling between 
spin-wave and the Josephson phase in SFS junction is 
achieved through the Josephson energy and gauge invari-
ant phase difference between the S layers. In the frame-
work of our approach, the dynamics of the SFS junction is 
fully described by the resistively shunted junction (RSJ) 
model and LLG equation. These equations are solved nu-
merically by the 4th order Runge–Kutta method. The ap-
pearance and position of the observed current steps depend 
directly on the magnetic field and junction parameters. 

2. Model and methods

In Fig. 1 we consider a current biased SFS junction 
where the two superconductors are separated by the ferro-
magnet layer with thickness d . The area of the junction is 

y zL L . An uniaxial constant magnetic field 0H  is applied in z 
direction, while the magnetic field is applied in xy plane 

= ( cos , sin ,0)ac ac acH t H tω ωH  with amplitude acH  and 
frequency ω. The magnetic field is induced in the F layer 
through ( ) = 4 ( )t tπB M , and the magnetic fluxes in z and y 
directions are ( ) = 4 ( )z y zt dL M tΦ π , ( ) = 4 ( )y z yt dL M tΦ π , 
respectively. The gauge-invariant phase difference in the junc-
tion is given by [21]  

,
0

2( , , ) = ( ) ,y z
dy z t tπ

∇ θ − ×
Φ

B n  (2) 

where θ is the phase difference between superconducting 
electrodes, 0 = / 2h eΦ  is the magnetic flux quantum and n 
is a unit vector normal to yz plane. The gauge-invariant 
phase difference in terms of magnetization components 
reads as  

22
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According to RSJ model, the current through the junc-
tion is given by [13] 

0
0 0

( , , )= sin ( , , ) ,
2c c

I d y z ty z t
dtI I R

Φ θ
θ +

π
(4) 

where 0
cI  is the critical current and R is the resistance in

the Josephson junction. After taking into account the gauge 
invariance including the magnetization of the ferromagnet 
and integrating over the junction area the electric current 
reads [13]  
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The applied magnetic field in the xy plane causes the pre-
cessional motion of the magnetization in the F layer. The dy-
namics of magnetization M  in the F layer is described by 
LLG equation 

[ ]2
eff eff(1 ) = ( )

| |
d
dt

γ α
+ α −γ × − × ×

M M H M M H
M

. (6) 

Fig. 1. SFS Josephson junction. The bias current is applied in x 
direction, an external magnetic field with amplitude acH  and 
frequency ω is applied in xy plane and an uniaxial constant mag-
netic field 0H  is applied in z direction. 
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The total energy of junction in the proposed model is 
given by = s M acE E E E+ +  where sE  is the energy stored 
in Josephson junction, ME  is the energy of uniaxial dc mag-
netic field (Zeeman energy) and acE  is the energy of ac mag-
netic field:  

[ ]0= ( , , ) 1 cos ( , , ) ,
2s JE y z t I E y z t
Φ

− θ + − θ
π

 

0= ( ),M F zE V H M t−  

= ( ) cos( ) ( ) sin( )ac F x ac F y acE V M t H t V M t H t− ω − ω . (7) 

Here, 0
0= /2J cE IΦ π is the Josephson energy, 0 0= /H ω γ , 

0ω  is the FMR frequency, and FV  is the volume of the 
ferromagnet. We neglect the anisotropy energy due to de-
magnetizing effect for simplicity. The effective field in 
LLG equation is calculated by  

 eff
1= M
F

E
V

− ∇H . (8) 

Thus, the effective field mH  due to microwave radiation 
acH  and uniaxial magnetic field 0H  is given by  

 0ˆ ˆ ˆ= cos ( ) sin ( ) ,m ac x ac y zH t H t Hω + ω +H e e e  (9) 

while the effective field sH  due to superconducting part is 
found from  

 = sin( ( , , )) ( , , ).J
s M

F

E
y z t y z t

V
− θ ∇ θH  (10) 

One should take the integration of LLG on coordinates, 
however, the superconducting part is the only part which 
depends on the coordinate so, we can integrate the effective 
field due to the Josephson energy and insert the result into 
LLG equation. Then, the y and z components are given by  
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As a result, the total effective field is eff = m s+H H H . In 

the dimensionless form we use ct t→ ω , 0
0= 2 /c cI Rω π Φ  

is the characteristic frequency, 0= /Mm M , 0 =M M , 

eff eff 0= /Hh H , 0 0= /J J FE V M Hε , 0= /ac ach H H , = / ,cΩ ω ω  

0 0= / cΩ ω ω , 2
0 04 /sy yL dMφ = π Φ , 2

0 04 /sz zl dMφ = π Φ . 

Finally, the voltage ( ) = /V t d dtθ  is normalized to /(2 )c eω . 
The LLG and the effective field equations take the form  

 0
eff eff2= ( [ ( )])
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with  
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where i = y, j = z. The RSJ in the dimensionless form is 
given by  
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The magnetization and phase dynamics of the SFS 
junction can be described by solving Eq. (16) together with 
Eq. (13). To solve this system of equations, we employ the 
fourth-order Runge–Kutta scheme. At each current step, 
we find the temporal dependence of the voltage ( )V t , 
phase ( )tθ , and im  (i = x, y, z) in the max(0, )T  interval. 
Then the time-average voltage V is given by 

1= ( )
f i

V V t dt
T T− ∫ , 

where iT  and fT  determine the interval for the temporal 
averaging. The current value is increased or decreased by a 
small amount of Iδ  (the bias current step) to calculate the 
voltage at the next point of the I–V characteristics. The 
phase, voltage and magnetization components achieved at 
the previous current step are used as the initial conditions 
for the next current step. The one-loop I–V characteristic is 
obtained by sweeping the bias current from I = 0 to I = 3 
and back down to I = 0. The initial conditions for the mag-
netization components are assumed to be = 0xm , 

= 0.01ym  and 2 2= 1z x ym m m− − , while for the voltage 

and phase we have ini = 0V , ini 0θ = . The numerical pa-
rameters (if not mentioned) are taken as = 0.1α , = 1ach , 

= = 4sy szφ φ , = 0.2Jε  and 0 = 0.5Ω . 

3. Results and discussions 

It is well-known that Josephson oscillations can be syn-
chronized by external microwave radiation which leads to 
Shapiro steps in the I–V characteristic [22]. The position of 
the Shapiro step is determined by relation = ( / )V n m Ω, 
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where n, m are integers. The steps at = 1m  are called har-
monics, otherwise we deal with synchronized subharmonic 
(fractional) steps. We show below the appearance of sub-
harmonics in our case. 

First we present the simulated I–V characteristics at dif-
ferent frequencies of the magnetic field. The I–V character-
istics at three different values of Ω  are shown in Fig. 2(a). 

As we see, the second harmonic has the largest step 
width at the ferromagnetic resonance frequency 0=Ω Ω , 
i.e., the FMR is manifested itself by the step’s width. There 
are also many subharmonic current steps in the I–V charac-
teristic. We have analyzed the steps position between 

= 0V  and 0.7 for = 0.7Ω  and found different level con-
tinued fractions, which follow the formula given by Eq. (1) 
and demonstrated in Fig. 2(b). We see the reflection of the 
second level continued fractions 1/n and 1 1/n−  with = 1N . 
In addition to this, steps with third level continued frac-

tions 1/( 1/ )n m−  with = 1N  is manifested. In the inset we 
demonstrate part of the fourth level continued fraction 
1 1/( 1/( 1/ ))n m p− + +  with = 2n  and = 2m . 

In case of external electromagnetic field which leads to 
the additional electric current = sinacI A tΩ , the width of 
the Shapiro step is proportional to ( / )nJ A∝ Ω , where nJ  is 
the Bessel function of first kind. The preliminary results 
(not presented here) show that the width of the Shapiro-
like steps under external magnetic field has a more com-
plex frequency dependence [20]. This question will be dis-
cussed in detail somewhere else. 

The coupling between Josephson phase and magnetiza-
tion manifests itself in the appearance of the Shapiro steps 
in the I–V characteristics at fractional and odd multiplies of 
Ω  [20]. In Fig. 3 we demonstrate the effect of the ratio of 
the Josephson to magnetic energy Jε  on appearance of the 
steps and their width for = 0.5Ω  where the enlarged parts 

Fig. 2. (a) I–V characteristic at three different values of Ω . For 
clarity, the I–V characteristics for = 0.5Ω  and = 0.7Ω  have been 
shifted to the right, by = 0.5I∆  and 1, respectively, with respect to 

= 0.2Ω ; (b) An enlarged part of the I–V characteristic with 
= 0.7Ω . To get step voltage multiply the corresponding fraction 

with = 0.7Ω .  

Fig. 3. (a) An enlarged part of the I–V characteristic at different 
values of Jε  in the interval between = 1V  and 1.5; (b) The same 
in the interval between = 1.75V  and 2. For clarity, the I–V cha-
racteristics for = 0.3Jε  and 0.5 have been shifted to right, by 

= 0.07I∆  and 0.14 , respectively, with respect to the case with 
= 0.05Jε .  
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of the I–V characteristics at three different values of Jε  are 
shown. As it is demonstrated in the figures, at = 0.05Jε  
only two subharmonic steps appear between = 1V  and 1.5 
(see hollow arrows). An enhanced staircase structure ap-
pears by increasing the value of Jε , which can be see at 

= 0.3Jε  and 0.5. Moreover, intense subharmonic steps 
appear between = 1.75V  and 2 for = 0.5Jε . The positions 
for these steps reflect third level continued fraction 
( 1) 1/( 1/ )N n m− + +  with N = 4 and n = 1 [see Fig. 3(b)].  

Let us now demonstrate the effect of Gilbert damping 
on the devil’s staircase structure. The Gilbert damping α is 
introduced into LLG equation [23,24] to describe the relaxa-
tion of magnetization dynamics. To reflect the effect of Gil-
bert damping, we show an enlarged part of the I–V charac-
teristic at three different values of α in Fig.4.  

The width of the current step at = 2V Ω is almost the 
same at different values of α (e.g., see upward inset = 2 ).V Ω  
The subharmonic current step width for = ( / )V n m Ω (n is 
odd, m is integer) is decreasing with increasing α. In addi-
tion a horizontal shift for the current steps occurs. We see 
the intense current steps in the I–V characteristic for the small 
value of = 0.03α  (see black solid arrows). With the increase 
in Gilbert damping (see = 0.1α , 0.16 and 0.3) the higher 
level subharmonic steps disappear. It is well-known that at 
large value of α the FMR linewidth becomes more broad-
ening and the resonance frequency is shifted from 0Ω . Ac-
cordingly, the subharmonic steps disappear at large value 
of α. Furthermore, using the formula presented in Ref. 20 
the width at 0=Ω Ω  for the fractional and odd current 
steps is proportional to 2 4 /2 2 /2(4 ) (12 3 )q k− −α + α × + α , 
where q and k are integers. 

Finally, we demonstrate the effect of the junction size 
on the devil’s staircase in the I–V characteristic under ex-
ternal magnetic field. The junction size changes the value 

of syφ  and szφ . In Fig. 5(a) we demonstrate the effect of 
the junction thickness by changing szφ  ( syφ  is qualitatively 
the same). 

We observe an enhanced subharmonic structure with 
the increase of junction size or the thickness of the fer-
romagnet. In Ref. 13 the authors demonstrated that the cri-
tical current and the width of the step at = 2V Ω as a func-
tion of /z yL L  follow Bessel function of the first kind. In 
Fig. 5(b), we can see the parts of continued fraction se-
quences for subharmonic steps between = 1V  and 2 at 

= = 6sz syφ φ . Current steps between = 1V  and 1.5 reflect 
the two second-level continued fractions ( 1) 1/N n− +  and 

1/N n−  with = 3N  in both cases, while for the steps be-
tween = 1.5V  and 2 follow the second-level continued 
fraction ( 1) 1/N n− +  with = 4N . 

Finally, we discuss the possibility of experimentally ob-
serving the effects presented in this paper. For junction size 
d = 5 nm, = = 80 nmy zL L , critical current 0 200 AcI ≈ µ , 
saturation magnetization 5

0 5 10 A/mM ≈ ⋅ , 0 40 mTH ≈  

Fig. 4. (Color online) An enlarged part of I–V characteristic for 
four different values of Gilbert damping for = 0.5Ω . The inset 
shows an enlarged part of current step with constant voltage at 

= 2V Ω . 

Fig. 5. (Color online) (a) I–V characteristic at three different va-
lues of = 0.7, 3, 6szφ  and =sy szφ φ . (b) An enlarged part of the 
I–V characteristic at =sz syφ φ  = 6. The hollow arrows represent 
the starting point of the sequences. To get step voltage we multi-
ply the corresponding fraction by = 0.5Ω . 
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and gyromagnetic ratio = 3 MHz/Tγ π , we find the value 
of 2

( ) ( ) 0 04 / 4.8sy z y zL dMφ = π Φ =  and = 0.1Jε . With the 
same junction parameters, one can control the appearance 
of the subharmonic steps by tuning the strength of the con-
stant magnetic field 0H . Estimations show that for 0 = 10 mTH , 
the value of = 0.4Jε , and the fractional subharmonic steps 
are enhanced. In general, the subharmonic steps are sensi-
tive to junction parameters, Gilbert damping and the fre-
quency of the external magnetic field. 

4. Conclusions 

In this work, we have studied the I–V characteristics 
of superconductor–ferromagnet–superconductor Josephson 
junction under external magnetic field. We used a modified 
RSJ model which hosts magnetization dynamics in F layer. 
Due to the external magnetic field, the coupling between 
magnetic moment and Josephson phase is achieved through 
the effective field taking into account the Josephson energy 
and gauge invariant phase difference between the super-
conducting electrodes. We have solved a system of equa-
tions which describe the dynamics of the Josephson phase 
by the RSJ equation and magnetization dynamics by Lan-
dau–Lifshitz–Gilbert equation. The I–V characteristic de-
monstrates subharmonic current steps. The pattern of the 
subharmonic steps can be controlled by tuning the fre-
quency of the ac magnetic field. We show that by increas-
ing the ratio of the Josephson to magnetic energy an en-
hanced staircase structure appears. Finally, we demonstrate 
that Gilbert damping and junction parameters can change 
the subharmonic step structure. The observed features 
might find an application in superconducting spintronics. 
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Мікрохвилі, індуковані субгармонічними 
ступенями, що перебудовуються, 

в джозефсонівському контакті 
надпровідник–феромагнетик–надпровідник 

M. Nashaat, Yu.M. Shukrinov, A. Irie, A.Y. Ellithi, 
Th.M. El Sherbini 

Досліджено зв'язок між феромагнітною та надпровідною 
фазовою динамікою в джозефсонівському контакті надпро-
відник–феромагнетик–надпровідник. Вольт-амперні характе-
ристики джозефсонівського переходу демонструють наявність 
каскаду субгармонічних струмових ступенів, які утворюють 
структуру диявольських сходів. Показано, що ширина ступе-
нів стає максимальною при феромагнітному резонансі. Крім 
того, продемонстровано, що структура ступенів та їх ширина 
можуть перебудовуватися шляхом зміни частоти зовнішньо-
го магнітного поля, відношення джозефсонівської до магніт-
ної енергії, демпфірування Гільберта та лінійного розміру 
контакту. 

Ключові слова: джозефсонівський контакт, феромагнітний 
резонанс, рівняння Гільберта–Ландау–Ліфшиця. 
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Microwave induced tunable subharmonic steps in superconductor–ferromagnet–superconductor Josephson junction 

Микроволны, индуцированные перестраиваемыми 
субгармоническими ступенями 
в джозефсоновском контакте 

сверхпроводник–ферромагнетик–сверхпроводник 

M. Nashaat, Yu.M. Shukrinov, A. Irie, A.Y. Ellithi, 
Th.M. El Sherbini 

Исследована связь между ферромагнитной и сверхпро-
водящей фазовой динамикой в джозефсоновском контакте 
сверхпроводник–ферромагнетик–сверхпроводник. Вольт-ам-
перные характеристики джозефсоновского перехода демон-

стрируют наличие каскада субгармонических токовых сту-
пеней, которые образуют структуру дьявольской лестницы. 
Показано, что ширина ступеней становится максимальной 
при ферромагнитном резонансе. Кроме того, продемонстри-
ровано, что структура ступеней и их ширина могут пере-
страиваться путем изменения частоты внешнего магнитно-
го поля, отношения джозефсоновской к магнитной энергии, 
демпфирования Гильберта и линейного размера контакта. 

Ключевые слова: джозефсоновский контакт, ферромагнит-
ный резонанс, уравнение Гильберта–Ландау–Лифшица.
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