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The influence of exchange interaction on the transport properties of a two-dimensional diluted magnetic sem-
iconductor quantum ring with finite width has been investigated in the presence of a uniform perpendicular mag-
netic field. The dependence of magnetoresistance on the magnetic field, Mn concentration, and quantum ring 
width are investigated. In the absence of exchange interaction, a typical beating pattern with well-defined node-
positions in the oscillating magnetoresistance is observed. It was shown that in the present exchange interactions 
the beating pattern is destroyed. 
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The semiconductor quantum ring has been extensively 

studied from both theoretical and experimental points of 
view. Their atom-like properties together with a high flexi-
bility in size and shape made them a very strong candidate 
for device applications such as far-infrared laser amplifiers 
and high-speed electro-optical modulators [1]. Interference 
effect in quantum ring under external magnetic field leads 
to the Aharanov–Bohm (AB) oscillations in physical quan-
tities, such as conductance, orbital magnetism and persist 
currents. These quantum systems have many applications 
such as single electron and photon devices, spintronics. An 
important class of materials for spintronics forms diluted 
magnetic semiconductors (DMS). They are A2B6 or A3B5 
solutions with a high density of magnetic impurities (usu-
ally, Mn). The presence of localized magnetic ions in 
DMSs leads to an exchange interaction between the sp-
band electrons and the d-electrons associated with Mn, 
resulting in extremely large Zeeman splitting of electronic 
levels [2,3]. 

In the paper [4] was found that the amplitudes of the 
AB oscillation in conductance were usually dominated by 
random fluctuations of the order of 2 /e h. This led to the 
discovery of the universal conductance fluctuations. Liu 
showed that when four spin-degenerate subbands in the 
ring are populated, random signs dominate the AB inter-
ference patterns [5]. 

In the paper [6], exact energy spectra and wave func-
tions analytically for a ring in the presence of both a uni-
form perpendicular magnetic field and a thin magnetic flux 
through the ring center were obtained. It was used as a mod-
el to study the Aharonov–Bohm effect in an ideal annular 

ring that is weakly coupled to both the emitter and the col-
lector. The spinless electrons were considered. The effect of 
the quantum ring width on the resistance was not studied in 
[6]. In Ref. 7 the orbital magnetism of mesoscopic ring sys-
tems with finite width on the basis of the exactly solvable 
Tan model was investigated by calculating numerically mag-
netization and spatial dependence of persistent current in 
the presence of magnetic fields for the wide range of tem-
peratures. 

In the work [8], explicit analytical expressions for the 
magnetic moment and persistent current of the Volcano 
ring were derived. The magnetic moment was investigated 
as a function of the magnetic field strength and the temper-
ature. An influence of magnetic ions in DMSs on coherent 
transport phenomena was studied in free-standing wires of 
(Cd,Mn)Te which is made by MBE grown thin films was 
studied in Ref. 9 and shown that weak field magneto-
resistance and aperiodic but reproducible resistance fluctu-
ations are clearly seen in Cd0.99Mn0.01Te. 

At very low temperatures and in the strong-tunneling 
regime, the valley conductance that corresponds to an odd 
number of electrons can be enhanced due to the Kondo 
effect. Higher-order virtual tunneling processes that effec-
tively flip the unpaired spin on the dot can lead to a coher-
ent many-body resonance at the Fermi energy, known as 
the Kondo resonance. The Kondo effect in a quantum dot 
was only recently observed by Goldhaber–Gordon et al. 
[10]. The energy scale for observing the Kondo resonance 
a Kondo temperature TK, which is essentially the binding 
energy of the resonance. In the Ref. 11 shown, that to bring 
TK within the range of experimentally accessible tempera-
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tures it was necessary to fabricate much smaller dots 
(L ~ 100 nm). In our case, quantum ring radius was taken as 
800 nm. Accordingly in this paper, we do not take into ac-
count the Kondo effect. We investigated nonmagnetic impu-
rity states. 

The purpose of this work is to generalize the results of 
paper [6] to the DMS quantum ring. We study the effect of 
exchange interactions and quantum ring width on the 
magnetoresistance of the quantum ring prepared from a di-
luted magnetic semiconductor with Volcano potential: 
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The effective width of the Volcano ring at a given Fermi 

energy FE  then is 2
0 Δ 8 /F nr E m= ω , and the average 

radius of quantum ring define as ( )1/4
0 1 2/ ,r a a=  the po-

tential has a minimum V(r0) = 0. The Volcano potential 
model has been successfully used to explain the beats in 
the Aharonov–Bohm oscillations, which have been exper-
imentally observed in a two-dimensional semiconductor 
ring [5]. Figure 1 shows a sketch of a top view of the 
whole quantum ring configuration envisioned here. The 
electron in one lead can reach the other one only by tunnel-
ing through the quasibound circular states in the ring.  

The quantum ring is subjected to a uniform magnetic 
field along the z direction. The total Hamiltonian of the 
system is given by 
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where I is a 2 2×  unit matrix, em  is the effective electrons 
mass, 0   / 2B e mµ =   is the Bohr magneton, 0m  is the free 
electron mass, A is the vector potential and zσ  is the z 
component of Pauli spin matrices and g is the Lande factor 
of electrons in the absence of the exchange interaction. In 
the mean-field approximation the exchange Hamiltonian 
term [12] 
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where s dJ −  is a constant which describes the exchange 
interaction, 0N  is the density of the unit cells. The thermo-
dynamic average  zS< >  of the z component of the local-
ized Mn spin is determined by the expression 
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 is the Brillouin function, 

Mn 2g =  is the g-factor of Mn ions, S = 5/2, and Bk  is the 
Boltzmann constant. T0 is the phenomenological parameter 
describing the antiferromagnetic superexchange between 
neighboring Mn ions. For uniform magnetic field, the vec-
tor potentials in cylindrical coordinates have the compo-
nents / 2, 0rA Hr Aφ = =  and Schrödinger equation in po-
lar coordinates is 
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  (5) 
The solution of Eq. (5) have the form [6] 
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Here the following designations are used 
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where 1F1 is the confluent hypergeometric function, 
/  c eeH mω =  is the cyclotron frequency, Γ( )x  is the Gam-

ma function, 0 2 /8 ea mω =  is the confinement frequency, 
quantum number 0, 1, 2,n = … shows the order of the radi-
al mode and 0, 1, 2,m = ± ± … gives the angular momentum, 
and 1σ = ±  for ,σ =↑ ↓, and σχ  is the electron spin written 

as the column vector 1 1
1 0

,
0 1−
   

χ = χ =   
   

. 
Fig. 1. The weakly coupled DMS quantum ring with finite width. 
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For finding the magnetoresistance of the electrons in 
DMS rings, it is necessary to obtain the ballistic conduct-
ance of the electron gas in the quantum ring. The ballistic 
conductance of the electron gas can be determined of the 
Landauer formula [6]: 
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2

,
, ,n F

n

eG H T H E
h

σσ

σ

= ∑  (9) 

where ( , )n FT H Eσσ  is the magnetic-field-dependent trans-
mission coefficient of the nth channel in the leads at the 
Fermi energy EF. If we assume that the two leads are weakly 
coupled to the DMS ring, the electron in one lead can reach 
the other one only by tunneling through the quasibound 
circular states in the ring. In such a case, the conductance 
can be approximately expressed in the form [6] 
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where , , ( )n mE Hσ  is the energy of the (n,m,σ)th quasibound 
ring states. Furthermore, we can approximate the energies 
of these quasibound states with those of the isolated ring 
given in Eq. (7). , , , ,Γ , Γe c

n m n mσ σ  and , ,Γi
n m σ are the broad-

ening of the (n,m,σ)th ring state caused by leaking into the 
emitter (collector) and inelastic scattering, respectively. In 
order to determine the qualitative dependence of the con-
ductance on the magnetic field, we assume that , ,Γe

n m σ =  
, ,Γ 0.005meV,c

n m σ= =  , ,Γ 0.004meVi
n m σ =  [6]. 

For our calculation we consider the parameter corre-
sponding to Cd1–xMnxTe materials: me = 0.096 m0, where 
m0 is the free electron mass, and ge = –1.67, 0 s dN J − = 

0.22eV=  [13]. (The reason why the interaction constant is 
small is that the wave functions of the s band electrons and 

the d electrons belong to Mn ions overlap less.) T = 0, 
T0 = 3 K, ring radius r0 = 800 nm and a ring width 
Δ 300nmr =  at E 9.7 meVF =  are taken from the literature [13]. 

In Fig. 2 we plot the electron energy spectrum versus Mn 
concentration at fixed magnetic field H = 0.05 T for quan-
tum number n = 0, 1, 2, 3, 5,   1m ≤ σ = ± . It can be seen 
from the figure that, with increasing Mn concentration, the 
energy of a DMS ring state (n, m,   1σ = ± ) is shifted upward 
or downward depending on the direction of the electron mo-
tion. The variation of relative resistivity in a magnetic field is 
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The resistance 1( )R G−=  versus magnetic field without 
Mn in the quantum ring is shown in Fig. 3 — calculated 
with four populated n = 0, 1, 2, 3,   450, 1m ≤ σ = ± . Ac-
cording to Fig. 3 of the magnetoresistance of the quantum 
ring have no periodic oscillations of the beat type. At a 
certain magnetic field, the Fermi level in the emitter and 
collector aligns with an energy level in the quantum ring 
with corresponds to the peak observed in magnetoresistance. 
As beat is clearly a result of the interference of waves with 
different phase factors. 

Fig. 2. The electron energy spectrum versus Mn concentration 
at fixed magnetic field H = 0.05 T for quantum number 
n = 0, 1, 2, 3, 5,m ≤  1σ = ± , in DMS quantum ring. 

Fig. 3. The magnetic field dependence of resistance without Mn 
in DMS quantum ring. 

Fig. 4. The magnetic field dependence of magnetoresistance in 
the Mn concentration x = 0.015. 
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The magnetic field dependence of magnetoresistance in 
the Mn concentration x = 0.015 is shown in Fig. 4. As seen 
in Fig. 4 the influence exchange interaction destroys beat-
ing in the field dependence of magnetoresistance. It fol-
lows from the general considerations that the destructive 
interference of the contributions made by different electron 
trajectories to the wave function phase should distort the 
strict periodicity of the Aharonov–Bohm oscillations. In 
Fig. 5 the magnetoresistance plotted as a function of the Mn 
concentration in DMS quantum ring at H = 0.05 T. As see 
from Fig. 5 the magnetoresistance undergoes oscillation as a 
function of Mn concentrations. The relative magnetoresis-
tance as function of the magnetic field plotted in Fig. 6. We 
see the relative magnetoresistance oscillates between nega-
tive and positive values with the amplitude that random with 
the magnetic field. As seen from Fig. 6 relative negative 
magnetoresistance occur at a low magnetic field. The nega-
tive resistance in our calculation is due to the increasing of 
density of states at the Fermi energy with an increasing 
magnetic field. Magnetoresistance as a function of quan-
tum ring width is presented in Fig. 7 at x = 0, H = 1 T. As 
seen from Fig. 7 the magnetoresistance oscillates with 
quantum ring width and has a beating. 

To summarize, in the paper we consider 2D electron 
gas magnetoresistance in DMS quantum ring with Volcano 
potential profile. The energy spectrum and wave functions 
of electrons are calculated for a DMS quantum ring of fi-
nite width under the uniform perpendicular magnetic field 
and the exchange interactions. We show that 2D electron 
gas magnetoresistance depending on Mn concentrations 
and ring width oscillates with random amplitudes. 
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Магнітоопір електронів в розведеному магнітному 
напівпровідниковому кільці з вулканоподібним 

потенціалом 

A.M. Babanlı 

Досліджено вплив обмінної взаємодії на транспортні вла-
стивості двовимірного розведеного магнітного напівпровід-
никового квантового кільця кінцевої ширини при наявності 
однорідного поперечного магнітного поля. Досліджено зале-
жність магнітоопору від магнітного поля, концентрації Mn та 
ширини квантового кільця. За відсутності обмінних взаємо-
дій спостерігається типова картина биття з чітко визначени-
ми положеннями вузлів на магнітоопорі, що осцилює. Пока-
зано, що при наявності обмінних взаємодій картина биття 
руйнується. 

Ключові слова: розведений магнітний напівпровідник, магні-
тоопір, балістична провідність. 

Магнитосопротивление электронов 
в разбавленном магнитном полупроводниковом 

кольце с вулканоподобным потенциалом 

A.M. Babanlı 

Исследовано влияние обменного взаимодействия на 
транспортные свойства двумерного разбавленного магнитно-
го полупроводникового квантового кольца конечной ширины 
при наличии однородного поперечного магнитного поля. 
Исследована зависимость магнитосопротивления от магнит-
ного поля, концентрации Mn и ширины квантового кольца. В 
отсутствие обменных взаимодействий наблюдается типичная 
картина биений с четко определенными положениями узлов 
на осциллирующем магнитосопротивлении. Показано, что 
при наличии обменных взаимодействий картина биений раз-
рушается. 

Ключевые слова: разбавленный магнитный полупроводник, 
магнитосопротивление, баллистическая проводимость. 
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