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Solitons in normal Fermi liquid
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To be based on the new quantum kinetic equation of Fermi particles, which recently was derived by
N.L. Tsintsadze and L.N. Tsintsadze, a general quantum dispersion equation for almost ideal Fermi gas is derived
and studied for some interesting cases. Here we consider only pair interactions between particles and we used ener-
gy expression derived by V.M. Galitski in the ordinary perturbation theory, which involves only the scattering am-
plitude. New effect that we have shown is that novel quantum term (Madelung term) in the kinetic equation leads to
the formation of rarefaction solitary waves in neutral Fermi liquid. Furthermore, attraction and repulsion between
particles have tendency to change rarefaction solitary wave speed and shape: Attraction between particles increases
rarefaction soliton speed and amplitude, repulsion decreases soliton speed and amplitude.
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In recent years, a huge number of works have been de-
voted to the investigation of collective behavior of quan-
tum Fermi gas. It is well known that at temperatures 1-2 K
only two neutral quantum liquids exist in nature, the iso-
topes of helium "He and 4He, all other substances solidify.
The reason for helium to remain liquid is weak interaction
between its atoms. Based on this fact Landau has created
the theory of Fermi liquid [1]. In which he took into ac-
count only the weakly excited energy levels of the liquid,
lying fairly close to the ground state assuming that any
weakly excited state of a macroscopic body can be repre-
sented as an assembly of separate elementary excitation
(quasiparticles). This elementary excitation are represented
as the collective motion of atoms in liquid and it can not be
represented as excitation of individual atoms.

Landau’s theory of Fermi liquids was generalized by
incorporation the De Broglie waves diffraction [2] (Ma-
delung term in the kinetic equation) and it was shown that
zero sound waves can exist even in the ideal Fermi gas [3].
Alkhanishvili and Tsintsadze [4] have developed quasi-
linear theory of Fermi liquids by taking into account the
diffraction of De Broglie waves.

We want to study properties of almost ideal Fermi gas
following the method discussed in [1]. We shall consider
here only a pair interaction between particles, since triple
collisions contribute to energy only in a higher approxima-
tion, and assume for simplicity that the interaction U (r) is
independent of particle spin. In the limitin case of slow
collisions, the mutual scattering amplitude of particles with
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mass m tends to a constant limit a = mUO/47ch2, that is
called scattering length, where Uy = IU (r)dr.

Using diagram technique, V.M. Galitski [5] calculated
the quasiparticle energy spectrum of almost ideal Fermi
gas in the ordinary perturbation theory and derived energy
expression which involves only the scattering amplitude:
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This limit correspond to the s state of the pair of particles
(with spin 1/2).

In this article we discuss some properties of slightly
non-ideal Fermi gas with repulsion (a>0) or attraction
(a < 0) between the particle. At first sight, the calculations
given there are equally valid whether there is attraction or
repulsion, i.e., whether the scattering length is positive or
negative. In fact, however, for the case of attraction the
ground state of the system is unstable. The physical nature
of this instability consists in a tendency of particles to
“pair” by forming bound states of pair of particles lying
near the Fermi surface in p-space and having equal and
anti parallel spins (the Cooper effect [6]).

First we shall derive hydrodynamic equations. We use
novel quantum Kkinetic equation for Fermi particles [2].
This equation incorporates quantum term, that contains all
the information on the quantum effects. This novel quan-
tum Madelung term is placed into the force expression in
the Vlasov kinetic equation
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Following standard method, we construct hydrodynam-
ic equations from last formula and get equation of conti-
nuity and motion for macroscopic quantities
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where for the pressure term we used
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and therefore VP/nm = SE-v(n/ng)?’3, N =niny and u is
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macroscopic velocity of Fermi liquid and
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Last term in Eq. (5) describes the dispersive effects. If
we neglect dispersive terms in Eq. (5), then those equations
reduce to the Euler equations.

Obviously after linerization hydrodynamic equations
(4) and (5) with respect of u=3u and N =1+38N, where
du and 8N is proportional to exp [-i(kr —t)], we obtain
dispersion relation
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Last term in the dispersion equation (6) is due to the
diffraction term (this is the Madelung term), i.e., is com-
pletely quantum term. We can conclude that the sound
wave dispersion relation in 3He coincides with the
Bogoliubov spectrum obtained for quantum Bose liquids.

We now consider nonlinear one dimensional traveling
waves in a single direction, so-called simple waves. For
simple waves it is well known that for the waves with any
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amplitude, velocity can be expressed as the function of the
density u = u(N). From Egs. (5) (without dispersive term)
and (4) then follows for a wave propagating in the positive

X direction
2
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here A= ZnhZanO/m2 and A can have both positive and
negative sign as a. We used initial condition: N = Ny =1,
u=0.

To simplify density expression we use fact that
v,2: /(3A) > 1. Itis clearly seen from the energy expression
(1): As we know last term is energy correction and there-
fore is smaller than first term on the RHS. Simplified ex-

pression is
3A ?

From this expression it is clear that when we have at-
traction between particles: A <0, density increases, and in
the opposite case when we have repulsion A> 0, density
decreases. In the limit, when A goes to zero, we see that
N =1++/3u/vg. This relation can also be derived from
equation (7) without first term in the root, on the RHS.

Since the velocity u is the function of density, therefore
it is different for the different points of the wave profile,
i.e., the profile changes in the course of time. One can see
from Eq. (7) that du/dn >0, i.e., the velocity of propaga-
tion of a given point at the wave profile increases with
density. This is the condition for the shock waves [7-9].

In order to derive Korteweg—de Vries (KdV) equation
for one dimensional case, we insert density expression (9)
into the equation of motion (5):
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We introduce new variables
U = vp N3 —VBAI20p, &=x-Ugt, V =u(4/3— Alv?),
B= —\@hZ/(MF mz) and rewrite Eq. (10) as
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Solitons in normal Fermi liquid

We are interested in solutions which describe waves
with stationary profile. For such waves velocity V(t,&)
depends only on the parameter (&—Vyt), where V is some
constant and wave propagation speed is

U :UO +V0. (12)

In our case coefficient of higher derivative is negative
(B<0) and in order to solve KdV equation we need to
change variables as

£E—>-§&
Vo = ~Vo; (13)
vV > -V.

With such change of variables, equation remains identical
except opposite sign of 3. Those change does not change
mathematical form of solution, but instead of “positive”
(compressible), we have “negative” (rarefaction) solitary
wave and the speed of such soliton is less than Uy.

We replace & with the new variable Z into KdV equation
(11), taking into account that Z =&-Vgt, dZ/ot = -V,
0Z10¢ =1. Here we assume that variables are changed ac-
cording to (13). We change variables back in the solution
aY
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This is invariant under the change
V >V +Vc, VO —)VO +VC (15)

with any constant V.
Integration two times gives
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where Vy, V, and V3 are integration constants that depend
only on the initial conditions of perturbation and
Vo = (V1 +V, +V3)/3.

We are interested only bounded solutions of Eg. (16),
because unlimited increasing of V contradicts our assump-
tion of slight non-linearity. This means all constants must
be real. Without loss of generality we can arrange them in
order: V; 2V, >V;. Also we can always take V3 = 0 using
transformation (15). Than V can vary only in the range
Vy 2V 2V,

General solution of the equation (16) is
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where dn2(1/V1/(12|[3|)Z,s) is elliptic Jacobi function
with modulus s = ,/1-V,/V; . Elliptic Jacobi function is
periodic function with period [10]
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where K(s) is complete elliptic integral of the first kind.
We change variables back and wave propagation speed for

negative B is
8 EC) 18
252 K(S)j’ (19)

U= UO _VO (1—

where E(s) is complete elliptic integral of the second kind.
The parameter s (0<s<1) measures non-linearity.
When s <1 solution is expressed in periodic functions,
s — 0 solutions of Eq. (17) goes to the solution of linearized
equations and for the other extreme case: s —>1 A goes
to infinity, i.e., we obtain solitary wave solution.
When s — 1, dn(a, s) = l/cosh(a), E(s)/K(s) =0 and

V = 3V,cosh2 /V—Oz, (19)
41B|
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Constant 3V, is the soliton amplitude. Width is decreas-
ing as 1/% with increasing amplitude. Velocity expression
is in accordance with Eq. (12) and can be rewritten as

U :————Vo. (21)

Here V, also contains A, but only in the second approxima-
tion. Since we know that rarefaction soliton speed is less than
speed of sound waves, we can check how does interaction
between particles changes that fact. Speed of ordinary sound
waves Ug can be found in the dispersion relation in the first
approximation: o =Ugk . From our dispersion relation (6) we
calculate Ug = vg I3 +~/3A/20F and therefore

U-Ug = —@—VO. (22)
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If A>0 his difference is always negative. In the oppo-
site case, when A <0 the condition for velocity difference
to be positive is Vj < \/§v,: n%/3a and it can be fulfilled for
small amplitudes of solitary waves (V).

In conclusion we can say when we have repulsion be-
tween particles (A > 0), rarefaction soliton speed is, as ex-
pected, always less than speed of sound waves. Moreover, it
decreases even more because of pair interaction between
particles. In the opposite case, we have attraction (A <0)
soliton speed increases and in the certain amplitudes can
rich speed of ordinary sound waves.

To summarize, we studied how does pair interaction
changes different parameters in normal, almost ideal Fermi
liquid. We constructed hydrodynamic equations with
Madelung term and derived KdV equation. We found that
rarefaction solitons can propagate in almost ideal, neutral
Fermi liquid and it’s velocity and amplitude is dependent on
the scattering length. This dependence shows only the tenden-
cy how does interaction between particles change various
parameters (density, solitary wave velocity and half-width)
and does not change nature of phenomenons.
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ConiToHn B HOpMarbHii depmi-pianHi
.M. Mepapaze, H.J1. LUiHuaase

Ha mizcraBi HOBOro KBAHTOBOTO KiHETHYHOTO PiBHSHHS (epMi-
4aCcTUHOK, HemonasHo orpumanoro H.JI Iunuanse ta JLH. [un-
1aj3e, 3arajbHe KBAHTOBE MHCIEPCiiiHe PIBHIHHS 11 Maibke inea-
JBHOTO (hepMi-Tra3y BHBUCHO JUISI ISSIKUX I[IKaBHX BHMAKiB. Po3r-
JSTHYTO TiNbKH TApHi B3a€MOIl MK YaCTHHKaMH Ta BUKOPHCTAHO
BUpa3 mas eHeprii, oTpumanmii B.M. lammipkuM y 3BHYaiiHIN
Teopii 30ypeHb, sika BKIIIOYAE TINBKH AMIUITYIy PO3CiOBaHHSI.
Otpumanuil eekT IoArae B TOMY, IO HOBUH KBAaHTOBHIl WIeH
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(Tepm MapenyHra) B KIHSTHIHOMY PIBHSHHI IIPU3BOJUTH JIO YTBO-
PEHHS PO3PIPKEHNX BITOKPEMIIEHHX XBWIb B HeHTpanbHIH depmi-
piauHi. Binbl TOro, NpUTAraHHs Ta BIAIITOBXYBAHHSI MK 4aCTHH-
KaMH MalTh TEHJCHIIIO J0 3MiHH IBHAKOCTI W (GOopMH TakKmx
XBUJIb: TIPUTATAHHS MiXK YaCTHHKAaMH 301IbIIYE MIBHIKICTD Ta aM-
IUITYy COJITOHY, a BiJIITOBXYBaHHS 3MEHIIYyE MIBUIKICTH Ta
aMIUTITY/ly COJIITOHY.

Kimouosi cioBa: depmi-pinuHa, KBa3i4acTHHKOBA B3a€MOisl, COJi-
TOH.

ConutoHbl B HOpManbHOM hepMU-XnaKocTn
.M. lNMepagae, H.J1. LnHuaase

Ha ocHOBaHMM HOBOrO KBAaHTOBOT'O KHHETHYECKOTO ypPaBHEHUS
¢depmu-uactun, HepaBHo noaydenHoro H.JI. Iuxnmamse u JLH.
IMuanmamse, oblmee KBaHTOBOE MIWCICPCHOHHOE YPAaBHEHUE I
HOYTH UJICANIBHOrO (pepMH-Ta3za H3yYeHO [UIsl HEKOTOPBIX MHTEpec-
HBIX CIIy4aeB. PaccMOTpEHBI TOJIBKO IapHBIE B3aHMMOJACHCTBUS
MEXIy YacTUIIaMH M MHCIOJIb30BAHO BBIPAXKEHHE U SHEPIHH,
nonyderHoe B.M. TaymnkuM B OOBIMHON TEOpHM BO3MYIIEHHIA,
KOTOpas BKJIIOYAET TOJBKO aMIUIUTYHy paccesHus. IlomydeHHbIH
3 exT 3aKmroyacTcs B TOM, YTO HOBBIM KBAaHTOBBIH WICH (TepM
MagesyHra) B KUHETHYECKOM YpPaBHEHUH NPHBOIHUT K 0Opa3oBa-
HHIO Pa3peXCHHBIX YEAMHEHHBIX BOJH B HEHTpaibHOU (epmu-
KHUAKOCTU. bosee Toro, MpUTSKEHHE U OTTAIKUBAHUE MEXIY vac-
THLAMH MMEIOT TEHJCHIMIO K M3MEHEHUIO CKOPOCTH M (OPMEI
TaKuX BOJIH: MPHUTSDKEHHE MEKAY YacTHIAMH YBEIMYMBAET CKO-
POCTb M aMIUIMTYXy COJINTOHA, a OTTAIKHBAHUE YMCHBIIACT CKO-
POCTb ¥ aMIIUTY/y CONUTOHA.

KiroueBsie ciioBa: (epMH-KHIKOCTh, KBa3HYACTHYHOE B3aUMO-
JICHCTBUE, COJTUTOH.
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