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1. Introduction 

In his leadership role as a director of large research in-
stitution B.I. Verkin gave preference to new practical de-
velopments, but at the same time he paid great attention to 
fundamental research. This fruitful combination of the fun-
damental and applied well describes the subject of this arti-
cle. Here we review the progress in the research on quantum 
parametric phenomena in superconducting electrical cir-
cuits. This research is the part of recently emerging and 
rapidly growing field of circuit quantum electrodynamics 
(c-QED) — a quantum information technology based on 
superconducting Josephson junctions. A typical experi-
mental c-QED device, see, e.g., [1,2], contains a network 
of nonlinear oscillators — Josephson junctions, and linear 
oscillators — high quality superconducting resonators. The 
network operates in the quantum regime at frequencies of 
few GHz and temperature of tens miliKelvin. For the re-
views on the Josephson junction based quantum bits and 
c-QED see Refs. 3–8 and references therein. 

Recent interest to quantum parametric effects in a mi-
crowave domain was motivated by practical need to amplify 
extremely weak, of single-photon intensity, microwave sig-
nals carrying an information about qubit states. Required 
noise performance of amplifiers is therefore demanding, it 
must be close to the limit imposed by the Heisenberg uncer-
tainty principle. During last decade a great effort was made 
to develop quantum limited parametric amplifiers [9–21]. 
Success of this work was an important step in advancing 
research on superconducting qubits and development of 
c-QED technology. 

The most of known natural and engineered parametric 
phenomena in mechanics, hydrodynamics, plasma physics, 
etc., occur under classical physics conditions. In the c-QED, 
similar to the quantum optics, quantum properties of elec-
tromagnetic field — the photon statistics and correlations — 
come to the first place. Due to the new parameter regimes 
available in the quantum microwave optics due to strongly 
nonlinear properties of the Josephson junctions, a number of 
phenomena, in principle known in theory, become available 
in the experiment. Notable examples are an ultrastrong light-
matter interaction [22–24], dynamical Casimir effect [25], 
multiphoton quantum cat states [26,27]. 

In this article we review some theoretical results and ex-
perimental observations on parametric effects in tunable 
superconducting resonators. Superconducting resonators, 
being essentially linear electromagnetic devices acquire non-
linear property due to the coupling to the Josephson junc-
tions. Nonlinear resonators were employed for parametric 
amplification, frequency conversion, demonstration of noise 
squeezing and photon entanglement. A tunable cavity be-
longs to this family of resonators. Here a dc SQUID is at-
tached to the resonator, which allows controlling the fre-
quency of the resonator by varying the magnetic flux 
through the SQUID [28,29]. Rapid temporal modulation of 

the magnetic flux allows one to achieve the amplification 
effect [15], and excite the parametric resonant oscillation 
[30]. The method of the flux pumping in tunable cavity can 
be compared to the optomechanics, where motion of mirrors 
of optical resonators produces the parametric effect [31]. 
Spectacular manifestation of this effect is the dynamical 
Casimir effect (DCE) — the quantum effect of creation of 
photons from the vacuum by moving mirrors [32]. Analo-
gy between the DCE and parametric effect in tunable cavi-
ty led to prediction [33,34] and observation [25] of the 
DCE with flux pumped SQUID. 

Alternative method of parametric excitation, the current 
pumping was used in several of cited experiments. With this 
method, which is similar to the nonlinear optics, a strong 
signal, current pump, is injected into the resonator to stim-
ulate nonlinear intermode interaction. 

The physics of the tunable cavity is at the border of two 
physics areas — nonlinear mechanics and nonlinear optics. 
Dynamics of the field of the cavity modes constitutes the 
mechanical aspect, which makes relevant all the accumu-
lated knowledge about parametric resonance in nonlinear 
classical oscillators [35–37]. On the other hand, inelastic 
scattering of quantum electromagnetic field by parametrical-
ly driven cavity is the optical aspect, that includes the ampli-
fication effect, frequency conversion, and generation of a 
nonclassical microwave field. 

The paper has the following structure. In Sec. 2 we de-
scribe a theoretical model of the tunable cavity, which is 
based on the method of quantum Langevin equation, and 
introduce the resonance approximation to describe the non-
degenerate and degenerate parametric resonance. In Sec. 3 
we describe the cavity linear and nonlinear response in the 
regime of amplification and frequency conversion, and 
then, in Sec. 4, proceed to the discussion of self-sustained 
parametric and subharmonic oscillations. In Sec. 5 we turn 
to the quantum properties of microwave field generated by 
tunable cavity, we discuss the quantum squeezing and en-
tanglement, and analyze the efficiency of signal amplifica-
tion in the terms of the signal to noise ratio. 

2. Description of the device 

Tunable cavity is a / 4λ  superconducting resonator, 
made with a segment of a coplanar waveguide, which is 
galvanically connected to a dc SQUID at one end, and to a 
transmission line at the other end [15,29], see Fig. 1. The 
plasma frequency of the SQUID is much larger than the 
resonator frequency thus the former acts as a tunable non-
linear inductance. The presence of the SQUID makes the 
eigenfrequency spectrum of the resonator non-equidistant 
and also introduces a nonlinearity. Typical device operates 
in a quantum regime at frequencies ω from few to tens 
GHz, at temperature 20T   mK, has large quality factor, 

410Q  , dominated by external losses, and small nonline-
arity, the Kerr coefficient 510− ω . 
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A spatial profile of the field in the resonator is illustrat-
ed in Fig. 2. The magnitude of the field at the resonator 
end connected to the SQUID depends on the SQUID in-
ductance and can be controlled by varying magnetic flux 
applied to the SQUID. This results in variation of the cavity 
eigenfrequency spectrum [28]. Rapid temporal modulation 
of the magnetic flux produces the parametric effect [39]. 

Theoretical description of physical processes in tunable 
cavity is based on the Lagrangian description of electrical 
circuits [5,40–42]. The dynamical variable here is a 1D 
field, ( , )x tφ , that describes the spatial distribution of the 
superconducting phase along the cavity. The corresponding 
Lagrangian has the form [28,39] 

2
2 2 20

0

( )= ( ) 2 cos cos ( ),
2 2 2

d

J
C f tdx v E d

e
  ′φ − φ + φ 
  ∫




and contains two parts, the cavity part represented by the 
integral term, and the SQUID inductance part (small 
SQUID capacitance plays a minor role and is omitted 
here). In this equation, 0 0= 1/v C L  is the electromagnet-
ic wave velocity, 0C  and 0L  are the cavity specific capaci-
tance and inductance, respectively, JE  is the Josephson 
energy of a single junction, and = ( )f F f t+ δ  is the mag-
netic flux threading the SQUID (in units of / 2e ); it con-
sists of a constant bias, F , and a temporal flux modulation, 

( ) 1f tδ  . 
Variation over variables ( , )x tφ , ( , )d tφ , and (0, )tφ  yields 

the linear wave equation, 2( , ) ( , ) = 0x t v x t′′φ − φ , and a non-
linear boundary condition, ( , ) sin ( , ) = 0d d t d t′γ φ + φ , where 

,= / 2 cos( / 2) 1L cav JE E Fγ   is a participation ratio of the 
SQUID vs cavity inductances. The second boundary condi-
tion, (0) = 0′φ , defines the spatial profiles of the eigen-
modes, ( ) cosx kxφ ∝ . The latter equation together with line-
arized boundary condition yield the cavity spectral equation 

1tan = 1, = .n n n nk d k d vkω
γ
  (1) 

To derive the cavity quantum Hamiltonian we expand 
the cavity field over eigenmodes,  

0

=0

4 cos
( , ) = ( ( ) ( )),n

n n
k nn

Z k x
x t a t a t

R k d

∞
∗π

φ +∑  (2) 

where ( )na t  is the eigenmode complex amplitude, 

0 0 0= /Z L C  is the cavity impedance, and 2= / 2kR h e  is
the quantum resistance, substitute this expansion into the 
Lagrangian, and after some algebra arrive at the classical 
Hamiltonian [39] 

= [ ],n n n
n

a a V∗ω + φ∑   (3) 

2( ) ( , )[ ] = 2 cos cos ( , ) cos
2 2 2J

f t F d tV E d t
 φ

φ − φ +  
 

. (4) 

Quantum version of this Hamiltonian is obtained by 
imposing the bosonic commutation relations on the mode 
amplitudes, †[ ( ), ( )] =n m nma t a t δ .

2.1. Langevin equation 

Equation (3) describes the dynamics of the closed cavity 
disconnected from the environment. Capacitive coupling of 
the cavity to the transmission line allows one to probe the 
cavity internal state and also to explore the cavity response 
to driving electromagnetic signals. At the same time, this 
exposes the cavity to an environmental noise that leads to 
cavity damping. 

A suitable way to describe the dynamics of open cavity 
is to formulate the Langevin equation for the mode Hei-
senberg operators [43], which has the form in the present 
case [39] 

Fig. 1. Micrographs of a typical tunable resonator: (a) full chip 
(5´7 mm) with the flux line at the top, and the input/output port 
with the coupling capacitor at the bottom; (b) SQUID together 
with the inductive coupling between the flux line and the SQUID 
loop; (c) coupling capacitor. (Adopted from [38], courtesy of 
A. Bengtsson.) 

Fig. 2. Sketch of tunable cavity: ( )na t  is the complex amplitude 
of nth cavity eigen mode, ( )nb t  and ( )nc t  are the input and output 
field amplitudes, respectively; the cavity eigen frequencies nω  
are controlled by magnetic flux ( ) = cosf t F f t+ δ Ω ; the plot 
above the cavity illustrates spatial field distribution of the funda-
mental mode, 0( , )x tφ . 
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0
1 [ , [ ( )]] = 2 ( ).n n n n n n nia a a V d i a b t−ω − φ + Γ Γ



 (5) 

Here ( )b t  refers to incidental external field expressed through 
environmental electromagnetic modes ( )ka t  [44,45]: 

( )00
0

( ) = ( )e ,
2

i t tkk
vb t dk a t

∞
− ω −

π ∫  (6) 

that may also include the probing tones. The operators ( )b t  
satisfy the commutation relation †[ ( ), ( )] = ( )b t b t t t′ ′δ − . 
The rate 

2

0
0

= ,c
n n n

C
k d

C d
 

Γ ω  
 

 (7) 

quantifies external losses due to coupling to the transmission 
line through capacitance cC . nΓ  in Eq. (5) refers to the total 
losses, which include both external and internal losses. In 
what follows we will neglect the latter and suppress index 
0 in 0nΓ . 

Full description of the open cavity is completed with an 
equation for output field quantified with operator ( )nc t . 
This equation has the form of an input-output relation [44] 

0( ) = ( ) 2 ( ).n n nc t b t i a t− Γ  (8) 

2.2. Resonance approximation 

To study complex nonlinear equations like Eq. (5) one 
needs to resort to some simplifying assumptions. A usual 
assumption refers to small value of the field amplitude 

( , ) 1d tφ  . This allows for series expansion of the cosine 
function in Eq. (4), and keeping the lowest relevant nonlin-
ear terms. Another simplified assumption concerns small 
amplitude of the flux modulation, ( ) 1f tδ  . Under this 
assumption one may linearize the potential V  in Eq. (4) 
with respect to ( )f tδ . 

These simplifications, however, are not sufficient be-
cause of the presence of resonance. The resonance, i.e., co-
incidence of driving frequency with some combination of 
system internal frequencies, strongly affects the system dy-
namics, which cannot be treated with simple perturbative 
methods [35,36]. Even small nonlinearity and weak para-
metric drive produce a deviation from the linear behavior, 
which is slow on the time scale of the linear oscillation and 
is large in amplitude. Formulation of equations describing 
such a secular resonant dynamics is the subject of the reso-
nance approximation. 

2.2.1. Nondegenerate parametric resonance 

Particular simplification of general Langevin equation (5) 
depends on the resonance under consideration. We start with 
the situation when magnetic flux is harmonically modulated 
with frequency close to the sum of two cavity modes, 

( ) = cosf t f tδ δ Ω , = 2n mΩ ω +ω + δ, where nδ ω  is a 
small detuning from exact resonance. In the lowest order 
such a modulation drives the frequencies of both modes 

leading to nondegenerate parametric resonance. One has to 
note that the excitation of only two selected cavity modes 
essentially relies on the non-equidistance of the cavity spec-
trum, which must exceed the mode bandwidth. 

The resonance dynamics is commonly described in the 
rotating frame, ( )( ) e ( ),i tnn na t a t− ω +δ→  taking advantage
of slow time variation of the Heisenberg operators in this 
frame. Averaging Eq. (3) over fast rotations, we arrive at 
the Hamiltonian describing cavity resonant dynamics [46]:  

( )2† †

= ,
=

2
j

j jj j
j n m

a a a a
α 

− δ + − 
 

∑


  

( )† † † †2 ( ) .nm n n m m nm n m n ma a a a a a a a− α − ε +   (9)

Here we have retained the lowest order terms in the expan-
sion of cosφ in the Josephson potential in Eq. (4): the 
quadratic term in the part containing flux modulation, and 
the quartic terms in the static part. The former one para-
metrically couples the modes with the strength, 

0 cos4
= sin , = ,

2 2
j

nm J n m j
k j

k dZf FE s s s
R k d

 πδ  ε
 
 


 (10) 

while the latter ones describe the self-Kerr effect and the 
cross Kerr effect quantified with respective coefficients,  

4= cos , =
2j J j nm n m
FE sα α α α (11) 

(in Eq. (9) we skipped small corrections, j∝ α , to detuning δ). 
Hamiltonian (9) is equivalent to the one for two nonline-

ar oscillators with parametrically driven coupling. It can be 
equivalently written in terms of quadratures (coordinate and 
momentum), †= ( ) / 2n n nq a a+  and †= ( ) / 2,n n np i a a− −

( )22 2 2 2

= ,

2 2 2 2

/ = ( )
2 8

( )( ) ( ).
2

j
j j j j

j n m

nm
n n m m nm n m n m

q p q p

q p q p q q p p

α δ
− + + + − 

 

α
− + + − ε −

∑ 

(12) 

The corresponding Langevin equations consist of two 
coupled equations 

† † †( ) 2 ( )n n n n n nm m m n nm mia i a a a a a a + δ + Γ +α + α + ε = 


= 2 ( )n nb tΓ (13) 

with the input fields, ( )nb t , being written in the respective 
rotating frames. The input-output relations in Eq. (8) retain 
their form in the rotating frame. 

The resonance approximation relies on the separation of 
the frequency of time variation of amplitude ( )na t  from the 
mode frequencies. This implies that all the coefficients in 
Eq. (13) respect the constraint,  

, , , .j j nm n m jδ α Γ ε ω −ω ω   (14) 
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It is worth to mention that small values of the Kerr coeffi-
cients and the pumping coefficients rely on small values of 
parameters js  in Eq. (10), which are provided by the small 
value of factors, cos 1jk d γ  , in addition to the small 
ratio, 0 / 1kZ R  . 

2.2.2. Degenerate parametric resonance 

There is a special, degenerate form of the parametric 
resonance, when only one mode is excited. In this case, 

=n mω ω  and the flux is modulated with frequency close to 
twice the mode frequency, = 2 2nΩ ω + δ. This regime of 
the modulation of mode frequency is mostly studied in 
literature. The Hamiltonian (3) reduces in this regime to 
the form [39] 

( )† † 2 2 †2= ( ) .
2 2

n n
n n n n n na a a a a a

α ε
− δ − − +

 

 (15) 

In terms of quadratures, this Hamiltonian is equivalent to 
the one of parametrically driven Duffing oscillator [47] 

( ) ( )22 2 2 2 2 2/ = ( ) .
2 8

n
n n n n n n nq p q p q p

αδ
− + − + − ε −   

(16) 

The Langevin equations reduce to a single equation 

† †( ) = 2 ( ).n n n n n n n n n nia i a a a a b t + δ + Γ +α + ε Γ 
  (17) 

2.3. More complex configurations 

In recent experiments more complex cavity configura-
tions were explored: / 4λ  cavity connected to several 
SQUIDs [20], cavities containing SQUID arrays [48,49], 
several cavities connected by Josephson junction network 
[9,12,13]. In Fig. 3 we present elementary structures with 
two tunable cavities. Connection of two cavities to a com-
mon SQUID (panel (a)) allows one to parametrically excite 
spatially separated modes in different cavities; connection 
of two tunable cavities as shown in panel (b) allows one to 

observe a parametric interference effect produced by two 
pumps [50–52]. Consider performance of the latter device 
in more detail. 

Repeating the derivation of previous sections, one ar-
rives at equations similar to Eq. (13), where the Kerr and 
pumping coefficients consist of the sum of contributions 
from left and right SQUIDs. Assume identical cavities, 
SQUIDs, and equal modulation amplitudes and frequen-
cies, but allow some phase shift between the pumps, 

, /2= e .R L if f f ± θδ → δ δ  Then pumping coefficient, Eq. (10) 
will have the form 

( )/2 /2= sin e e .
2 2

i R R i L L
nm J n m n m

f FE s s s sθ − θδ
ε + (18) 

The s-coefficients are proportional to the values of the 
field at the cavity edges, , ( )R L

ns d∝ φ ± . From the sym-
metry of the field distribution (even or odd with respect to 
the origin) it follows that R

ns  and L
ns  are equal for the fun-

damental mode and all even modes, = 2n k , while they 
have opposite signs for odd modes, = 2 1n k + . Therefore 
the equation in brackets has the form 

( )/2 /2( ) = e ( 1) eR R i n m i
n ms s θ + − θ+ − (19) 

and exhibits a parity effect: constructive or destructive inter-
ference effect depending on the mode parity. For the degen-
erate resonance, =n m, and for the same-parity modes under 
the nondegenerate resonance, the pumping effect is maxi-
mum when the pumps act in phase. On the other hand, for 
modes with different parity the effect of the pumps is max-
imum when the pumps are out of phase. 

Fig. 3. Elementary netwoks with tunable cavities. (a) Two / 4λ  
resonators are coupled to same SQUID allowing spatial separa-
tion of excited modes. (b) Two SQUIDs excite hybridized modes 
in two connected resonators, phase shift between pumps, , ( ),R Lf t
produces interference effect. 

Fig. 4. (Color online) Illustration of variation of field in the tuna-
ble cavity in terms of equivalent cavity with boundary condition 

( ) = 0d∗φ . Blue continuous lines show static spatial profile of 
fundamental mode in two strongly coupled tunable cavities (de-
picted in Fig. 3(b)), blue dashed lines — the field in the equiva-
lent cavity. Brown lines refer to the field under modulated 
boundary conditions. (a) In-phase modulation of the SQUID 
fluxes, ( ) = ( )R Lf t f t , is equivalent to changing length of equiv-
alent cavity (breathing mode). (b) Out-of-phase modulation of 
flux, ( ) = ( )R Lf t f t− , does not change the length of equivalent 
cavity although changes the boundary positions (shaking mode). 
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It is instructive to compare this effect with the DCE [32] 
in a / 2λ  cavity moving in real space with boundary condi-
tions ( ) = ( ) = 0d dφ φ − , Fig. 4. Similar mapping on the cavi-
ty with moving mirrors was discussed in [33,34]. The case 
of in-phase modulation, ( ) = ( )R Lf t f tδ δ , corresponds to an 
antisymmetric shift of the cavity boundaries yielding change 
of the cavity length (breathing), as shown in panel (a). The 
out-of-phase modulation, ( ) = ( )R Lf t f tδ −δ , is equivalent 
to symmetric shift of the cavity boundaries (shaking) leav-
ing the length unchanged as shown in panel (b). This gives 
natural explanation to the parametric effect in the case of 
excitation of individual modes and modes with equal parity. 
However, the fact that the parametric effect persists (for 
modes with different parity) when the cavity length hence 
eigenfrequencies do not change is surprising. This situation 
is analogous to the DCE with a single moving mirror [25]. 
Moreover the DCE was predicted to exist in the shaking 
mode of / 2λ  cavity and exhibit a similar parity effect [53]. 

2.4. High order resonances 

The parametric resonance considered so far is the sim-
plest and best studied resonance effect in parametrically 
driven systems. It is associated with temporal modulation 
of the system resonance frequencies. However, modulation 
of flux through the SQUID affects not just the cavity fre-
quencies but all high order nonlinearities of the Josephson 
potential (4), N∝ φ , > 2N . Parametric modulation of the 
nonlinearity coefficients gives rise to a wide class of new 
resonance effects that are observed in the tunable cavity 
and will be discussed in Sec. 4.3. 

3. Cavity response

In this section we discuss the response of parametrically 
pumped cavity to harmonic probe signals. A parametric am-
plification is the property of the Josephson circuits [54] that 
attracted primary attention of the c-QED community, both 
experimentally and theoretically. The experimental work is 
almost exclusively done in a linear amplification regime 
[9–20,48], see also review [55], and a comprehensive quan-
tum theory of linear amplification [56] was extended to the 
microwave domain [57]. We will start with the linear ampli-
fication theory in the context of the tunable cavity. This the-
ory applies to both the classical and quantum regimes under 
the degenerate and nondegenerate resonance conditions. It is 
interesting to mention that most of the observations made in 
the quantum theory of linear amplifiers [56] can be found 
already in the classical theory, such as an emergence of 
idlers, amplification and de-amplification (squeezing) of 
quadratures, relations between gains, etc. Then we proceed 
to the nonlinear amplification, the regime particularly rele-
vant in the vicinity of a parametric instability threshold, 
where already a single photon input may generate a strong 
classical field within the cavity. In Sec. 3.4 we discuss am-
plification of a weak signal in presence of a strong field in 

the cavity, which is important for the discussion of quantum 
noise in Sec. 5. Here a novel feature of four-mode squeezing 
appears under the nondegenerate resonance. We conclude 
our discussion of the cavity response with studying a para-
metric frequency conversion. 

3.1. Linear amplification 

Consider the Langevin equation for nondegenerate reso-
nance, Eq. (13), and assume an incoming harmonic mode 
slightly detuned from rotating frame, ( ) = ( )e i t

n nb t b − ∆∆  (in 
laboratory frame this mode has frequency = nω ω + δ + ∆). 
It will generate a field inside the cavity with the same fre-
quency, ( ) = ( )e i t

n na t a − ∆∆ . However, because of the struc-
ture of equations in Eq. (13), which connect this mode to 
the conjugated mode, † ( )ma t , a field component, ( ) =ma t

( )ei t
ma ∆= −∆ , will also appear inside the cavity, with fre-

quency = mω ω + δ − ∆  in the laboratory frame, see Fig. 5(a). 
This pair of modes 

( ) = ( )e ( )ei t i t
n ma t a a− ∆ ∆∆ + −∆  (20) 

will generate a similar mode pair in the output field, which 
are called signal and idler. The same mode pair would be 
generated by an incoming mode ( ) = ( )ei t

m mb t b ∆−∆ .
For sufficiently weak inputs, the Kerr terms in Eq. (13) 

can be neglected, and the equations become linear. Solving 
them we derive, with help of Eq. (8), the linearized input-
output relation 

†( ) = ( ) ( ) ( ) ( )n n n n mc u b v b∆ ∆ ∆ + ∆ −∆ , (21) 

and similar for ( )mc ∆ . The coefficients in these relations 
have explicit form 

Fig. 5. (Color online) Mode structure of amplified output field for 
a detuned input signal (S), for (a) the two-mode amplification of 
(a) nondegenerate parametric resonance and (b) degenerate para-
metric resonance, and for (c) the four-mode amplification. Black 
color indicates cavity resonances, red color marks parametrically 
coupled strong field modes; solid blue lines indicate signal (S) 
and (primary) idler (I , 1I ) with frequencies nω + δ + ∆  and 

mω + δ − ∆ ; dashed blue lines indicate secondary idlers ( 2,3I ) 
with frequencies nω + δ − ∆  and mω + δ + ∆ . 
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According to Eq. (21), creation and annihilation operators 
are mixed in the output field, which is similar to the 
Bogoliubov transformation (BT) in the theory of super-
fluidity and superconductivity. The Bogoliubov coefficients 
in Eqs. (22), (23) satisfy important relations 

 2 2| ( ) | | ( ) | = 1n nu v∆ − ∆ ,  

 ( ) ( ) ( ) ( ) = 0n m n mu v v u∆ −∆ − ∆ −∆ ,  

 ( ) = ( ).n mv v∗∆ − −∆  (24) 

According to the first of these relations one can parametrize 

 | ( ) |= cosh ( ), | ( ) |= sinh ( ),n n n nu r v r∆ ∆ ∆ ∆  (25) 

with the squeezing parameter ( )nr ∆ . The squeezing parame-
ters of coupled modes are related, ( ) = ( )m nr r∆ −∆ . Further-
more, in the quantum regime, these relations provide preser-
vation of the bosonic commutation relations [56]: if the 
Fourier harmonics of the input operators obey relations 

†[ ( ), ( )] = ( )n m nmb b ′ ′∆ ∆ δ δ ∆ − ∆ , the same is true for the 
output operators, †[ ( ), ( )] = ( )n m nmc c ′ ′∆ ∆ δ δ ∆ − ∆ .  

The amplification effect is quantified with the signal gain, 
† †( ) = ( ) ( ) / ( ) ( )nn n n n nG c c b b∆ 〈 ∆ ∆ 〉 〈 ∆ ∆ 〉 , i.e., the ratio of the 

output vs input average photon numbers, and the idler gain 
(or cross gain), 

† †( ) = ( ) ( ) / ( ) ( ) .nm m m n nG c c b b−∆ 〈 −∆ −∆ 〉 〈 ∆ ∆ 〉  The gains are 
fully characterized with the squeezing parameter 

 2 2( ) = cosh ( ), ( ) = sinh ( )nn n nm nG r G r∆ ∆ −∆ ∆ , (26) 

and satisfy relations 
 ( ) = 1 ( )nn nmG G∆ + −∆ , (27) 

 ( ) = ( ), ( ) = ( ).mm nn nm mnG G G G∆ −∆ −∆ ∆  

Relations (21)–(27) remain formally valid for the de-
generate resonance under assumption =m n. However, 
there is a difference, the signal and idlers are tightly spaced 
within the mode bandwidth, see Fig. 5(b), which has phys-
ical implications for quadrature squeezing. 

To get better insight in the amplification property of the 
parametrically driven cavity let us examine Eq. (23) for the 
degenerate case and on-resonance input, = 0∆ ,  

 2 2 2
2

| (0) |= .n n
n

n n
v

ε Γ

δ + Γ − ε
 (28) 

This quantity defines the gains and resembles the response 
of a damped linear oscillator driven by a force detuned by 
δ , see Fig. 6. However there is an important difference: 
Eq. (28) refers to the output field rather than intrinsic field 
of the oscillator — the former always equals unity in case 

of nonparametrically driven oscillator (in absence of inter-
nal losses). While keeping a Lorentzian shape, the magni-
tude of the response (28) grows with growing pumping 
strength, and the width of the resonance decreases; this can 
be interpreted as an effective reduction of damping by para-
metric pumping. The full compensation of damping occurs 
at 2 2 2=n nε Γ + δ , and indicates the development of paramet-
ric instability, which is known in mechanics as the paramet-
ric resonance, when the cavity intrinsic field grows without 
limit. Stabilization of this growth requires inclusion of the 
Kerr effect. 

3.2. Squeezing and phase sensitive amplification 

The gain quantifies the absolute value of the output field. 
However, parametric amplification exhibits a nontrivial be-
havior of output quadratures, †= ( ) / 2cq c c+  and =cp  

†( ) / 2i c c= − − , namely amplification of certain quadra-
tures and deamplification (squeezing) of other quadratures 
(for electric oscillators the quadratures correspond to volt-
age and current variables directly measured in experiment). 
To see this we gauge out phase factors from the uv-coeffi-
cients in Eq. (24), and include them into new bosonic op-
erators, giving the new BT for these operators, 

 †( ) = cosh ( ) ( ) sinh ( ) ( ),n n n n mc r b r b∆ ∆ ∆ + ∆ −∆ 

  (29) 

and similar for ( )mc −∆ . The corresponding quadratures are 

 ( ) = cosh ( ) ( ) sinh ( ) ( )c b b
n n n n mq r q r q∆ ∆ ∆ + ∆ −∆   ,  

 ( ) = cosh ( ) ( ) sinh ( ) ( ).c b b
n n n n mp r p r p∆ ∆ ∆ − ∆ −∆    (30) 

Now we consider collective quadratures, ( ) =q± ∆  
( )( ) ( ) / 2n mq q= ∆ ± −∆ , and similar for ( )p± ∆ . Then for 

these collective quadratures we get 

 ( ) ( )( ) = e ( ), ( ) = e ( ),r rc b c bn nq q p p± ∆ ∆
± ± ± ±∆ ∆ ∆ ∆

     (31) 

i.e., quadratures ( )q+ ∆  and ( )p− ∆  are amplified while 
quadratures ( )q− ∆  and ( )p+ ∆  are squeezed. 

Applying the result in Eq. (31) to on-resonance input 
under the degenerate resonance, where (0) = (0) = 0q p− − , 
we find that the amplification (squeezing) of nq q+ ∝  

Fig. 6. Linear amplification of undetuned input signal, = 0∆ , for 
degenerate parametric amplifier: idler gain, 2(0) =| (0) |I

nG v , vs 
pump detuning δ, for increasing pump strengths, / =n nε Γ  

0.4, 0.7, 0.99=  (from bottom to top). 
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( )np p+ ∝  refers to the signal quadratures themselves. The 
direction of squeezing is defined by the phases of the 
Bogoliubov coefficients. 

As it was already mentioned before, the properties of lin-
ear amplification apply to both quantum and classical fields. 
In the latter case we assume an input tone to be a coherent 
state that has nonvanishing average, = =| | e 0,i Bn n nB b B θ〈 〉 ≠  
where phase Bθ  is referenced to the pump. This input will 
generate a classical intracavity field, =n nA a〈 〉, as well as 
a classical output field, =n nC c〈 〉 , and BT can be directly 
formulated in terms of the classical fields. In the classical 
regime, a new aspect comes to attention — the effect of the 
phase of the input on the squeezing direction. In Fig. 7 this 
behavior can be seen in the purple ellipse illustrating the 
dependence of the output amplitude nC  on the input phase 

Bθ . Another novel aspect is the input-phase dependence of 
the gain for on-resonance input under degenerate reso-
nance — phase sensitive amplification. Indeed, the BT in 
this case involves the input field and its complex conju-
gate, thus the gain includes an interference term 

 ( )(0) = (0)e (0)e | (0) |,i iB Bn n n nC u v Bθ − θ+   

 2 (0) 2(0) = e 2sinh 2 (0) ( ),cos
rnn n BG r− + θ + η  (32) 

where = (1/ 2)arg( (0) (0))n nu v∗η . 

3.3. Nonlinear amplification 

With increasing input power the intracavity field be-
comes so strong that the Kerr effect can no longer be ne-
glected. The same is true even for weak inputs at large 
pumping intensity close to the instability threshold. In this 
regime the Kerr effect leads to an appreciable shift of the 

resonance frequency, 2 2| |j j nm n mAα ε −Γ Γ . 

For classical inputs under nondegenerate resonance the 
linear response theory can be straightforwardly generalized 
to the nonlinear case. To this end we replace in the Langevin 
equations, Eq. (13), the field operators ja  with classical am-
plitudes jA , and †

jja a  with 2| |jA  in Kerr terms. Repeating 
the derivation we arrive at the same BT as in Eqs. (21)–(23), 
but with the pump detuning δ  being replaced with  

 2 2= | | 2 | | .n n n nm mA Aδ → ζ δ +α + α  (33) 

These generalized BT equations, however, do not provide 
explicit solution to the problem since they contain intracavity 
amplitudes, nA , that are to be found self-consistently, 

 ( ) ( ) ( ) = 2 ( ).n n n nm m n ni A A B∗∆ + ζ + Γ ∆ + ε −∆ Γ ∆  (34) 

In spite of this complication the Bogoliubov coefficients 
turn out to still obey Eq. (24), hence the nonlinear gains 
obey the same relations as given by Eq. (27) [46]. 

The nonlinear gain as function of pump detuning is il-
lustrated in Fig. 8 for on-resonance input, = 0∆ . This gain 
resembles the response of a nonlinear Duffing oscillator, 
where the maximum value is shifted from = 0δ  due to the 
Kerr effect and grows with increasing pump strength. Simi-
lar to the Duffing oscillator, a bistability region exists at red 
detuning, which appears at increasingly small input level 
and occupies larger δ-interval when the pump strength 
increases. In addition, the resonance width becomes van-
ishingly small, due to effective reduction of damping. This 
behavior is a precursor of the transition to the regime of self-
sustained parametric oscillation discussed in the next Sec. 4. 
One can compute the maximum gain value achieved at the 
instability threshold, =nm n mε Γ Γ , at = 0δ  [46], 

 
2

2
2 | |

(0) (0) = 1,
| |

n n
nn mn

n

A
G G

B
Γ

≈   (35) 

where the intracavity field is given by equation 

 
2 2
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2

| |2| | = .
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n n
n

n nn m

B
A

 Γ
 α Γ−Γ Γ  

 (36) 

Fig. 7. (Color online) Anisotropy of the cavity output field in the 
complex nC  plane under variation of input phase [0,2 )Bθ ∈ π , for 
degenerate parametric amplifier at pump strengths / =n nε Γ  

0.2, 0.5, 0.8=  (purple, green, orange), the purple curve depicts 
the linear regime, other curves refer to nonlinear amplification 
discussed in Sec. 3.3 [ = 0δ , = 0∆ , 2| | = 2n nB Γ , = / 100n nα Γ ]. 

Fig. 8. Nonlinear gain 2 2| | / | |n nC B  vs pump detuning δ, for the 
nondegenerate parametric amplifier and on-resonance input, 

= 0∆ , with / = 0.8, 0.9, 0.95n nε Γ  (from bottom to top); black 
dotted line refers to the Duffing limit = 0nε . [ 2| | = 2n nB Γ , 

= 0Bθ , = 0mB , / = 0.01n nα Γ , =n mα α , =n mΓ Γ .] 
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It follows from these equations that the maximum nonline-
ar gain has a nonanalytic dependence on the input power, 

2/3(0) 1/ | |nn nG B , and diverges at small power. Further-
more, its value is controlled by the parameter /n nΓ α , which 
also means that this parameter constraints the squeezing 
parameter (0)nr  by virtue of Eq. (25), and therefore defines 
the maximum level of squeezing. 

In the case of degenerate parametric resonance, a gener-
alization of Eqs. (21)–(23) to the nonlinear regime does not 
apply for detuned inputs. The reason is that the signal and 
idler frequencies lie close to each other within the mode 
bandwidth, see Fig. 5, and their interference makes the Kerr 
term time dependent. This implies that the nonlinear ampli-
fication of detuned signals is nonstationary. This difficulty 
does not exist for on-resonance input, where the stationary 
nonlinear BT equations are valid, and the response is simi-
lar to the one depicted in Fig. 8. The dependence of the 
output power on the input for different pumping strengths 
is illustrated in Fig. 9. The differential gain at small input 
power grows without limit when the pumping strength ap-
proaches the instability threshold, and it saturates at high 
inputs. The phase dependence of the nonlinear gain also 
deviates from the linear behavior [39], as is shown in Fig. 7. 
It is because of the phase dependence of the Kerr frequen-
cy shifts, Eq. (33), reflecting anisotropy of the intracavity 
field amplitude. 

3.4. Linear response in presence of strong field 

Here we consider amplification of a weak detuned signal 
in the presence of strong on-resonance field in the cavity. 
The latter may be generated by an on-resonance input or, if 
the cavity is pumped above the parametric instability thresh-
old, by parametric oscillation, as discussed later in Sec. 4. 
The results will be used in Sec. 5.2 to evaluate the quantum 
noise and signal-to-noise ratio. 

3.4.1. Degenerate resonance: two-mode amplification 

Suppose that a weak detuned signal is applied on top of 
a strong on-resonance signal, ( ) = ( )e i tB t B b − ∆+ ∆  (here 

we suppress the mode index for brevity, and use small letter 
for weak field since it can refer to classical field as well as 
quantum mode). The term “weak” refers to the field whose 
contribution to the Kerr effect can be neglected. This will 
generate an intracavity field, ( ) = ( )e ,i tA t A a − ∆+ ∆  with A  
given by Eq. (34) with =m n and = 0∆ , and with a small 
correction a, † 2| |a a A〈 〉  that satisfies a linearized 
Langevin equation 

 †( ) ( ) ( ) = 2 ( ),i a a bζ + ∆ + Γ ∆ + ε −∆ Γ ∆

  (37) 

where 2= 2 | |Aζ δ + α , and 2= Aε ε + α . This equation is 
similar to linearized Eq. (13), it has the same two-mode 
structure combining signal and idler, but the detuning here 
is Kerr-shifted due to strong field, and the pump intensity 
is also renormalized. These modifications do not affect the 
structure of the BT, Eq. (21), and the form of the 
Bogoliubov coefficients in Eqs. (22), (23), as long as cor-
responding modifications, δ → ζ, ε → ε, are included (note 
that since the effective pump strength is complex the change, 

2 2| |ε → ε , is to be made). Correspondingly, the general 
properties of parametric amplification, Eqs. (24)–(27), are 
preserved although the gains become different. 

The way the effective pumping strength, ε, is modified 
indicates that the strong intracavity field acts as an addition-
al parametric pump–current pump. This mechanism involv-
ing a four wave mixing works even in absence of flux 
pumping, = 0ε , as soon as a strong on-resonance signal is 
injected in the cavity. In fact, it is this mechanism of current 
pumping that was used in many realizations of quantum 
limited parametric amplifiers [9–14]. 

3.4.2. Nondegenerate resonance: four-mode amplification 

Proceeding to the nondegenerate resonance we encounter 
a completely different situation. A strong applied input to 
either of the two parametrically coupled modes will generate 
a strong intracavity field in both modes. As it was found in 
the previous section, these fields will act as additional para-
metric pumps that will generate additional idlers for a weak 
detuned signal [46]. As a result, amplification of a weak 
signal is generally accompanied by three idlers as depicted 
in Fig. 5(c). 

While input detuning could be included suppose for sim-
plicity an on-resonance strong field being applied to either 
(or both) of modes n, m, and additionally a weak detuned 
signal is applied. Then a total stationary intracavity field in 
each mode will contain one strong and two weak compo-
nents, ( ) = ( )e i t

j j jA t A a ∆
±+ ±∆Σ  . The strong components 

are described with Eq. (34) (setting = 0∆ ), and the weak 
components satisfy the linearized equations 

 †( ) ( ) 2 ( )n n nm n m mn i a A A aζ ± ∆ + Γ ±∆ + α ±∆ +  

 2 † †( ) ( ) = 2 ( ),nmn n n m n nA a a b+α ∆ + ε ∆ Γ ±∆   (38) 

and similar for the mth mode. Here the shifted detuning 
and renormalized pump strength read 

Fig. 9. Output power 2| |nC  vs input power 2| |nB , for the degen-
erate parametric amplifier with on-resonance input signal, = 0∆ , 
and / = 0, 0.2, 0.4, 0.6, 0.8, 1.0n nε Γ  (from bottom to top); the 
dotted line refers to the Duffing limit = 0nε . ( / = 0.5nδ Γ , 

= / 2Bθ π , / = 0.01n nα Γ .) 
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 2 2= 2 | | 2 | |n n nm mn A Aζ δ + α + α ,  

 = 2 .nm nm nm n mA Aε ε + α  (39) 

As we see from Eq. (38) the strong intracavity fields not 
only contribute to the pump-induced intermode coupling, 

( ) ( )n ma a∆ ↔ −∆ , but generate intramode coupling, 
( ) ( )n na a∆ ↔ −∆ , and also generate intermode frequency 

conversion, ( ) ( )n ma a∆ ↔ ∆ . One can also see that the two 
latter mechanisms depend entirely on the strong intracavity 
fields. 

Given the four-mode structure of Eq. (38), the BT also 
acquires the four-mode structure 

 †( ) = ( ) ( ) ( ) ( )i ij j ij jc U b V b∆ ∆ ∆ + ∆ −∆  (40) 

( , = ,i j n m). Here the scalar Bogoliubov uv-coefficients of 
the two-mode amplification are replaced with matrices, 
whose elements determine the gains of signal and idlers. 
Similar to linear amplification, Eq. (40) is also valid in the 
quantum regime, however, in order to guarantee bosonic 
properties of the output operators, the multimode Bogoliubov 
matrices have to respect constraints imposed on their unitary 
equivalent diagonal forms [58,59]. Explicit analytical calcu-
lation of Bogoliubov UV -matrices and their diagonalization 
is a cumbersome task. However, this can relatively easily be 
done within a model of balanced modes [60]. 

3.4.3. Balanced mode model 

In this model one assumes equal Kerr coefficients and 
damping rates for both modes, =n mα α , =n mΓ Γ . One has 
to admit that this model is rather artificial since real cavity 
parameters are strongly frequency dependent. As shown in 
[46] diagonalization of the BT (40) within the balanced 
mode model is achieved with unitary transformation 

 
/2 /2

/2 /2

e e1= ,
2 e e

i i

i i

ψ ψ

− ψ − ψ

 
 
 − 

U  (41) 

where the phase = n mψ θ −θ  is related to the phases of the 
strong intracavity fields, =| | ei j

j jA A θ . The unitary trans-
formation in Eq. (41) defines the “supermode” operators, 

†( ) = ( )jjb bσ σ∆ ∆U , =σ ±. In the supermode basis, the BT 
in Eq. (40) splits into two independent equations, whose 
structure reproduces the BT for the degenerate parametric 
resonance,  

 ( ) = ( ) ( ) ( ) ( ),c u b v b∗σ σ σ σ σ∆ ∆ ∆ + ∆ −∆  (42) 

with coefficients 
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i
v

i i
σ

σ
σ σ σ

Γε
∆

ζ + ∆ + Γ ζ − ∆ − Γ − ε
 (43) 

where 2= (4 2 ) | |n nAσζ δ + + σ α , and = nmσε σε +  
(2 1) n n mA A+ σ + α  (equation | |= | |n mA A  holds in the bal-

anced mode model). Since the structure of these equations 
exactly reproduces the one of Eqs. (22), (23), the properties 
(24) hold for the supermodes, and therefore the supermode 
output operators are bosonic. This is also true for the origi-
nal output operators due to the unitarity of the transfor-
mation matrix, Eq. (41). Using this method, the gains for 
amplified weak signals and idlers are analyzed in Ref. 46. 

3.5. Frequency conversion 

In this section we explore a different parametric regime 
producing frequency conversion. Suppose the SQUID is 
modulated with frequency equal to a difference between 
two cavity eigenmodes, = 2n mΩ ω −ω + δ  ( >n mω ω ). The 
Langevin equation is derived in this case in the reference 
frame rotating with frequencies nω + δ  and mω −δ, and 
following the derivation in Sec. 2.2, we get [46] 

 † †( 2 )n n n n n nm m m n nm mia i a a a a a a+ δ + Γ +α + α + ε =  

 = 2 ( ),n nb tΓ  (44) 

and a similar equation for ma  where change δ → −δ  is 
made. The major qualitative difference of this equation 
from the Langevin equation (13) is the presence of the am-
plitude rather than the conjugated amplitude of the second 
mode. As a result, there is no parametric amplification, but 
a beam splitter effect, where an input mode with frequency 
close to nω  is converted to an output mode with frequency 
close to mω . 

Theory of a nonlinear frequency conversion is technically 
similar to the theory of nonlinear amplification in Sec. 3.3. 
Consider a classical input in the form of equally detuned 
harmonic signals in each mode, , ,( ) = ( )e i t

n m n mB t B − ∆∆ . 
Then the input-output relation takes the form of two-mode 
scattering equations 

 ( ) = ( ) ( ) ( ) ( ),n nn n nm mC S B S B∆ ∆ ∆ + ∆ ∆  (45) 

where the coefficients from a unitary scattering matrix 
† 1ˆ ˆ=S S− . Their explicit form is similar to the Bogoliubov 

uv-coefficients: 
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2
( )( )
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( )( )

n n m m nm
nn

n n m m nm

i i
S

i i
ζ + ∆ − Γ ζ + ∆ + Γ −ε

∆
ζ + ∆ + Γ ζ + ∆ + Γ − ε

  

 2
2

( ) = .
( )( )

nm n m
nm

n n m m nm

i
S

i i

ε Γ Γ
∆

ζ + ∆ + Γ ζ + ∆ + Γ − ε
 (46) 

Here jζ  are defined slightly differently compared to the 
amplification case,  

 2 2= | | 2 | |n n n nm mA Aζ δ + α + α ,  

 2 2= | | 2 | | ,m m m nm nA Aζ −δ + α + α  (47) 
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but nmε  is given by the same equation (10). We note that 
Eqs. (46) do not give an explicit solution to the problem 
since they contain intracavity field amplitudes that are to be 
computed self-consistently. Since there is no amplification 
effect in this case, a sufficiently small input signal produc-
es a small intracavity field, and the scattering matrix can be 
linearized. In this linearized form the results in Eqs. (45), 
(46) can be extended to the quantum regime. 

In Fig. 10(a) we show the linear reflection spectrum, 
2| |mmS  of the parametric conversion process versus input 

detuning from mode frequency mδ : =mω−ω −δ + ∆ , and 
pump detuning. Internal losses are included in the 
numerics. If the pump is detuned far away from the reso-
nance | | n mδ Γ Γ , the spectrum is dominated by a loss 
resonance centered at = 0mδ . Close to the parametric reso-

nance, < n mδ Γ Γ , the intermode coupling appears as an 
avoided crossing that is accompanied by the emergence of 
the converted signal (i.e., finite mnS , not shown). 

The quantum frequency conversion was observed in sev-
eral c-QED experiments [52,61–63] including both device 
configurations in Fig. 3. In Ref. 84 this effect was used to 
characterize a high order mode unaccessible for direct 
measurement, see Fig. 10(b). 

A full reciprocal conversion between the modes is pos-
sible in the absence of internal losses. The criterion is giv-
en by the zero reflection coefficient, 2| | = 0mmS . The cor-
responding conditions for linear conversion read 

 
2

2
2

4= 1 , = .
( )

n m
nm n m

n mn m

  Γ + Γδ
ε Γ Γ + ∆ δ   Γ −ΓΓ −Γ 

 

It is instructive to compare these equations to the ones for 
the parametric instability in the amplification regime, see 
below Eqs. (54) and (57): both criteria coincide at the zero 
pump detuning, = 0δ . At finite pump detuning full conver-

sion is still possible, but in this case the input must be de-
tuned accordingly. The efficiency of the frequency conver-
sion at different pump strengths is illustrated in Fig. 11. 

The interference effect discussed in Sec. 2.3, Eq. (18), 
was tested experimentally [52] by measuring frequency 
conversion in the device depicted in Fig. 3(b). The theoret-
ical result for the reflection coefficient computed with 
Eq. (46) is shown in Fig. 12(a). Here the phase-dependent 
pumping strength, ( )nmε θ  is taken in the form of Eq. (18), 

= 0δ , and internal losses are included; the white lines indi-
cate the positions of the split resonance given by the extrema 
of Eq. (46). The result of the measurement of the reflection 
coefficient at = 0δ  is presented in Fig. 12(b); here we see 
the pump-phase dependent split resonances of not one but of 

Fig. 10. (Color online) Linear frequency conversion as function 
of input signal detuning =mδ ∆ − δ and pump detuning δ. (a) Ref-
lection coefficient 2| ( ) |mm mS δ  quantifies response in the input 
mode, it exhibits an avoided crossing of a loss resonance. 

0 0[ = 3n mΓ Γ , 0= 1.8m mΓ Γ , 0 0= 4 = (4 / 3)n m nΓ Γ Γ , and 
=nmε  2 n m= Γ Γ .] (b) Measured reflection phase, arg( )mmS , as 

function of signal and pump frequencies [84]. 

Fig. 11. Reflection coefficient 2| ( ) |mmS ∆  vs pump strength nmε  
for different pump and signal detunings: solid line: = = 0δ ∆  with 
full conversion at / = 1nm n mε Γ Γ ; dash-dotted line: =δ  

3( ) / 2n m= Γ − Γ , = 3( ) / 2n m∆ Γ + Γ  with full conversion at 
/ = 2nm n mε Γ Γ ; dashed line: = 0δ , = ( ) / 2n m∆ Γ + Γ . 

0 0[ = 3n mΓ Γ , 0=m mΓ Γ , 0=n nΓ Γ .] 

Fig. 12. (Color online) Interference effect in frequency conver-
sion in coupled cavities shown in Fig. 3(b). (a) Calculated reflec-
tion coefficient in Eq. (46), at = 0δ  and pumping strength re-
placed with ( ) = (0) 1 cos / 2nm nmε θ ε + θ  according to 
Eq. (18), as function of signal detuning and pump phase differ-
ence (internal losses are included); white line marks the positions 
of the split resonance. [ 0 0= 3n mΓ Γ , 0= 1.8m mΓ Γ , 

0= 4 =n mΓ Γ 0(4 / 3) n= Γ , = 0δ , and (0) = 4nm n mε Γ Γ .] (b) 
Measurement data adopted from [52], courtesy of A. Bengtsson 
(note the doubled range θ, and the wide range of detuning, such 
that both | |mmS  and | |nnS  are included). 
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both parametrically coupled modes of the device. These 
modes result from the hybridization of nearly degenerate 
modes of individual cavities, where the small distance be-
tween the hybridized modes is due to the relatively weak 
coupling of the cavities. 

4. Parametric oscillations 

As it was mentioned in Sec. 3.1 the linear response ex-
hibits a divergence at pumping strength, =nm n mε Γ Γ  at 
zero pump detuning, = 0δ . This divergence exists in the 
presence of damping and therefore cannot be suppressed 
by increasing losses. The mechanism of removing the di-
vergence is related to the Kerr effect — a shift of the cavi-
ty frequency by the energy of the field stored in the cavity 
[65]. The state of the self-sustained oscillations that deve-
lops above the parametric threshold is therefore essentially 
nonlinear. It is characterized, away from the threshold, by 
a large average amplitude of the intracavity field, =A a〈 〉 , 
which can be treated classically. Transition from the ground 
state, = 0a〈 〉 , below the threshold to the state, 0a〈 〉 ≠  
above the threshold can be understood as a second order 
phase transition [66] with A  playing the role of complex 
order parameter. The divergence of the linear response at the 
threshold can then be understood as the result of critical 
fluctuations. 

In this section we present a classical theory of parametric 
oscillations under both degenerate and nondegenerate reso-
nance. Full quantum analysis of the parametric oscillations 
is the subject of ongoing research. We present some results 
on small quantum fluctuations of the degenerate oscillator in 
the following Sec. 5, an interpretation of the degenerate 
oscillations as quantum cat states will be discussed in 
Sec. 4.1.2. 

4.1. Degenerate oscillations 

4.1.1. Quasiclassical description 

In this section we follow analysis of Ref. 39. Stability 
analysis of Eq. (17) confirms that the ground state is unsta-
ble within the interval of pump detuning,  

 2 2
th| |< ( ) = ,n n nδ δ ε ε −Γ  (48) 

and stable excited stationary states exist at th<δ δ . These 
oscillatory states have frequency = / 2ω Ω , and amplitude 

 
2 2

2| | = ,n n
n

n
A

−δ + ε −Γ

α
 (49) 

and have two-fold degeneracy with respect to the phases 

 arg = , ; 2 = arcsin , .
2

n
n n n n

n
A

Γ π θ θ + π θ ∈ π ε  
 (50) 

The intensity of the output is related to the intensity of the 
intracavity field, 2 2| | = 2 | |n n nC AΓ . 

In Fig. 13 the properties of oscillatory states are illus-
trated. The stable oscillatory state is born at the positive 

threshold branch, th=δ δ  (blue line in the upper panel), as 
the result of instability of the ground state. This line corre-
sponds to the second order phase transition. The oscillation 
amplitude, Eq. (49), remains finite at any given detuning 
but grows with increasing red detuning. Under the effect of 
an input, the degenerate cavity amplitudes described by 
Eq. (49) split into two branches (orange lines in central pan-
el). The picture at the negative threshold branch, th=δ −δ , is 
more complex: here a new excited state emerges (shown by 
dashed lines in center panel) but it is unstable. At the same 
time the stable oscillatory state persists, and coexists with 
the re-established ground state at increasing red detuning. 

This theoretical picture of coexisting excited and ground 
states is, however, not verified by the experiment [67] as 
shown in Fig. 14. The experimental data shows that the ex-
cited state undergoes a cross over to the ground state as the 
red detuning increases. This crossover resembles a phase 
transition of the first order, where noise effects need to be 
included to characterize the transition. Figure 15 shows the 
measured histograms of the cavity output quadratures, at 
three different values of the pump detuning [30]. Such his-
tograms are generated through the sampling of current-

Fig. 13. (Color online) Degenerate parametric oscillation. Upper 
panel: blue line indicates threshold of instability, ( )nε δ ; bold 
black line indicate stability region of the ground state. Middle 
panel: stationary response to applied on-resonance signal vs de-
tuning, intensity of the response indicates the one of the self-
sustained oscillations split by the input; solid lines indicate stable 
solutions born at the edge th=δ δ , dashed lines indicate unstable 
solutions born at the edge th=δ −δ . Lower panel: phase portraits 
of oscillations at different detuning: stable ground state at blue 
detuning, th>δ δ , bistable excited states at th th< <−δ δ δ , and 
excited states coexisting with the stable ground state at red detun-
ing, th<δ −δ . 
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voltage data (which represent two orthogonal quadratures) 
over a sufficient measurement time, and thus give a picture 
of the stable cavity states and fluctuations around them. 
Here we find all three oscillatory regimes: squeezed ground 
state noise (a), double degenerate oscillatory state (b), and 
oscillations coexisting with the ground state (right). 

4.1.2. Quantum cat states 

In spite of cumbersome form of the density matrix of 
parametric oscillator [68–70] and complex physics of quan-
tum interstate transitions [71–73], the question about the 
nature of the quantum ground state in the parametric oscilla-

tor has a surprisingly simple answer in the case of undamped 
cavity [74,75]. Let us revisit the Hamiltonian for the degen-
erate resonance, Eq. (15), and present it in a factorized form, 
assuming detuning = / 2nδ −α ,  

 
2

†2 2= .
2 2

n n n n

n n n
a a
  α ε ε ε

− + + +  α α α  


 

 (51) 

Let us then consider a Glauber coherent state |β〉 ,  

 
2| | /2 †| = e ( ) | 0

!

n
n

n
a

n
−β β

β〉 〉∑  (52) 

and apply the Hamiltonian to such a state. Remembering 
that the coherent state is an eigenstate of an annihilation 
operator, | = |a β〉 β β〉 , we find that the states, | =±β 〉  

| /n ni= ± ε α 〉 , are eigenstates of the Hamiltonian (51). 
Moreover, the average values of the state amplitudes, 

| | = /n na i± ±〈β β 〉 ± ε α , coincide with the earlier found 
quasiclassical amplitudes in Eqs. (49), (50) in the limit 

n nα ε , = 0nΓ . Thus one concludes that the stationary 
state of an undamped parametric oscillator is a quantum cat 
state — a superposition of the two coherent states: 

 1 2| = | / | / .n n n nC i C iΨ〉 ε α 〉 + − ε α 〉  (53) 

4.1.3. Application to qubit readout 

The existence of parametric oscillation within a well 
defined interval of detuning can be employed for qubit 
readout. In c-QED the qubit readout is commonly realized 
by coupling the qubit to a linear cavity and measuring the 
cavity resonance [6]. When the qubit is dispersively coupled 
to the cavity, it shifts the cavity resonance, and this shift 
depends on the state of the qubit. For a strong qubit-cavity 
coupling the frequency shift exceeds the cavity bandwidth, 
which enables a single shot readout. The probing signal is 
usually weak and requires subsequent parametric amplifica-
tion. The idea of measurement method based on parametric 
oscillation and realized in [76,77] is to combine the 
readout cavity and parametric amplifier in one device. This 
is illustrated with experimental data in Fig. 16: the panel 
(a) shows intensity of parametric radiation as function of 
pump detuning and strength when the qubit is in the 
ground state, while the panel (b) shows that when the qubit 
is in the excited state. The distance between the bright re-
gions exceeds the dispersive offset, 2χ, exerted by the qubit. 
The low intensity spot in the panel (b) is due to the qubit 
relaxation during the measurement. 

4.2. Nondegenerate oscillations 

Consider now the nondegenerate resonance, and first 
examine the quasiclassical version of Eq. (13) using the 
balanced mode model. In this case, the instability picture is 
exactly the same as for the degenerate resonance. The in-
stability occurs within the interval, Eq. (48). The self-
sustained oscillations appear in both parametrically cou-

Fig. 14. (Color online) Experimentally measured intensity of para-
metric oscillation as function of pump detuning and intensity [67]. 
Dashed line in upper panel shows instability threshold; oscillation 
intensity gradually increases at the threshold at th>δ δ , and sharply 
disappears at th<δ −δ . Lower panel compares a theoretical predic-
tion [39] (yellow line) and experimental observation (blue dots). 

Fig. 15. (Color online) Experimental histograms of output radia-
tion at different detuning regions [30] corresponding to phase 
portraits in Fig. 13: (a) squeezed vacuum at th>δ δ , (b) two 
phase degenerate oscillator states at th| |<δ δ , and (c) coexisting 
oscillations and ground state at th<δ −δ . 
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pled modes having frequencies, jω + δ , and equal intensi-
ties, 2 2| | = | |n mA A . The latter is given by slightly modified 
Eq. (49), where the Kerr coefficient is replaced, 3n nα → α  
because of the cross-Kerr effect. The major difference here 
is in the phase properties of the oscillations. The sum of 
the oscillation phases, = n mΘ θ + θ , is rigorously defined 
with the same equation as in the degenerate case, 
sin = /n nΘ Γ ε , however the difference of the phases, 

= n mψ θ −θ  is arbitrary. This implies a continuous degener-
acy of the oscillations with respect to the phase, which is 
qualitatively different from the discrete (double) phase de-
generacy of the degenerate oscillation. 

In realistic case of different mode parameters, the situa-
tion is more complex, as it follows from analysis of Eq. (34). 
First, the instability occurs at finite detuning, 

 = ,n m

n m

Γ −Γ
∆ δ

Γ + Γ
 (54) 

and the detuning of the emerging oscillation grows with 
increasing pumping strength, 

 ( ) = .n m m n
nm

n m

Γ ζ −Γ ζ
∆ ε

Γ + Γ
 (55) 

These properties of nondegenerate oscillations are con-
firmed in experiment, as shown in Fig 17. Furthermore, the 
intracavity oscillation intensities are different, 2 2| | / | | =n mA A  

/m n= Γ Γ , however the output intensities are equal, 
2 2| | = | |n mC C . The latter can be interpreted quantum me-

chanically as a creation of photons in pairs, giving equal 
number of photons in each mode. The oscillation amplitudes 
have quantitative difference from the degenerate oscillator, 

 2 th2( )
| | = ,

2 ( )
m

n
n m m n n m

A
−δ δ Γ

α Γ +α Γ + α Γ +Γ


 (56) 

as well as the threshold detuning that defines the ground 
state instability region, 

 
2

2 2 2
th

( )
< = ( ) .

4
n m

nm n m
n m

Γ +Γ
δ δ ε −Γ Γ

Γ Γ
 (57) 

However, both quantities have the same dependence on the 
pumping strength as in the degenerate case. Finally, the 
equation for the sum of oscillation phases extends in a pre-
dictable way the result of Eq. (50), 

 sin = , ( , ).
2

n m

nm

Γ Γ π
Θ Θ∈ π

ε
 (58) 

In Fig. 18(a), (b) experimental histograms in quadrature 

Fig. 16. (Color online) Output radiation of parametrically 
pumped cavity with dispersively coupled qubit, for the ground 
state (a) and excited state (b) of the qubit, 2χ is a dispersive shift 
produced by the qubit; the low intensity spot in panel (b) is due to 
qubit relaxation during measurement [77]. 

Fig. 17. (Color online) Nondegenerate parametric oscillations of 
modes = 3n  (left) and = 4n  (right) observed experimentally [67] 
emerge at finite detuning from the resonance, jω + δ , and exhibit 
frequency drift with increasing pumping intensity, in accord with 
the theory, Eqs. (51) and (52). 

Fig. 18. Measured quadrature histograms of nondegenerate para-
metric oscillations in modes = 3n  and = 4n  [67]. Panels (a), (b): 
oscillation phases in both modes are evenly spread under effect of 
noise due to a phase diffusion. Panels (c), (d): the quadratures of 
different modes are anti-correlated, confirming the preservation 
of the sum of the mode phases, Eq. (58). 

1008 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 8 



Parametric effects in circuit quantum electrodynamics 

space are presented for output intensities in both oscillating 
modes [67]. The histograms have donut shapes that indicate 
continuous phase degeneracy. In absence of environmental 
noise, which is assumed in our calculation, the phases would 
have specific values defined by initial conditions. In prac-
tice, the presence of noise induces a phase diffusion that 
spreads the phases homogeneously in the steady state. This 
behavior is common for generators with continuous phase 
degeneracy (e.g., Van der Pol oscillator [78], nondegenerate 
optical parametric oscillator [79]). Panels (c), (d) show 
cross correlations between mode quadratures demonstrat-
ing the rigid constraint on the sum of the phases imposed 
by Eq. (58). 

4.2.1. Phase locking  

Continuous phase degeneracy of nondegenerate paramet-
ric oscillations and related phase diffusion leads to consider-
able broadening of the output linewidth. This effect is 
known in lasers and microwave generators, where it is elim-
inated, in particular, by injecting a weak on-resonance signal 
[80]. To illustrate the mechanism of the injection phase 
locking let us consider the degenerate parametric resonance 

and add a driving term, 2 | | (e e ),i iB Bn n n nB A Aθ − θ∗Γ +  to 
the quasiclassical metapotential, Eq. (16). Proceeding to po-

lar coordinates, = ei nn n nQ iP R θ+ , we get (dropping mode 
index),  

 2 4 2( , ) = cos 2
2 8

H R R R Rδ α
θ − − − ε θ+  

 2 | | cos( ).BB R+ Γ θ−θ  (59) 

Then we see that the unperturbed metapotential obeys the 
symmetry θ→ θ+ π, and it is violated by the driving term. 
This introduces asymmetry in the metapotential, as illus-
trated in Fig. 19, which is also seen in the phase portraits in 
Fig. 13 and manifested by the splitted response line in this 
figure. Due to the asymmetry, one of the formerly degener-
ate steady states will be lower in energy than the other and 
thus will be populated with higher probability. If the asym-
metry is made sufficiently strong, only this state will persist. 
The phase locking effect was employed for qubit readout in 
the parametric oscillation regime [76]. 

Similar argument applies to the nondegenerate oscillator, 
the tilt of the metapotential produced by the driving term 

removes the phase degeneracy. The value of the locked 
phase is determined by the phase of the input, the corre-
sponding relation was found in [46] for balanced mode 
model, 

 = arctan( / ).n B −θ θ − Γ ζ  (60) 

The phase locking effect was observed experimentally 
[67], the resulting quadrature histograms are presented in 
Figs. 20(a), (b). Here the spread of the phase in both modes 
(shown for mode 3) diminishes with increasing strength of 
the locking input. Correspondingly, the radiation line width 
dramatically decreases, by several orders of magnitude for 
few photon input, panel (c). 

4.3. Subharmonic oscillations 

In this section we consider a different class of oscillato-
ry states — subharmonic oscillations [37,81] that are asso-
ciated with temporal modulation of the nonlinearity coeffi-
cients [82,83]. As it was mentioned before, the modulation 
of the magnetic flux through the SQUID affects all the har-
monics of the Josephson inductance. Here we will see that 
driving the flux with frequency close to multiples of a mode 
frequency, nNΩ ≈ ω  will excite oscillation of this mode. 

In Fig. 21 we present the histograms of the cavity out-
put, when it is parametrically driven with frequencies close 
to multiples of the fundamental cavity mode, 03ω , 04ω  and 

05ω  [83]. The outputs presented in right panels exhibit mul-
tiple bright spots indicating multiple phase degeneracy of 
the oscillatory states. At the left panels these states appear to 
coexist with the ground state of the cavity (cf. Fig. 15 for the 
degenerate parametric oscillator). 

To understand the origin of these subharmonic oscillato-
ry states we revisit Eq. (4) for the Josephson potential and 
retain in the driving term, f∝ δ , higher order terms with 
respect to the phase, ( , )n d t∝ φ . Then one finds that for the 
driving frequency 0NΩ ≈ ω  the N th order term of the ex-
pansion is resonant. At the same time, the lowest order Kerr 

Fig. 19. Tilted metapotential of the degenerate oscillator, cut 
along optimum phase direction. 

Fig. 20. (Color online) Phase locking effect under injection of on-
resonance signal [67]. (a), (b) Histograms for output of mode = 3n  
at different injected photon numbers, indicating suppression of 
phase diffusion under increasing injection. (c) Measured output 
photon spectral density (in dB) at different injected photon injec-
tion numbers, the linewidth decreases by orders of magnitude 
with increasing number of injected photons. 
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term in the static part of the potential remains dominant. 
As a result, the quasiclassical Langevin equation takes the 
form (omitting mode index) 

 2 1
( )( | | ) ( ) = 0.N
NiA i A A A∗ −+ δ + Γ +α + ε  (61) 

The pumping coefficient here has a general form 

 ( ) 0= sin ,
2 2

N
N N J

f Fc E sδ
ε  (62) 

where Nc  is a numerical coefficient, the Kerr coefficient α 
is the same as in Eq. (11). 

Introducing the amplitude and the phase of the oscilla-
tion, = | | eiA A θ, we find stationary values of the phase 

0 0 2
( )

2= , = 1, , sin( ) = .
| |NN

k k N N
N A −
π Γ

θ θ + θ
ε

  (63) 

Thus the solution has a discrete, N -fold phase degeneracy, 
which is a general property of subharmonic oscillations. 
This is illustrated in Fig. 22 with a phase portrait for the 
lowest order subharmonic oscillation, = 3N . There are three 
stationary excited states with equal amplitude absolute va-
lues that are phase shifted by 2 / 3π .  

As the expansion of cos ( , )d tφ  in Eq. (4) produces only 
even orders of φ, the above derivation only holds for even 
subharmonics, = 2N k . To excite the odd subharmonics, 

= 2 1N k + , one should employ an asymmetric SQUID with 
different Josephson energies of the junctions, 1 2 =J JE E−  

2 0E−= ≠  [83]. In this case, the potential in Eq. (4) acquires 
an additional term proportional to the SQUID asymmetry, 

2 sin[ ( ) / 2]sin ( , )E f t d t−− φ , which contains the odd-order 
terms. Linearization over ( )f tδ  yields the driving term, 

0( )( / cos( / 2))sin( ( , ) )f t E F d t−−δ φ − φ , that enables excita-
tion of the odd subharmonic oscillations being driven with 
the odd multiples of the mode frequency (here 0 E−φ ∝  is 
a static phase shift). The pumping coefficient in this case 
has the form, 0= ( / 2) cos( / 2) N

N Nc f E F s−ε δ  (for small 
asymmetry), which has similar scaling with growing N  as 
the even subharmonics. 

In the case of odd subharmonics, however, an additional 
effect occurs: The driving term here contains a linear com-
ponent ( , )d t∝ φ , which results in injection of pumping field 
directly into the cavity. The amplitude of this field can be 
appreciable if the pumping frequency is close to one of the 
cavity resonances. This intracavity field produces an addi-
tional pumping effect, current pumping, similar to the de-
generate parametric resonance discussed in Sec. 3.4 for 
amplification of weak signal in presence of strong field. 
The effective pumping strength then gets an addition 

1
0
N

m ms s A−∝ , where mA  is the amplitude of excited cavity 
mode. This intracavity field also produces a cross Kerr 
effect, 2| |mA∝ . 

The period tripling oscillation was experimentally stud-
ied in detail in Ref. 85. The intensity of the observed output 
is presented in Fig. 23. Appreciable output signal is detected 
within a rather narrow strip of pumping intensity but vast 
region of negative detuning, starting from near exact reso-
nance and spreading far beyond the cavity bandwidth 

0( / 2Γ π = 190 kHz). Moreover, the output intensity is found 
to grow with the detuning. This is clearly due to the Kerr 

Fig. 21. (Color online) Experimentally measured histograms of 
N = 3 (a), (b), N = 4 (c), (d) and N = 5 (e), (f) subharmonic oscil-
lations demonstrate N-fold phase degeneracy of oscillator states 
[84]. Central bright spot at left panels indicates cavity ground 
state, other bright spots refer to oscillator excited states; histo-
grams in the left panels are measured at the edge of the oscillation 
visibility demonstrating cross over to the ground state; histograms 
in the right panels are measured in the region of intense output. 
Blurred lines on panels (c), (d) reveal interstate transitions. 

Fig. 22. Phase portrait of the third order subharmonic oscillation, 
the period tripling [85]. The oscillator has four steady states — 
the ground state at the origin, and three excited states at equal 
distance from the origin having phases shifted by 2 / 3π ; all these 
states are stable. 
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effect, which shifts the cavity resonance proportionally to 
the field intensity. To achieve a better control over the de-
vice parameters and enable quantitative comparison with the 
theory, the current pumping scheme was employed. The flux 
pumping was disabled and instead a strong calibrated signal 
was injected into the cavity with frequency 0= 3( )Ω ω + δ , 
and the response was measured at 0ω + δ. Comparison with 
theory gives a good agreement for the frequency threshold 
and the upper boundary of the oscillation region, which co-
incides with the theoretical boundary of the oscillation exist-
ence [85]. However, the observed lower boundary lies far 
above the theoretical prediction. This can be understood as 
an indication of the first order phase transition between the 
oscillator excited states and the ground state, which is analo-
gous to the behavior of the parametric oscillations at red 
detuning discussed in Sec. 4.1 and shown in Fig. 14. An 
important difference of the period tripling oscillation from 
the parametric oscillation is that they do not emerge as the 
result of instability of the ground state — the latter always 
maintains stability. The oscillation amplitude jumps to a fi-
nite value at the edge of existence and maintains stability 
within the whole region of existence. 

5. Quantum fluctuations 

So far we studied parametric phenomena in the classical 
domain. Now we proceed to discussion of quantum proper-
ties of output radiation: quantum statistics and correlation 
functions of outgoing photons. We limit our discussion to 
small quantum fluctuations around classical steady states. 
These fluctuations are conveniently described with linear-
ized Langevin equations. Application of Langevin equations 
to large quantum fluctuations, like critical fluctuations near 
the instability threshold or quantum jumps within multi-
stability regions, requires solving nonlinear operator equa-
tions. To circumvent this difficulty alternative methods are 
applied. Some exact results on critical fluctuations were 
obtained with a master equation approach [68–70], quan-

tum transitions among degenerate oscillatory states were 
investigated in Refs. 71–73, 82, 89. 

From the physics viewpoint the noise of the output ra-
diation results from the environmental noise that enters the 
input port and is “processed” by the parametrically driven 
cavity. For equilibrium environment the input noise con-
sists of the classical thermal component and the quantum 
noise. In what follows we restrict to the zero temperature 
of the environment and consider only quantum noise origi-
nated from the vacuum fluctuations. 

5.1. Squeezed vacuum 

5.1.1. Two-mode entanglement 

In the linear amplification regime, the output noise con-
sists of coupled signal and idler modes, Eq. (21). In the 
quantum regime the photons of these modes are strongly 
correlated. The quantum properties of output noise are fully 
described with the quantum BT, Eq. (21), where quantities 

( )jc ∆  are bosonic operators satisfying commutation rela-
tions, †[ ( ), ( )] = ( )j jjjc c ′′ ′ ′∆ ∆ δ δ ∆ − ∆ . The uv-coefficients 
are given by Eqs. (22), (23). The correlation of two modes is 
also relevant for the nonlinear amplification under the de-
generate resonance, when a classical field from either input 
signal or parametric oscillation fills the cavity. The results 
obtained below are extended to this case simply by includ-
ing the corresponding cross-Kerr effect, nδ → ζ , Eq. (33). 

Consider a single quantum noise mode associated with 
detuning ∆. The input vacuum state is defined by relation 

( ) | 0 = 0nb ∆ 〉 . The output state for such an input is not a 
vacuum state, ( ) | 0 0nc ∆ 〉 ≠ . To evaluate the output vacu-
um state we consider a unitary transformation that gener-
ates the BT [86], 

 †( ) = ( ) ,n nc Sb S∆ ∆  (64) 

 = exp ( ) ( ) ( ) H.c. .n mS d b b
∞

∗

−∞

 
 ′ ′ ′ ′∆ ξ ∆ ∆ −∆ −
  
∫  

It is straightforward to check that this transformation re-
produces Eq. (21), up to a phase factor, if ( )( ) = ( )eir ρ ∆ξ ∆ ∆ , 
where ( ) = arg( ( ) / ( ))n nv uρ ∆ ∆ ∆  is mode independent. The 
operator, (64) is the squeezing operator that transforms the 
input vacuum into the squeezed output vacuum | 0′〉  [87,88] 

 
=0

( )| 0 = | 0 = | ( , ) | ( , ) ,
cosh ( )

N

N

gS N n N m
r

∞ ∆′〉 〉 ∆ 〉 −∆ 〉
∆∑  (65) 

where ( )( ) = tanh ( )e = ( ) / ( )i
n ng r v uρ ∆∆ − ∆ − ∆ ∆ , and 

| ( , )N n ∆ 〉 is the N-photon state at frequency ∆ in corre-
sponding rotating frame. The squeezed vacuum consists 
therefore of the superposition of multiphoton states, each 
consisting of equal number of photons of modes ( , )n ∆  and 
( , )m −∆ . These modes are therefore entangled, while states 
with different | |∆  are uncorrelated. 

Fig. 23. (Color online) Experimentally measured output intensity of 
N = 3 oscillation as function of detuning and driving power; the 
oscillation spreads far outside the cavity bandwidth (< 200 kHz) 
towards the red detuning, oscillation intensity increases with in-
creasing detuning. (Adopted from [51], courtesy of I.-M. Svensson.) 
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The squeezing operator for the degenerate resonance 
has similar form as Eq. (64), where =m n and the lower 
integration limit is set to zero. 

The squeezed vacuum has close resemblance to the BCS 
ground state in the theory of superconductivity (cf. Ref. 89). 
Indeed, consider the limit of small squeezing parameter, 

1r  , then Eq. (65) is an expansion over this small pa-
rameter, and in lowest order it reduces to 

 † †| 0 ( ( ) ( ) ( ) ( )| 0 .n mu v b b′〉 ∝ ∆ − ∆ ∆ −∆ 〉  (66) 

This is the exact analog of the BCS ground state [90], where 
the fermionic operators are replaced with bosonic ones, and 
the correlated states, ( , )p σ  and ( , )p− −σ , in the momentum-
spin space of a superconductor are replaced with the corre-
lated modes, ( , )n ∆  and ( , )m −∆ . 

It is interesting that complex correlated structure of the 
output noise cannot be observed by measuring a single mode. 
In such a measurement one gets access only to the reduced 
density matrix of the mode, which is obtained by averaging 
the two-mode density matrix of the squeezed vacuum over 
the second mode, 
 = Tr | 0 0 |n m ′ ′ρ 〉〈 =   

 
2

2
=0

[ ( )]tanh= | ( , ) ( , ) | .
( )cosh

N

N

r N n N n
r

∞ ∆
∆ 〉〈 ∆

∆∑  (67) 

This equation describes a photon thermal state with an ef-
fective temperature 

 2( ) = .
ln tanh ( )

kT
r

∗ ∆
∆

∆

  (68) 

The degree of the photon-photon correlation is quanti-
fied with the entanglement entropy [92], [ ] =nE ρ  

Tr( ln )n n= − ρ ρ . Such a function is equal to zero for a pure 
product state. For the squeezed vacuum, 

 [ ] =nE ρ   

2 2 2 2cosh ( ) ln [cosh ( )] sinh ( ) ln [sinh ( )].r r r r= ∆ ∆ − ∆ ∆  (69) 

At the zero squeezing parameter the entanglement entropy 
vanishes, and it grows with increasing squeezing parame-
ter, [ ] 2 ( )nE rρ ∆  at 1r  . The maximum value of the 
entanglement can be estimated using Eqs. (35), (36) for the 
maximum gain at the parametric threshold. Assuming for 
the vacuum state, 2| | / 1B Γ , and bearing in mind the rela-
tion, 2 lnr G≈ , we find [39] 

 
2max [ ] ln .
3

n
n

n
E

Γ
ρ ≈

α
 (70) 

All the essential parametric cavity characteristics are quan-
tified with the squeezing parameter: gain, squeezing, en-
tanglement, effective vacuum temperature, and they have 
maximum values defined by the ratio of the dissipation 
over the nonlinearity. 

5.1.2. Four-mode entanglement 

The results of the previous section do not directly apply 
to the noise in presence of a strong signal under non-
degenerate resonance. It is because now four modes be-
come coupled. To find the form of the squeezing operator 
in this case we resort to the balanced mode model and BT 
in the supermode basis, Eqs. (42), (43). These equations 
have the form of the equations for the degenerate reso-
nance, and therefore they can be written on the form, 

†=c Sb Sσ σ , with the squeezing operator being the product 
of operators in Eq. (64) for both supermodes,  

 
0

= exp ( ) ( ) ( ) H.c. ,S d b b
∞

∗
σ σ σ

σ

 
 ′ ′ ′ ′∆ ξ ∆ ∆ −∆ −
 
 
∑ ∫  (71) 

here ( )( ) = ( )eir ρ ∆σ
σ σξ ∆ ∆ , ( ) = arg( ( ) / ( ))v uσ σ σρ ∆ ∆ ∆ . 

To get equation for the squeezed vacuum in the original 
basis, we note that S  is a scalar in the supermode space, 
therefore it is not affected under rotation to the original 
basis. Furthermore, presenting the exponent in Eq. (71) in 
the original basis, we get [46] 

 
1| 0 =

cosh ( )cosh ( )r r+ −
′〉 ×

∆ ∆
  

 ( )† † † †exp e ( ) ( ) e ( ) ( )
2

i i
n n m m

g g b b b bψ − ψ+ −+ × ∆ −∆ + ∆ −∆ ×  
  

 ( )† † † †exp ( ) ( ) ( ) ( ) | 0 ,
2 n m m n

g g b b b b+ −− × ∆ −∆ + ∆ −∆ 〉  
  

where = tanh eig r ρσ
σ σ− . This four-mode squeezed vacu-

um is a superposition of multiphoton states that contain all 
possible pairwise combinations from the quartet, (1, )±∆ , 
(2, )±∆ . It is worth noting that the admixture of the pairs 
from the same mode (second line in the equation) is entirely 
defined by the intracavity field, nA , while the coefficient 
g g+ −+  turns to zero when 0nA → . Furthermore, this con-
tribution is sensitive to the phase difference ψ  of the strong 
field modes. All the properties of the four-mode squeezed 
output can be evaluated using the supermode basis. 

5.2. Homodyne detection and SNR 

In circuit-QED the output field is measured by measur-
ing voltage at the output port. The voltage is related to the 
phase of the output field via the Josephson relation, 

( ) = ( / 2 ) ( ,0)V t e tφ , hence it represents one of the quadra-
ture. The measurement is usually done by using a homodyne 
detection scheme: the output field is mixed with a strong 
field of a local oscillator (LO), ( )e c.c.i t inLOA ω +δ + θ + , and a 
low frequency envelope is filtered out producing a quadra-
ture that depends on the phase of the local oscillator 

 ( ) = [( ( ) ( ))e h.c.].i
n nX t C t c tθ − θ+ +  (72) 

The spectrum of this output is concentrated around the 
frequencies of the measured mode, nω + δ , within band-
widths, nΓ . In Eq. (72) ( )nC t  is the classical component of 
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the output and ( )nc t  is the noise component represented by 
the bosonic operator. Variation of the local oscillator phase 
θ allows to explore all the output quadratures. 

The output is quantified with a spectral power defined 
as [45,78] 

 
2

0
1( ) = ( )e = ( ) ( ),lim 2

T
i t

T T

P dt X t P S
T

∆

→∞ −

∆ ∆ + ∆∫  (73) 

where 0 ( )P ∆  represents the classical component and has 
the form for the on-resonance input tone, = 0∆ ,  

 ( )20 ( ) = 2 ( ) e e .i i
n nP C C− θ ∗ θ∆ πδ ∆ +  (74) 

The second term in Eq. (73) describes the noise, and it is 
commonly quantified with the squeezing spectral density 

 ( ) = e ( ) (0) .i t
n n nS dt x t x

∞
θ ∆ θ θ

−∞

∆ 〈 〉∫  (75) 

The quantum expectation values here are evaluated with 
respect to the input vacuum state. This spectral density can 
be expressed through the Fourier harmonics of the noise 
quadratures 

 †( ) e ( ) ( )e ( )e ,
2

i t i i
n n n n

dtx x t c c
∞

θ ∆ θ − θ θ

−∞

∆ = = ∆ + −∆
π∫  (76) 

giving 

 ( ) = ( ) ( ) .n n nS d x x
∞

θ θ θ

−∞

′ ′∆ ∆ 〈 ∆ ∆ 〉∫  (77) 

Here we present the noise spectral densities for differ-
ent amplification regimes and evaluate the signal to noise 
ratio (SNR) of the output that certifies the amplification 
quality. The SNR is defined 

 0 ( )
SNR = ,

( )n

P

S

θ

θ

∆

∆
 (78) 

where integration is made over some bandwidth, 

( / 2, / 2)−∆ ∆ . For the input, the signal power is, 0 =Pθ  
2 28 | | ( )cosn BB= π θ− θ , and vacuum fluctuations have a 

uniform spectral density, ( ) = 1nSθ ∆ , establishing a bench-
mark 

 
2

in,max
| |

(SNR) = 8 .nB
π

∆
 (79) 

5.2.1. Linear amplification 

Consider now the the linear amplification under non-
degenerate resonance. The output signal here is, = (0) ,n n nC u B  

hence 2 2
0 = 8 (0) | | ( arg (0)).cosn n BP G B uθ π θ− θ −  The 

spectral density of the output noise is phase insensitive, 

 2 2( ) = (| ( ) | | ( ) | ) = ( ) ( ) 1,n n n n mS u v G Gθ ∆ ∆ + −∆ ∆ + ∆ −   

  (80) 
and gives the ratio, for large gain and sufficiently small 
bandwidth, (0) 1nG  , th∆ δ ,  

 
2

out, max in, max
(0) | | 1(SNR) 8 (SNR) .

2(0)
n n

n

G B
Sθ

≈ π ≈
∆

 (81) 

This result reflects the fact that the signal and noise are 
equally amplified in the linear regime, and the reduction of 
the SNR by one half is due to the noise contribution from 
the idler [56,57]. 

For the degenerate resonance, one has to include the in-
terference effect both for the signal and the noise. For the 
signal we have, (0) = (0) (0) (0) (0)n n n n nC u B v B∗+ , and in 
the large-gain limit 

 2 2 2
0 ( ) = 32 (0) | (0) | cos ( (0) ) cos ( ),n n BP G B∆ π χ −θ θ + η   

  (82) 
where ( )( ) = (1/ 2) arg( ( ) ( )n nu vχ ∆ ∆ −∆ . For the noise we 
get, using symmetries of the uv-coefficients,  

 ( )2 ( ) 2( ) = 2sinh 2 ( ) ( ) .cos
rnn nS e r− ∆θ ∆ + ∆ χ ∆ −θ  (83) 

The noise spectral density is illustrated in Fig. 24 for the 
maximum amplification and squeezing directions. For the 
large gain and small bandwidth this reduces to 

 ( )2( ) = 4 (0) (0) .cosn nS Gθ ∆ χ − θ ∆  (84) 

Here we see that the θ-dependences of both signal and 
noise intensities are the same, giving relation 

 
2

out, max in, max
| |

(SNR) 8 = (SNR) .nB
≈ π

∆
 (85) 

This result is consistent with the well-known property of 
linear amplification that there is no added noise under the 
phase sensitive amplification [56,57]. 

Fig. 24. (Color online) Linear squeezing spectra ( )nSθ ∆  vs input 
detuning for two-mode squeezing under nondegenerate and de-
generate resonance [39,46]. Nondegenerate resonance (red solid); 
degenerate resonance, = / 4θ −π  (black dashed) and = / 4θ π  
(red dashed). The amplification (squeezing) is localized in small 
detuning interval, j∆ Γ  at large gain. [ = 0.95 n mε Γ Γ , = 0δ , 

= 3m nΓ Γ , 0=n nΓ Γ .] 
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5.2.2. Nonlinear amplification 

In the nonlinear amplification regime the gains and op-
timal squeezing directions change for both the signal and 
the noise because of the Kerr effect. The magnitude of the 
Kerr frequency shifts are however different for signal and 
noise (compare Eq. (33), with Eqs. (37) and (39)). This 
difference can be seen in Fig. 9: because of a convex shape 
of the output vs input curve, the differential gain, which 
characterizes the noise, is smaller than the gain of a strong 
signal. Therefore, one should anticipate enhanced SNR 
value in the nonlinear regime. This argument, however, 
does not take into account additional effect of the squeez-
ing: the anisotropy of the signal gain and of the noise spec-
tral density do not generally coincide. Ideally one would 
wish that the direction of noise squeezing would be close 
to the direction of maximum signal amplification. Unfor-
tunately, for the degenerate resonance it is not the case 
[39]. A comparison of uv-coefficients for signal and noise 
at large gain close to the instability threshold, 

th ,n nδ ζ Γ   shows that the θ-anisotropy of both quan-
tities is similar, see Fig. 25(a). Therefore SNR is given by 
the ratio of gains, for signal 2 2 2(0) = (2 / )n n nG Γ ζ , and for 
noise, 2 2 2(0) = (2 / 3 )n n nG Γ ζ , thus 

 
2

out, max in, max
| |

(SNR) 72 = 9(SNR) .nB
≈ π

∆
 (86) 

This is nine times larger than the linear result, Eq. (85). 
Numerical computation presented in Fig. 25(a) supports 
this analytical result. Here the bold lines, indicating the 
output squeezing power ( = 0)nSθ ∆  (red solid), and the 

normalized signal power 2
0 / | |nP B  (dark green dashed) 

have rather close squeezing directions. In comparison, the 
thin lines show these quantities in the linear approxima-
tion, = =n nζ ζ δ  and =n nε ε , when the squeezing direc-
tions exactly coincide. 

For the nondegenerate resonance the analysis is more 
complex due to four-mode squeezing, it can only be done 
numerically or analytically for the balanced mode model 
[46]. The result of numerics is shown in Fig. 25(b) for the 
representative case of signal input, 2| | = 0.1n nB Γ , at the 

threshold, =n nε Γ . The figure compares (0)nSθ  (red line) 

with the relative spectral power of the signal 2
0 / | |nP Bθ  

(green dashed line). The contributions from supermodes 
have different squeezing directions, shifted by more than 

/ 2π . While the squeezing direction of the =σ + 
supermode (dark blue dotted line) is close to the squeezing 
direction of the signal, the squeezing direction of the do-
minant =σ − supermode (light blue dotted line) approxi-
mately coincides with the maximum of signal amplifica-
tion. This results in strong suppression of the overall noise 
in the direction of the maximum signal amplification. The 
maximum SNR value is achieved at = 0.06Bθ θ + π, where 

2
0 1820 | |nP B≈ π  and (0) 14.5nnS ≈ , giving 

 
2

out, max
| (0) |

(SNR) 125 .nB
≈ π

∆
 (87) 

This is about 30 times larger than the linear result, 
Eq. (81), and 15 times larger than the input value. 

6. Concluding comments 

Parametric effects in c-QED is a rich and interesting 
field of research with great potential for applications in 
quantum information technology. The field is far from be-
ing fully explored. Some phenomena, such as quantum 
limited parametric amplification and frequency conversion 
are already included in c-QED toolbox. Other phenomena 
are waiting for their exploration, for example, phase lock-
ing and synchronization effects under nondegenerate para-
metric resonance and subharmonic oscillations, or experi-
mental testing of the effect of enhancement of SNR under 
nonlinear amplification. 

In this review we restricted to the classical description of 
nonlinear parametric effects and small quantum fluctuations. 
Some interesting results on large fluctuations reported in 
literature are left outside our discussion. This concerns critical 
fluctuations in the vicinity of parametric threshold [68–70], 

Fig. 25. (Color online) Squeezing of output quantum noise spec-
tral density and strongly amplified on-resonance signal: (a) for 
degenerate resonance at = 0.95ε Γ, and (b) for nondegenerate 
resonance at =ε Γ  [39,46]. Solid red lines refer to quantum noise 

squeezing spectrum (0)nSθ , bold green dashed lines refer to clas-

sical quadrature response 2
0 / | |nP Bθ . In (a) the squeezing direc-

tions almost coinside for the signal and noise; thin lines show 

(0)nSθ  (orange solid line) and 2
0 / | |nP Bθ  (light green dashed line) 

in the linear approximation. In (b) blue dotted lines show 

misoriented supermode contributions to (0)nSθ ; squeezing direc-
tion of noise almost coincides with the signal maximum amplifi-

cation. [ = 0,δ  2| | = 0.1 ,nB Γ  = 0,Bθ  = ,n mΓ Γ  = =n mα α  
/ 100= Γ , 0=n nΓ Γ .] 
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and transitions between phase degenerate oscillatory states 
[71–73,89]. Some problems related to large quantum fluctu-
ations are not yet explored, for instance quantum statistics of 
nondegenerate parametric oscillation, or dissipative phase 
transition in the bistability regime of subharmonic oscilla-
tions. Another interesting direction to explore is the possibil-
ity to use degenerate states of Josephson parametric oscilla-
tors coupled by mutual injection locking for quantum 
simulation as it is done in a quantum optics [93]. 

Parametric effects in c-QED is an excellent playground 
for testing the possibility of quantum information processing 
with continuous variables. By encoding quantum information 
in the oscillator bosonic states rather than discrete states of 
conventional qubits, one can envision efficient computational 
protocols and error correction schemes [94]. Recently pro-
posed implementation of these ideas with c-QED [95] is 
closely connected to the physics of parametric oscillatory 
states discussed here. Generation and stabilization of quan-
tum cat states under degenerate parametric resonance was 
recently studied [75,96], similar questions can be addressed 
regarding multicomponent subharmonic oscillatory states. 

The scope of this review is limited to the c-QED field. 
However, many related quantum parametric effects are 
also available in quantum acoustics and optomechanics. 
For instance, the nondegenerate parametric resonance in a 
hybrid optomechanical resonator may involve one mechan-
ical and one electromagnetic degree of freedom [97]. In 
fact the quantum amplification and frequency conversion 
are observed in such devices in the microwave domain 
[98–101]. The same nondegenerate parametric oscillation 
effects as described in Sec. 4.2 were observed in a mechan-
ical oscillator [102]. Furthermore, the demonstration of the 
frequency conversion between the microwaves and tele-
com optics in parametrically driven optomechanical reso-
nators [103,104] paves a way for integrating c-QED devic-
es in a long distance quantum communication network. 
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Параметричні ефекти в квантовій 
електродинаміці ланцюгів 

(Огляд) 

Waltraut Wustmann and Vitaly Shumeiko 

Пропонується огляд останніх досліджень в області кван-
тових параметричних явищ в надпровідних резонаторах, що 
перебудовуються, які містять джозефсонівські переходи. Об-
говорюються фізичні процеси в резонаторах при параметрич-
ному збудженні та теоретичні методи їх опису. Детально 
обговорюються механізми посилення сигналів і перетворення 
частоти при виродженому й невиродженому параметричних 
резонансах, включаючи процеси стиснення квантового шуму 
і фотонні кореляції. Експериментальні досягнення в цій об-
ласті відіграють вирішальну роль в успішному застосуванні 
квантових параметричних підсилювачів для квантових інфор-
маційних технологій. Ми також обговорюємо багатофотонні 
процеси розпаду та експерименти щодо порушення парамет-
ричних і субгармонічних коливань. 

Ключові слова: квантова електродинаміка ланцюгів, резона-
тор, який перебудовується, джозефсонівський перехід, пара-
метричний підсилювач, параметричний резонанс, квантове 
стиснення, відношення сигнал-шум. 

Параметрические эффекты в квантовой 
электродинамике цепей 

(Обзор) 

Waltraut Wustmann and Vitaly Shumeiko 

Предлагается обзор последних исследований в области 
квантовых параметрических явлений в перестраиваемых 
сверхпроводящих резонаторах, содержащих джозефсоновские 
переходы. Обсуждаются физические процессы в резонаторах 
при параметрическом возбуждении и теоретические методы 
их описания. Подробно обсуждаются механизмы усиления 
сигналов и преобразования частоты при вырожденном и невы-
рожденном параметрических резонансах, включая процессы 
сжатия квантового шума и фотонные корреляции. Экспери-
ментальные достижения в этой области играют решающую 
роль в успешном применении квантовых параметрических 
усилителей для квантовых информационных технологий. Мы 
также обсуждаем многофотонные распадные процессы и 
эксперименты по возбуждению параметрических и субгар-
монических колебаний. 

Ключевые слова: квантовая электродинамика цепей, пере-
страиваемый резонатор, джозефсоновский переход, парамет-
рический усилитель, параметрический осциллятор, квантовое 
сжатие, отношение сигнал-шум. 
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