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In this paper, we calculate the thermodynamics of the system of anyons with magnetic charges in the magnet-
ic field. We demonstrate how the contribution of the energy spectrum correction due to magnetic charges affects
the second virial coefficient and the magnetic susceptibility. Dependences of the respective corrections as func-
tions of temperature and the anyonic parameter are presented.
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1. Introduction

Problems in condensed matter physics often involve
complicated mathematical apparatus and effective models
are efficient tools for description of many phenomena. In the
present paper, we join two exotic physical models aiming to
demonstrate the calculation of thermodynamic functions in
systems where planar geometry can induce non-standard
types of excitations.

Back in 1977, Leinaas and Myrheim proved that the tra-
ditional division of particles into fermions and bosons blurs
as one goes into a two-dimensional space [1]. In 1982,
Wilczek proposed for such particles the term “anyons” be-
cause upon the permutation of two particles the phase of the
wave function can change by any value, not only 0 or & [2].

Anyons are used in the description of the fractional quan-
tum Hall effect, which is observed in two-dimensional sys-
tems of electrons at low temperatures and strong magnetic
fields [3-6]. On the basis of anyons it was proposed to con-
struct a topological quantum computer, which, due to its
topological nature, should be much more tolerant to interfer-
ence and errors than an “ordinary” quantum computer [7,8].
Note that some hints towards experimental observations of
anyonic excitations were reported [9-11].

The second model we consider is inclusion of hypothet-
ical magnetic charges into the problem, alongside the ordi-
nary electric charges. The existence of magnetic charges, so-
called magnetic monopoles, was theoretized yet in 1890s
[12,13]. A consistent quantum-mechanical model was sug-
gested by Dirac [14,15], which in particular explains the
quantization of electric charge. Magnetic monopoles are
perhaps the best known modifications of the electromagnetic
field equations arising in several formulations [16-19],
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while some exotic approaches include also deformations of
field equations due to coordinate non-commutativity and
minimal length [20-23].

Quasiparticles imitating magnetic monopolies were found
in solids (at distances much larger than the lattice constant).
Examples include the spin ice of dysprosium titanate
Dy, TioO7 [24]. It was also shown that the magnetic mono-
pole can appear in the momentum space of ferromagnetic
crystal solids in the low-energy region (~ 0.1 to 1eV) in
the context of the anomalous Hall effect, e.g., in STRuO3
[25]. Theoretically, such formations can exist also in the
Bose—Einstein condensate. Computer simulations allowed
creation of vortices, which behaved very similarly to the
Dirac magnetic monopoles [26].

We thus see than both anyons and magnetic monopoles
arise as effective models in condensed matter physics, in
particular at low temperatures and in constrained geome-
tries. A simultaneous study of these two models envisages
the coincidental consideration of relevant effects.

The paper is organized as follows. In Sec. 2, we briefly
describe the approach used to introduce magnetic charges
and summarize previous results about the spectrum of the
respective two-anyon problem. Section 3 contains details of
calculations of the second virial coefficient, with special
attention on the correction due to magnetic charges. Calcu-
lations of thermodynamic functions is demonstrated in
Sec. 4 for the magnetic susceptibility. Brief discussion in
Sec. 5 concludes the paper.

2. Magnetic charges and anyonic spectrum

To describe the electromagnetic field in a system involv-
ing magnetic charges we will follow the Cabibbo-Ferrari
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approach [27,28]. The four-vector of the electromagnetic
potential associated with electrical charges is denoted as
Aée), while the respective magnetic contribution is A™.
For particle with mass m, electric charge e, and magnetic
charge p, the action is defined as

2
_ 2 v € A@) gyl M am) &l _
S—J{—mc [l——szt—EAZi dx _EAi dx }—

c

2
= J.{—mc2 ,1—\/— —ep® —peM 4+ LyNOIv EA(m)v} dt =
c2 c c

= jcdt. (1)

Note that the Einstein summation over the repeating indi-
ces & is implied.
So, the Lagrangian is given by

2
£ =-mc? /1—\;—2 —ep® —pe™ +%A(e)v +%A(m)v. )

The generalized momentum P =L/ ov is linked with
the mechanical momentum p = mv(l—vzlcz)’ll2 by the
following relation:

p:p_EA(e)_EA(m)_ 3)
C C

Note that magnetic field equal

c

(4)
In a two-dimensional space, the permutation of two par-
ticles can yield any phase change in the wave function,

Ry 12) = e™ |12), (5)

where the real number a €[0;1] is the so-called anyonic
parameter. It interpolates between the Bose—Einstein statis-
tics (o = 0) and the Fermi-Dirac statistics (o =1). In the
case of 0 < a <1, we get anyons.

The solution of the two-anyon problem vyields the fol-
lowing wave function corresponding to the relative motion
[29]:

P(r,¢) = e'("R(r). (6)

The energy eigenvalues for two anyons in a constant mag-
netic field By are [29]

Eny =[2n+[l1-a|-(I-a)+1]he, )
where n=0,1, 2,..., 1=0,+2,44,..., and the cyclotron
frequency

eBO
O, = ——. 8
¢ = ome 8
1030

Note that these are of two types:

EX = @n+Dho,  for 1>0, 9)

EQ =[2n+2|1+20+1)io,  for I<0.  (10)

We consider next the system with magnetic charges
placed in a constant magnetic field. This is ensured by
choosing the vector potential terms in the form

A = %[BO, r],  AM =g (11)
where By and a are constant vectors. So,
B =B +£a. (12)
c

Let us consider that a=|a| has a small magnitude, so
that the time dependence is weak. That can make possible
to discuss problem in adiabatic approximation.

In [30], the spectrum of two anyons was calculated for
a = ae,. The expressions for the correction to energies (9),
(10) can be shown to equal

2
AEr(11I) _h° | 2n ezu . Q(n,I,a)-P(nl,a) Byat  (13)
' m \ mo. 4h%c rn+l+l-a)

for1=2,4,6...,
2 — f— —
AE® =17 ] 2 ezuzQ(n,lll, 0 =P([1],-0) g o0
' m \|mo. 4p%c r(n+1+|1|+a)
for1=0,-2,-4,..., (14)

where coefficients Q and P are expressed through the
hypergeometric function:
QM la) = Il-o+3/2)r(n-1/2)r(n+l-a+1) N
nC(-1/2)r(l—o+1)

XSFZ[—n,l—OH-g,g; —n+g,l—oc+l; 1} (15)

I'l-o+1/2)(n+1/2)r(n+1-a+1) y

Pinl,a) =(I-a) nIC(1/2)I(1 - o +1)

11 1
xaF | —nl—-oa+=,=;—-n+=,l—a+1;1]. 16
3 2( '3 > j (16)

It gives us the correction to energy at the coefficient
2
m \ Mo 4h°c

The respective numerical factors are of the orders of
unity [30], for instance:

n=0,1=0: 0.886227-1.228570.+2.30937a> +...,
n=1,1=0: 1.55090-1.042220.+1.397890:% +...,

etc.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 8



Corrections to thermodynamics of the system of magnetically charged anyons

Let us estimate the values of a suitable for perturbative
calculations, so that the energy corrections remain small

enough:
AE 2
nt LR 2 e paicr (19)
Eni  fiog m\'mog 4522

Taking into account Dirac’s quantization condition [14] for
the magnetic charge,

LT

where k=1,2,3,..., (19)
hec

AE
nl Nkit he _2c , (20)
Eng 2¢ \e? mo

where e? / (hc) =~ 1/137 is the fine structure constant. Tak-
ing into account typical values for the cyclotron frequen-
cies mg ~ 10557t corresponding to magnetic fields ~10tG
and m as the mass of electron, we find

we get

AE?I" ~ %t 1017 <1, 1)
so that
%t <10 G5, 22)
and for t ~ 1/ o
% <101G, (23)

Note that magnetic field of such low orders are detectable
by modern magnetometers [31]. For fields ~10% G we ob-
tain in the similar fashion the estimation

2<10%G. (24)
C

3. Second virial coefficient

The equation of state describing the dependence be-
tween pressure p, temperature T, and concentration
p=N/A where N is the number of particles and A is the
area (an analog of volume in a two-dimensional geometry)
can be written as the virial expansion

p=pT[L+by (A2 +by(@2) 4. ], (25)

where the thermal de Broglie wavelength for a particle of

mass m is
2nh?
A :,/ . 26
mT (26)

Based on the cluster expansion, the expression for the
second virial coefficient can be written as follows, cf. [29]:

1 5,25(0)-2,(0)
4 7 ’

by (o) = - 27)
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where the partition function Z, is given by

1

Zj=——— (28)
L7 Asinh2Bho, /2

with B=1/T being the inverse temperature and Z, (o)
being the partition function of the two-anyon problem.

So, the correction to the second virial coefficient can be
defined as
AZZ ((X) - AZZ (0)

Ab =-2
AL 2

(29)

The correction to the partition function consists of two
terms (for | > 0 and for 1 <0):
AZ =AW A7), (30)

Taking into account that

z =3 PETED S5 PEnl (1 _paE, ),
nl n

we obtain

az=-pYye " MAeD +aER ] @)

n,l
Note that positive Is yield divergent expressions when
calculating the contribution from AEr(LlR in AZ (o). Howev-
er, to obtain Ab, we only need to find the difference
AZ (o) — AZ(0), which appears finite. The respective con-
tribution exhibits rather slow convergence, 1/@,

where I, is the upper limit of summation over |. This is
demonstrated in Table 1. The accuracy of numerical fitting
is of the order 1076 —107°.

Table 1. Results for sums over | in AZ(a)—AZ(0) at some
values of o and n depending on the upper limit I,4x. The values
at Imax = oo correspond to the results of numerical fitting

e a=0.1 a=05
n=0 n=1 n=0 n=1
100 0.01958 0.0465 0.1062 0.2460
1000 0.02079 0.0501 0.1122 0.2640
10000 0.02117 0.05126 0.1141 0.2698
20000 0.02121 0.05144 0.1144 0.2706
50000 0.02124 0.05161 0.1146 0.2712
100000 0.02133 0.05167 0.1147 0.2716
0 0.02134 0.05182 0.1150 0.2724

Using (13)—(16), we can calculate AZ(a)—AZ(0) and
obtain the corrections to the second virial coefficient at the
factor By [see Eq. (17)]. For convenience, we take hwm, =1
as the energy unit. The results are shown in Fig. 1 and Ta-
ble 2 at different values of the inverse temperature § and
the anyonic parameter a.
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Fig. 1. The correction to the second virial coefficient at the factor
of By .

Table 2. The correction to the second virial coefficient

Aby (o) atthe By factor

o p=01 | B=05 | Bp=10 | p=20
0.0 0.0 0.0 0.0 0.0
001 | -0.000078 | —0.001948 | —0.004238 | —0.007197
0.05 | -0.000255 | —0.008358 | —0.01745 | -0.02686
01 |-0000217 | -0.01377 | -0.02722 | -0.03645
0.2 0.000551 | —0.01825 | -0.03175 | -0.02806
0.3 0.002038 | —0.01690 | —0.02428 | —0.003644
0.4 0.004092 | —0.01167 | —0.01031 | 0.02545
0.5 0.006616 | —0.003747 | 0.007202 | 0.05498
0.6 0.009545 | 0.006124 | 0.02663 | 0.08366
0.7 001040 | 001746 | 004710 | 0.1114
0.8 001646 | 002995 | 0.06819 | 0.1385
0.9 0.02039 | 004339 | 008971 | 0.1655
1.0 002461 | 005766 | 0.1117 | 0.1930

Figure 1 shows that near the bosonic side (parameter
o € (0;0.5), depending on f3) the correction Ab, has nega-
tive values. So, the nature of statistical interaction changes
the contribution into the thermodynamics as o increases.
Note that this statistical attraction / repulsion depends on
the sign of the product electric and magnetic charges ep
which defines the parameter .

As o approaches the fermionic side, oo — 1, the correc-
tion to the second virial coefficient becomes linear. This
observation might help simplifying numerical calculations
in this limit.

4. Magnetic susceptibility

Magnetic susceptibility can be written through the mag-
netization as a derivative with respect to the magnetic field:

oM

=—, 32
X=>5 (32)
where M is defined as
oF
M=—-——. 33
B (33)

1032

The Helmholtz free energy F is expressed through the par-
tition function Z of the system, F =-TInZ. Using (32)
and (33), we obtain y as

o°F _8°TInz
oB?

In the principal approximation, considering N noninter-
acting particles, we can rewrite Z through the one-particle

partition function Z; as Z :le. In this way, F can be
written as

. (34)

F=-TInZ=-NTInz, (35)
and accordingly the magnetic susceptibility is
2
InZ
4 =NTZ =y (36)
oB

We will consider the specific magnetic susceptibility,
that is, relative to one particle:

2?Inz,

oB?

Using (28), we have the following expression for y:

_( he jz 2T

"0~ \amer sinhz—hwC |

2T

Obviously, taking into account (29), we also obtain that
correction to magnetic susceptibility due to the anyonic con-
tribution is proportional to correction to the second virial
coefficient:

X
=2 =T 37
X0 = (37)

(38)

52
Ay ~ —2Ab2 (o). (39)
oB
As analytical expressions are rather cumbersome, this cor-
rection was calculated numerically. The results are plotted
in Figs. 2, 3 for different temperatures and values of the
anyonic parameter.
The Ay correction does not change sign at temperatures
T = 0.7. At lower temperatures, the bosonic and fermionic
sides correspond to different signs of the correction, with
the point of Ay =0 shifting gradually to the bosonic side
o = 0 as the temperature lowers.

Ay 0

0 0.2 0.4 0.6 0.8 1.0
a

Fig. 2. The correction to the magnetic susceptibility.
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Fig. 3. Qualitative picture of the correction to the magnetic
susceptibility Ay as a function of the anyonic parameter o and
temperature T . Horizontal plane corresponds to Ay = 0.

5. Conclusions

In this paper, we have considered the system of anyons
in the magnetic field with magnetic charges and demon-
strated approaches to calculate thermodynamic functions.
Using results for the spectrum of a two-anyon problem
accounting for the contribution from the magnetic charges,
we have calculated the correction Ab, to the second virial
coefficient. From the obtained dependence one can see that
on the bosonic side (anyonic parameter o < 0.5) this cor-
rection has the extremum (minimum or maximum depend-
ing on the sign of the product of the electric and magnetic
charges eu).

The correction to the second virial coefficient allows for
calculation of the thermodynamic functions, which has been
demonstrated by defining the correction to magnetic suscep-
tibility depending on temperature and the anyonic parame-
ter a.

The presented approach can be used to calculate ther-
modynamic functions in condensed matter systems, where
anyonic statistics and magnetic charges appear effectively.
This applies also to calculations of magnetic properties in
other fractional-statistics systems, cf. [32].
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lMonpaBku 00 TEpMOAMHAMIKM CUCTEMW EHIOHIB
3 MarHiTHMMK 3apsagamm

BoroaHa Cobko, AHapin PoBeHuak

3po0ieHO PO3paxyHKH TEPMOJHHAMIKA CHCTEMH CHIOHIB 3 Ma-
THITHUMH 3apsiaMyd B eleKkTpomarHitHomy modji. ITokasaHo, sk
BHECOK Y ONPABKY /10 CHEPreTHYHOTO CIIEKTPa, MOB'I3aHMil 3 Mar-
HITHAMH 3apsiiaMy, BIUTUBAE Ha JAPYTH BipianbHuii KoedilieHT Ta
MAar”iTHy CHpPHHWHSTINBICTh. HaBeneHo 3alle)KHOCTI BIATIOBITHUX
MOMPAaBOK SIK QYHKIIT TeMIIepaTypH it eHIOHHOTO mapamerpa.

KirouoBi crnoBa: eHiOHH, MarHiTHHH 3apsij, APYTUH BipiaJbHUHA
KoeQilli€HT, MarHITHA CIIPUAHSATINBICTS.
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|_|OI'IpaBKVI K TepMmoanHamMmmnke cuctemMmbl 3HMOHOB
C MarHUTHbIMU 3apAagamun

BborgaHa Cob6ko, AHapen PoBeH4ak
Hposeneﬂm pacye€Tbl TEPMOAUHAMHUKU CUCTEMBbI SHUOHOB C

MarHUTHBIMH 3apsJaMH B 3JIEKTpPOMarHUTHOM 1oie. IlokasaHo,
Kak BKJIaJ] B TONPABKy K SHEPIETHUECKOMY CIIEKTPY, CBSI3aHHBIH

1034

C MarHUTHBIMH 3apsilaMy, BIMSET Ha BTOPOIl BUPHAIBHUH KO3(]-
(UIUEHT U MarHUTHYIO BOCIIPHUMYHMBOCTG. [IpHBe/IeHEI 3aBHCH-
MOCTHU COOTBETCTBYIOIIUX MOMPABOK Kak QYHKIMU TEMIIEPATYpHbI
Y SHUOHHOI'O IIapaMeTpa.

KuntoueBble crioBa: 3HHOHBI, MAarHUTHBIN 3aps], BTOPOI BUpHAIlb-
HUH K03 UIMCHT, MarHUTHAS BOCIIPUUMYHBOCTb.
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