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A thermally driven single-electron transistor with magnetic leads and a movable central island (a quantum 
dot) subject to an external magnetic field is considered. The possibility of a mechanical instability caused by 
magnetic exchange interactions between spin-polarized electrons in this system was studied by the density 
matrix method. We proved analytically that for noninteracting electrons in the dot there is no such mechanical 
instability. However, for finite strengths of the Coulomb correlations in the dot we numerically found critical 
magnetic fields separating regimes of mechanical instability and electron shuttling on the one hand and damped 
mechanical oscillations on the other. It was shown that thermally induced magnetic shuttling of spin-polarized 
electrons is a threshold phenomenon, and the dependence of the threshold bias temperature on model parameters 
was calculated. 
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1. Introduction

Single-electron shuttling is a nonlinear, nonequilibrium, 
and temporally nonlocal nanoelectromechanical phenome-
non first predicted in Refs. 1 and 2. Intriguingly, the simple 
classical oscillation of a charged particle between the 
plates of a voltage-biased capacitor (electric pendulum) 
acquires new features in the mesoscopic regime, which 
lead to novel physical effects. The interplay between elec-
tron tunneling, Coulomb blockade of tunneling and retar-
dation effects on the mechanical oscillations of a movable 
quantum dot (QD), placed between voltage-biased leads of 
a mesoscopic transistor, yields a mechanical instability 
resulting in QD oscillations. This leads to a strong (expo-
nential) increase of the electric current through the 
mesoscopic device, which can significantly contribute to 
new functionalities of molecular transistors [2] (see also 

the review [3]). There are various experiments, dealing 
with shuttle-like electron devices (see, e.g., Refs. 4 and 5). 

An electric field, produced by a bias voltage acting on a 
QD charged from the source electrode, always attracts the dot 
to the drain electrode, thus providing a necessary condition 
for electron shuttling. If the dot is not pinned and dissipation 
in the mechanical subsystem is weak, electron shuttling al-
ways occurs when the (symmetrically applied) bias voltage 
exceeds a threshold value [2], th> = (2/ )( )V V e δε + ω , 
where 0= Fδε ε − ε  is the energy of the single QD electron 
level measured from the Fermi energy of electrons in the 
leads, Fε , ω is the angular frequency of dot oscillations, 
and e−  is electron charge. In the shuttle regime of electron 
transport the amplitude of dot oscillations saturates (limit-
ing cycle) at a certain value m ≥ λ  (where λ is the char-
acteristic tunneling length) due to the specific nonlinear 
and nonlocal in time dynamics of the mechanical subsys-
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tem. Formally, saturation is explained by the fact that the 
calculated positive (when shuttling occurs) work done by 
the electric field during a closed dot trajectory stops to 
grow when the oscillation amplitude reaches its satura-
tion value and both tunneling charging and discharging of 
the QD are strongly enhanced. (Note that the charge of 
the QD is changed due to electron tunneling to and from 
the dot.) A specific feature of the shuttling regime (peri-
odic dot oscillations) of electron transport in single-
electron transistors (SET) is a strong suppression of low-
frequency noise compared with the shot noise, measured 
in a standard SET [6]. 

In a single-electron transistor with magnetic leads (see, 
e.g., Ref. 7, where a fullerene-based transistor with nickel 
leads was studied) electric shuttling of spin-polarized elec-
trons can be controlled by an external magnetic field thus 
making the SET a new spintronic device [8]. In Ref. 9 a 
new mechanism of shuttling of spin-polarized electrons 
was suggested. It is based on the assumption that (magne-
tic) exchange forces, produced by the interaction of the 
electron spin in the dot with the magnetization in the leads, 
is larger than the electric force in a voltage-biased device. 
This assumption is supported by experiments such as 
Ref. 7, where the exchange field experienced by an elec-
tron spin in the dot was observed to be (in energy units) of 
the order of 10 meV. Spin accumulation in the QD at zero 
temperature appears due to tunneling of a spin-polarized 
electron from the source electrode. The exchange interac-
tion between the magnetic moment associated with this 
spin and the magnetization of the leads gives rise to an 
exchange force that attracts the dot to the source and repels 
it from the drain. The exchange interaction itself can there-
fore not result in a magnetic shuttle current. In what fol-
lows we will consider fully and oppositely polarized leads 
(spin-up polarization in the source electrode and spin-down 
polarization in the drain electrode). To get electron transfer 
in this situation one has to introduce an external magnetic 
field H  (oriented perpendicular to the magnetization in the 
leads), which induces spin precession and opens up for a 
current to flow. This is because a QD occupied by a spin-
down electron is attracted to the drain electrode thus mak-
ing magnetic shuttling possible. For the case when there is 
a Coulomb blockade of tunneling magnetic shuttling was 
indeed proven to exist at low magnetic fields [9]. 

Thermally induced magnetic shuttling, where the ener-
gy source for shuttling is a temperature difference between 
the leads (while their chemical potentials are the same), 
was considered in Ref. 10. It was shown there that, despite 
the presence of temperature-induced dissipation, in the 
Coulomb blockade regime the phenomenon of magnetic 
shuttling occurs at high temperature difference Tδ Γ  (Γ  
is the dot level width [tunnel coupling energy] as deter-
mined by the rate of tunneling between dot and leads) in a 
finite region of magnetic fields 1 2< <c cH H H . 

The aim of the present paper is to develop a theory of 
the magnetic shuttle [9,10] for the case of a finite Coulomb 
correlation energy U . We analytically solve the mechani-
cal-stability problem for our system and show that for 
noninteracting electrons, = 0U , magnetic shuttling is not 
realized. For a voltage-biased magnetic device, the time 
evolution of mechanical quantum dot oscillations for dif-
ferent bias voltages is numerically studied. For a thermally 
biased device, the critical value = cU U , when the shuttling 
phenomenon becomes possible, is calculated numerically 
using analytically derived equations for the magnetic shut-
tle dynamics. Our main result here is the dependence of an 
upper and a lower critical magnetic field on the strength of 
the Coulomb correlations U . These critical fields separate 
a regime where an initial fluctuation in the position of the 
QD develops into QD shuttling and a regime where such a 
fluctuation is damped out. It is shown also that thermo-
induced shuttling is a threshold phenomenon and that the 
threshold value of the temperature difference found numer-
ically is of the order of the sum of the level detuning 

0= Fδε ε − ε  and the energy ω  of the vibron quantum. 

2. Hamiltonian and kinetic equations 

We consider a movable quantum dot, placed in the 
middle of the gap between the leads of spin-polarized elec-
trons (for equal chemical potentials in the leads our model 
is sketched in Fig. 1). The Hamiltonian of our system is a 
sum of three different terms, ˆ ˆ ˆ ˆ= l d tH H H H+ + . The leads 
of noninteracting spin-polarized electrons (we assume full 

Fig. 1. (Color online) Schematic picture of a thermally driven 
magnetic shuttle. The leads, fully magnetized in opposite direc-
tions, are kept at equal chemical potentials Fµ ε  but at diffe-
rent temperatures >L RT T . A movable quantum dot with a single-
electron energy level, 0ε , spin-split by an external magnetic field 
H  and magnetic exchange interactions with the leads, is coupled 
to the leads by electron tunneling [ / ( )L Rt x  and / ( )L RJ x  are posi-
tion-dependent tunneling amplitudes and exchange energies]. The 
external magnetic field, directed perpendicular to the magnetiza-
tion in the leads, induces spin flips between spin-up and spin-
down electron dot states, thus enabling an electron current. The 
energy of the doubly occupied dot is 02 Uε + , where U  is the 
Coulomb correlation energy. 
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polarization and consider opposite magnetization of the 
leads; we choose that electrons in the source, L-electrode, 
are spin-up polarized and in the drain, R-electrode, are 
spin-down polarized) are described by the Hamiltonian 

 †
, ,,

,

ˆ = , = , = , ,l k j k jk j
k j

H a a j L Rε ↑ ↓∑  (1) 

where †
,k ja  ,( )k ja  is the creation (annihilation) operator 

with the momentum k  ( ,k jε  is the electron energy) in the 
lead = ,j L R . 

The Hamiltonian of the quantum dot (QD) is a sum of 
two contributions, ˆ ˆ ˆ= e

d d dH H H+ v , describing, respective-
ly, the interacting-electrons and vibron subsystems in the 
QD. We will model the vibronic subsystem by the Hamil-
tonian, ˆ dH v, of a harmonic oscillator 

 
2 2

2ˆˆ ˆ= .
2 2d
p mH x
m

ω
+v  (2) 

Here x̂  and p̂ are the center-of-mass coordinate and the 
corresponding momentum of the QD, m is the mass of the 
QD and ω is the angular frequency of the dot vibrations. 
The electronic part, ˆ e

dH , reads  

( )† † † ††ˆ ˆ= ( ) ,e
d HH x c c c c c c Uc c c cσ σ σ ↓ ↑ ↑ ↓↑ ↓ ↑ ↓

σ
ε −Ω + +∑  (3) 

where 0ˆ ˆ( ) = ( /2) ( )x J xσε ε − σ  [with = , = ,σ ↑ ↓ + −] is the 
spin- and position-dependent energy of the Zeeman split 
dot level 0ε  in the exchange field ˆ ˆ ˆ( ) = ( ) ( )L RJ x J x J x−  
(here / /ˆ ˆ( ) = exp( / )L R L R JJ x J x λ  is the exchange energy 
per unit spin between ferromagnetic leads, ,L R, and the 
spin on the dot, and Jλ  is the characteristic decay length of 
the exchange interaction). In Eq. (3) / = /(2 )H Bg HΩ µ   
is the Larmor frequency of electron precession in the ex-
ternal magnetic field H , directed perpendicular to the 
antiparallel magnetization in the leads, g  is the gyromag-
netic ratio, Bµ  is the Bohr magneton; U  is the Coulomb 
repulsion energy. Notice that coordinate dependence of 
energy ˆ( )xσε  introduces an electron-vibron interaction in 
our model. This interaction appears also in the tunneling 
Hamiltonian 

 † †
, ,

ˆ ˆ ˆ= ( ) ( ) h.c.,t L k L R k R
k k

H t x c a t x c a
↑ ↓

+ +∑ ∑  (4) 

when one takes into account the coordinate dependence 
of the tunneling amplitudes, , ˆ( )L Rt x . We will model this 
x̂-dependence by the one-parameter exponential function 

/ ˆ ˆ( ) = exp ( /2 )L Rt x x λ , where λ is the characteristic tunnel-
ing length, and the dot coordinate, x̂ , is measured from the 
isolated dot position. In what follows we will consider x̂  and 
p̂ (see Eq. (2)) as classical variables and assume that the equi-
librium position of the isolated dot corresponds to = 0x . 

In this section our aim is to derive an equation of mo-
tion for the dot center-of-mass coordinate ( )x t . We solve 
this nonlinear and nonlocal in time problem to lowest 

order in the dot tunneling coupling energy jΓ , namely, 

max{ , }j jT eVΓ   (here 2= 2 | |j F jtΓ πν , = ,j L R , Fν  is 

the density of states at the Fermi energy, = L ReV µ −µ , 
and ,L RT  and ,L Rµ  are the temperatures and chemical po-
tentials of the leads described by the Fermi distribution 
function). We use the density operator method to solve 
the problem. For conditions outlined above, which physi-
cally imply sequential electron tunneling through the dot, 
the density operator ρ̂ can be represented as a product of 
the equilibrium density matrix of the leads and the QD 
density operator ˆ dρ . Then all electronic degrees of freedom 
in the leads can be averaged out in the Liouville–von 
Neumann equation for density operator. The relevant Fock 
space is spanned by four electron states. These are the 
ground state (empty QD) | 0〉 , the states corresponding to a 
QD singly occupied by a spin-up (spin-down) electron, 

†
( )| ( ) = | 0c

↑ ↓
↑ ↓ 〉 〉 , and the doubly occupied electron state, 

† †| 2 = | 0c c
↑ ↓

〉 〉 . In this space the matrix elements of ˆ dρ  

form a 6-vector with components 0 ˆ= 0 | | 0dρ 〈 ρ 〉 , 

ˆ= | |d↑ρ 〈↑ ρ ↑〉, ˆ= | |d↓ρ 〈↓ ρ ↓〉, ˆ= | | =d
∗

↑↓ ↓↑ρ 〈↑ ρ ↓〉 ρ , 

2 ˆ= 2 | | 2dρ 〈 ρ 〉. The diagonal components of the density 
operator satisfy the normalization condition 

0 2 = 1↑ ↓ρ +ρ +ρ +ρ . 
Following the procedure, worked out in detail in Refs. 8 

and 10, it is straightforward to derive a set of linear differ-
ential equations (see Appendix) for the elements of the 
density matrix (perturbation theory with respect to the tun-
neling level width allows one to make the kinetic equations 
local in time). The mechanical equation for ( )x t  in terms of 
the QD population probabilities ( jρ ) is readily derived 
from the Hamiltonian (2), (3)  

( )
2

2
2

ˆ1 1 ( )ˆ= Tr = .
2

d
d

Hd x J xx
m x m xdt ↑ ↓

 ∂ ∂ +ω − ρ − ρ −ρ 
∂ ∂  

 (5) 

Equations (A.1)–(A.5) (see Appendix) and Eq. (5) form a 
closed set of equations for our problem. They are used for 
numerical simulations of the position of the dot center-of-
mass coordinate = ( )x x t . 

Note that only the difference of the spin-up and spin-
down dot populations enters the r.h.s. of the mechanical 
equation of motion, Eq. (5). In what follows we will call 
this linear combination of probabilities the mechanically 
“active” one. This allows us to reduce by one the number 
of independent kinetic equations by considering the linear 
combinations of jρ . It is easy to show that the symmetric 
spin-neutral quantities 0 0 2=R ρ +ρ  and 0= 1 R↑ ↓ρ +ρ −  
are decoupled from the equations for the four other linear 
combinations:  

 
1 0 2 2

3 4

= , = ,

= ( ), = .

R R

R i R
↑ ↓

∗ ∗
↑↓ ↑↓ ↑↓ ↑↓

ρ −ρ ρ −ρ

− ρ −ρ ρ +ρ
 (6) 
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The system of equations for jR , = 1 4j − , written in vector 
form, reads ( = 1 )  

 ˆ| ( ) = { ( ), } | ( ) | { ( ), } ,R t A x t U R t B x t U〉 〉+ 〉  (7) 

with ˆ ˆ ˆ ˆ{ ( ), } = { ( ), } { ( ), } { ( ), }H JA x t U A x t U A x t U A x t UΓ + + . 
Here we introduced matrices related to tunneling (subin-
dex Γ), external magnetic field (subindex H ) and ex-
change interaction (subindex J ). They are represented in 
the following form: 

 

, ,

, ,

,

,

0 0

0 0
1ˆ { ( ), } = ,0 0 02

0 0 0

F F

F F
A x t U F

F

+ − − +
+ −
+ − − +
− +

− +Γ +
− +
+

 −
 
 −
 

−  
 
 
 
 

 (8) 

 

0 0 0

0 0 2
ˆ { ( ), } = ,0 2 0 0

0 0

H

H H

H

H
A x t U

H H

−
+
−
−

− −
+ −

 −
 
 Ω
 

− Ω 
 
 
 
 

 (9) 

 

0 0

0 0
1ˆ { ( ), } = .0 0 ( )2

0 0 ( )

J

J J

J J
A x t U J J x

J x J

− −
− +
− −
+ −

−
−

−
−

 − −
 
 
 
 −
 

− 
 
 

 (10) 

In Eq. (7) the vector B (which appears when we use the 
normalization condition, ˆTr = 1dρ , to reduce the number 
of independent variables) takes the form  

 

,

,
1| { ( )} = .02

2

F J

F J
B x t

H

− − +
+ −
− − +
− +

+
+

 −
 
 − +
 〉  
 
 
 
 

 (11) 

Here the quantities ,j kF± , where , = ( , )j k + − , Hη
±  and Jη±  

(here = 1η ± ) depend on the tunneling coupling energies 
, [ ( )]L R x tΓ  and the Fermi distribution functions , ( )L Rf ε  

and , ( )L Rf Uε + , 

 
,

, ,

= ( ) ( ) ( )

( ) ( ) ,

j k
L L R R

U U
L RL R

F x j x f x f

k x f x f

+ +
±±

+ +

 Γ + Γ ± Γ + 
 + Γ ± Γ 

 (12) 

{
}, , 2 2

= ( ) ( )

( ) ( ) 4 ( ) ,

L L R R

U U
L R H HL R

H x f x f

x f x f J x

η − −
±

− −

Γ ±Γ +

 +η Γ ±Γ Ω Ω + 

 (13) 

 = ( )/ .HJ H J xη η
± ± Ω  (14) 

In Eqs. (12)–(14) the following notation is introduced: 
( ) = ( ) ( )L Rx x x±Γ Γ ± Γ , , , ,2 = ( ) ( )L R L R L Rf f E f E±

− +±  

and ,
, ,,2 = ( ) ( )U

L R L RL Rf f E U f E U±
− ++ ± + . Here ( ) =jf ε  

1= {1 exp[( ) / ]}j jT −+ ε −µ  is the Fermi distribution func-
tion in = ,j L R  electrode, and  

 
2 2

0
( ) 4

= .
2

HJ x
E±

+ Ω
ε ±  (15) 

To proceed further with analytical calculations we analyze 
the onset of instability, when the displacement ( )x t  is small 
(but much larger than the amplitude of the zero-point fluc-
tuations 0 / ( )x mω  so that our classical description of 
the vibronic subsystem is justified). 

We solve the equation system (7) by expanding ( )iR t  to 
linear order in the displacement x , which is assumed to be 
small. Hence, 0 1( ) ( )i i iR t R R t≈ + , where 1( ) ( )iR t x t∝ . At 
first we consider noninteracting electrons, = 0U , and a 
symmetric junction, ( = 0) = ( = 0) =L Rx xΓ Γ Γ, ( = 0) =LJ x  
= ( 0)RJ x J= = .Then the equations for 1

1R  and 1
4R  are de-

coupled from the equations for 1
2R  and 1

3R . Therefore the 
analysis of the mechanical instability in this particular case 
is reduced to a simple problem — one has to solve two 
coupled linear equations,  

 
1 1
2 2
1 1
3 3

2
=

2
H

H

R R

R R

   −Γ Ω     −    − Ω −Γ    





  

 
/ (2 )

( ) ( ),
1

H
L Rf f x t− − Γ Ω 

−α +  
 

 (16) 

where > 0α  (the exchange force) is minus the derivative 
of the exchange energy, ( )J x x≈ −α . Substituting the solu-
tion 1

2R  into Eq. (5), we obtain the rate of change, r , of the 
amplitude of nanomechanical vibrations ( ) exp( )x t i t∝ Ω  
at = 0U :  

 
2 0 0

= ,

( ) ( )
= Im =

16
j H j H

Hj L R

f f
r

m
ε −Ω − ε +Ωα

− Ω − ×
Ω∑   

 
2 2 2

2 2 2 2 2 2
[ ( ) 4 ]

.
[ ( ) 4 ] 4( )

H

H

Γ Γ + ω + Ω
×

Γ − ω + Ω + ω Γ



 

 (17) 

Since the Fermi distribution function ( )jf ε  is a decreasing 

function of energy ( > 0ε ) and 0HΩ ≥  by definition, ( )r H  
is always negative for 0H ≠ . This means that for 
noninteracting electrons ( = 0U ) there is no mechanical insta-
bility for the considered magnetic device. On the other hand, 
in Ref. 10 (see also Ref. 9) it was analytically proven that in 
the regime of Coulomb blockade (formally U →∞ and there-
fore 2 = 0ρ ) the shuttling regime of electron transport is real-

ized at low magnetic fields 2 2< ( 7 /2) ( )HΩ Γ + ω . This 
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means that for finite U  there is a critical value, = cU U , when 
there is a crossover from the shuttling regime to a regime 
where mechanical dot fluctuations are damped out. Notice 
that in the limit 0HΩ →  Eq. (17) is transformed to the mag-
netic friction coefficient 

 
2

02
2 2

1( ) ,cosh
2( )

F
Jr T

m T T
− ε − εα Γ  −  
 Γ + ω





  (18) 

first introduced in Ref. 10, where T  is the temperature of the 
left lead, and the temperature of the right lead equals zero. 

In other words Coulomb correlations promote electron 
shuttling in a magnetic nanomechanical device, Ref. 11. The 
dependence of the critical Coulomb energy on temperature 
and other model parameters was studied in detail in Ref. 11. 

3. Influence of electron-electron correlations on 
electron shuttling in a voltage-biased magnetic device 

In this section we consider the influence of Coulomb 
correlations on the instability of mechanical vibrations in a 
voltage-biased magnetic device. In our model, Eqs. (1)–(4), 
we neglect electric forces, acting on electrons in the 
QD, compared with magnetic forces. In experiments on 
a C60-based molecular transistor [7] the exchange interac-
tion between the electron spin on the fullerene and magnetic 
(Ni) leads was shown to be strong (of the order of 10 meV). 
The electric field, acting on a charged molecule, strongly 
depends on the device geometry but can be roughly esti-
mated to be /E V d , where d  is the distance between the 
leads. In what follows, when studying the influence of 
electron-electron interaction on the functionality of mag-
netic shuttle, we will assume that the exchange force 

/ JJ λ  exceeds the electric force. Indeed, we estimated 
that the maximum ratio of electric force to exchange force 
for bias voltages from Fig. 2 (see below) is about 0.3, there-
fore electric forces can be neglected. In this case the bias volt-
age plays the role of an energy supply for a purely magnetic 
device, controlled by the external magnetic field H . We will 
also assume a large temperature difference ( L RT T ) in 
our device. This situation favors the shuttling regime, by 
providing an extra energy supply, and by suppressing tem-
perature-induced dissipation in the drain (right lead), as 
well as facilitating electron tunneling to empty states in the 
right electrode. 

To analyze the fully developed shuttle vibrations one 
has to deal with the nonlinear and nonlocal spintro-
mechanics numerically. In Fig. 2 we present results of nu-
merical simulations for the case of a symmetric junction, 
solving the system of equations for the components of the 
density matrix [Eqs. (A.1)–(A.5) in the Appendix], coupled 
to the mechanical equation of motion, Eq. (5). The eight 
panels in the figure show the time evolution for different 
bias voltages of the amplitude ( )t  of the mechanical QD 
oscillations after an initial spontaneous fluctuation of the 
QD position. The evolution is shown on a time scale more 

than three orders of magnitude longer than the oscillation 
period. At low temperatures ,T Γ δε  the influence of the 
electron subsystem on the mechanical vibrations occurs 
only when the bias voltage exceeds the energy E− , see 
Eq. (15), of a spin-up electron on the dot. As was shown 
earlier [2], the shuttling regime of electron transport at 

, = 0L RT  is realized for a non-symmetrically applied bias 
voltage V  when th> =eV eV δε + ω . The plots in 
Figs. 2(a)–(d) demonstrate the onset and time development 

Fig. 2. Time evolution of mechanical QD oscillations after an 
initial spontaneous fluctuation in QD position plotted for different 
bias voltages. The upper and lower borders of the dark areas form 
the envelope of the (unresolved) oscillations, whose amplitude 

( )t  is half the vertical distance between these borders. The me-
chanical displacement is scaled to the characteristic tunneling 
length λ  and time to /Γ . All energies are scaled to LΓ , in par-
ticular, the bias voltage parameter / LeV VΓ → . Parameters, used 
in simulations, are the following: temperature / = 1LT Γ , mechani-
cal frequency / = 1Lω Γ , magnetic field energy / = 0.7H LΩ Γ , 
exchange energy / = 1.5LJ Γ , level detuning energy / = 2Lδε Γ  
and the Coulomb correlation energy / = 10LU Γ . Junction is con-
sidered symmetrical ( =L RΓ Γ ) and tunneling length is equal to 
the exchange length ( = Jλ λ ), dimensionless electromechanical 
coupling constant, entering the r.h.s. of mechanical equation, writ-
ten in dimensionless variables, 2 2= /( ) = 0.09J LJ mκ λλ Γ . In 
plots (a)–(d) we see the onset of the instability, taking place for 

= 4.94V . The instability is well developed on the interval 
(4.94, 13.37)V ∈  [plots (e)–(f)]. At critical value of bias voltage 

= 13.37cV  the instability deteriorates and the system becomes 
stable for larger values of V  [plots (g)–(h)]. 
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of electron shuttling in our magnetic device. We see that 
the critical voltage [plot (c)], determined for the case of a 
finite temperature =LT Γ of the source lead, is close to the 
above theoretical value. In this section we focus on the 
spintromechanically interesting regime of electron 
transport when th>V V . Then single occupation of the dot 
level is possible due to electron tunneling from the source 
electrode, and double occupation at zero temperature may 
occur only at energies exceeding the excitation energy of 
the doubly occupied electron state 0>L Uµ + ε . If the bias 
voltage is such that Lµ  is close to but still lower than this 
value (see Fig. 1) double occupation occurs as a result of 
thermal fluctuations, which allows temperature to control 
the influence of the Coulomb blockade phenomenon on the 
nanomechanics.  

Doubly occupied QD electron states, having zero total 
spin, do not interact with the exchange field and can there-
fore not contribute to electron shuttling. By increasing the 
population of these states (by increasing the temperature), 
a transition from the shuttling regime of oscillations to the 
regime of damped mechanical oscillations occurs at a cer-
tain (critical) value of the ratio 2 / = cn↓ρ ρ . One can rough-
ly estimate this quantity when the activation energy of the 
two-electron state 0= =L LU U T T∗ ε + −µ  . We assume 
that under certain conditions (see below) only the two 
quantities 2ρ  and ↓ρ  determine the mechanical behavior in 
the critical region. The two coupled linear equations for the-
se probabilities are readily derived from Eqs. (A.5), (A.3) in 
the limit 0HΩ → . In the steady state regime ( = 0jρ ) and 
for = 0, ( ) exp( / ) 1R Lf f U U T∗−  , the equations take 
the simple form  

 2[ ( ) ( )] = ( ) ( ) ,L m R m L m La a a f U ↓Γ + Γ ρ Γ ρ  

 2( ) = ( ) .L m R ma a ↓Γ ρ Γ ρ  (19) 

Here ma  is the dimensionless amplitude (measured in units 
of the tunneling length λ) of developed shuttle oscillations 
at the dot position, most favorable for electron tunneling 
from the source electrode to the |↓〉 -state (this process 
populates the mechanically inactive doubly occupied state, 
which in the critical region stops the shuttling). A nontrivi-
al solution of Eq. (19) exists when ( )/ ( ) =L m R ma aΓ Γ
= / exp(2 ) 1L R maΓ Γ  . It reads ( )c Ln f U   

( )/ ( ) 1R m L ma aΓ Γ  . Therefore our simple analysis 
predicts a linear dependence of the critical value cU∗ on 
temperature for low temperatures and low magnetic fields,  

 ln 2 .L
c m

R
U T a∗  Γ

+ Γ 
  (20) 

Numerical simulations are in agreement with this predic-
tion (see Ref. 11). 

A remarkable feature of the plots is that when a shuttle 
instability occurs the amplitude of mechanical oscillations 
saturates at a certain value despite the fact that we do not 
include any phenomenological mechanical friction in 

Eq. (5). The intrinsic magnetic friction, Eq. (18), is small 
in our system at temperatures T δε . This self-saturation 
is a specific property of the nonlinear dynamics of our 
magnetic shuttle [9] (see also Ref. 2). 

4. Coulomb effects in a thermally driven magnetic 
shuttle 

Now we set = =L R Fµ µ ε  and consider electron shut-
tling driven by the difference in the temperatures of the 
leads, = L RT T Tδ − . In Ref. 10 it was shown that in the 
Coulomb blockade regime (U →∞) thermally induced 
shuttling occurs in a finite range of magnetic fields 

1 2< <c cH H H . The corresponding upper magnetic ener-

gy, 2c
HΩ  at Tδ Γ  (a symmetric junction was studied) 

saturates to the value 2 2 2= ( 7 /2) ( )c
HΩ Γ + ω . The 

lower magnetic energy 1c
HΩ  is determined by magnetic 

friction, Eq. (18). In Ref. 10 the lower magnetic energy was 
found to scale, for temperature T Γ , as 1 ( / )cH T T∝ Γ . 
The “window” cHδ , where thermally induced electron shut-
tling occurs, is of the order of 2cH  (see Fig. 2 in Ref. 10) 
and in dimensionless quantities (normalized by Γ) this 
window is not large. Then the question arises — is there a 
possibility for thermally induced shuttling in the case when 
Coulomb blockade is not pronounced (finite U )? Analytic 
calculations, Eq. (17), showed that for noninteracting elec-
trons ( = 0U ) at arbitrary temperatures in the leads electron 
shuttling is absent in our model. Therefore there is critical 
value of Coulomb correlation energy = cU U  when shut-
tling is replaced by damping of mechanical vibrations. 

To answer the question posed above we will numerical-
ly solve Eqs. (A.1)–(A.5). It is reasonable to consider a 
situation where the temperatures in both leads are finite 
and >L RT T ; we also assume L LT Γ  and R RT Γ  (the-
se inequalities are necessary to justify the perturbation ap-
proach, when =L Rµ µ , for the derivation of the kinetic 
equations). We will study the dependence of the upper and 
lower critical magnetic fields at finite Coulomb correlation 
energy U  on the temperature difference Tδ  and on the 
average temperature = ( )/2L RT T T+ . The numerical ap-
proach developed in the previous section allows one to 
obtain the dependence of the critical magnetic fields, 
which separate “shuttling” and “vibronic” regions of me-
chanical oscillations, on different parameters of our model. 
Here we consider the dependence of the critical magnetic 
fields on the strength U  of the Coulomb interaction, and 
on the temperatures of the leads. 

In Fig. 3 the dependence of 1, 2c c
HΩ  on U  for given Tδ  

and T  is presented. It is clearly seen from the plot that in the 
regime of Coulomb blockade U T  the shuttling for large 
values of Tδ  occurs in a finite range of 2 1=c c c

H H HδΩ Ω −Ω  
(numerically close to analytic values, predicted in Ref. 10 
for U →∞). The window for shuttling weakly depends on 
U  down to U T , when the Coulomb blockade is lifted 
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and c
HδΩ  shrinks to zero at some critical value of the ratio 

2 / ↓ρ ρ , when temperature-induced mechanically inactive 
doubly populated electron states stop electron shuttling 
(see the discussion in the previous section). 

Figure 4 demonstrates the behavior of the critical mag-
netic fields as a function of temperature differences Tδ  for 
different values of the mechanical frequency ω. In Ref. 10, 
where analytic expressions for the critical magnetic fields 
were obtained, only the high-temperature limit Tδ → ∞ 
was considered for = 0RT . We see from the figure that 
temperature-induced electron shuttling is a threshold phe-
nomenon. The threshold value thTδ  strongly depends on 
level energy detuning δε (as it should be), mechanical fre-
quency and average temperature T . It is well known [2] 
that for an electric shuttle (i.e., one driven by electric forces) 
at = 0T  the threshold bias voltage (if the bias is symmetri-
cally applied) is th /2 =eV δε + ω . The sharp onset of me-
chanical instability at this voltage occurs at temperatures 

thT eV . Finite temperatures smooth out the sharpness in 
the critical region. So it is not evident from a qualitative 
picture of the “shuttle instability” that the threshold thTδ  
for a magnetic shuttle is determined by the sum of detun-
ing energy and vibron energy ω . Numerical simulations, 
Fig. 4, show that the threshold Tδ  does not satisfy (as it 
was expected) a simple formula such as that valid for the 
threshold bias voltage of an electric shuttle. However, nu-
merically thTδ  is still of the order of the sum of level de-
tuning energy δε and vibron energy ω . Our calculations 

show that the threshold temperature difference increases 
with the increase of δε (as it should be). More interesting 
is that thTδ  grows when the mechanical frequency ω is 
increased (see Fig. 4). 

The dependence of the threshold temperature difference 
on the average temperature T  is illustrated in Fig. 5. It is 
clearly seen from the figure that the threshold Tδ  for shut-
tling at “high temperatures” ( >T δε) depends on the aver-
age temperature. In this region thT Tδ  . At temperatures 
T δε  the threshold thTδ  weakly depends on T  (see the 
lower curve in Fig. 5 where thTδ  is slightly smaller than 

Fig. 3. (Color online) Dependence of the critical magnetic field 
c
HΩ  (measured in energy units, = /2H Bg HΩ µ ) on the Coulomb 

correlation energy U . The critical field separates shuttling (shad-
ed) and damping regions of quantum dot oscillations. The 
upper critical field 2c

HΩ  is plotted as a blue curve, the lower 
critical field 1c

HΩ  — as a red curve. In the Coulomb blockade regime, 

LU T  ( = 50 ;LT Γ = 3RT Γ), the window 2 1= c c
H H HδΩ Ω −Ω  for 

shuttling is in agreement with analytical results [10]. At LU T  
the Coulomb blockade is lifted and HδΩ  shrinks to zero. A 
symmetric ( = =L RΓ Γ Γ , = = ,L RJ J J  = Jλ λ ) and voltage 
unbiased junction is considered. We used the following parame-
ters in the simulations: = 0.2J Γ , = 0.1ω Γ , level detuning ener-
gy = 10δε Γ. 

Fig. 4. (Color online) Dependence of the critical magnetic field 
(in energy units, = /2c

H B cg HΩ µ ) on the temperature difference 
between the leads, = L RT T Tδ − . The plots demonstrate the 
growth of the threshold value thTδ  with the increase of the me-
chanical vibration frequency ω: curve 1 corresponds to =ω Γ , 
curve 2 — = 3ω Γ , curve 3 — = 5ω Γ . The shuttle regime 
corresponds to the area between the lower and upper critical 
fields (shaded region for the case of = 5ω Γ ). The parameters 
used in simulations: = 100U Γ, = 3RT Γ , = 1J Γ, = 10δε Γ. 

Fig. 5. (Color online) Dependence of the threshold temperature 
difference thTδ  on the average temperature = ( )/2L RT T T+  for 
different values of δε: curve 1 corresponds to = 3δε Γ, curve 2 — 

= 5δε Γ, and curve 3 — = 10δε Γ. The Coulomb blockade re-
gime, = 300U TΓ , is considered and = 0.3J Γ, = 0.2ω Γ . 
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the average temperature). Notice that shuttling vanishes 
when the temperature in the drain (“R”) lead exceeds δε. 
In this case magnetic friction, Eq. (18), strongly impedes 
shuttling and a mechanical instability occurs only for very 
large values of Tδ . 

5. Conclusion 

The phenomenon of electron shuttling, first predicted 
for charge transport in mesoscopic transistors [1] (electric 
shuttle), was then considered for superconducting [12] (see 
also the review Ref. 13) and magnetic systems [8,9]. The 
fusion of electron spin dynamics with nanomechanics, 
called spintromechanics [14], allows one to control mechan-
ical oscillations by electric and magnetic gates. Moreover, a 
mechanical subsystem, integrated into electrical and 
spintronic circuits, could be used not only for energy pump-
ing into a system, but also for cooling of vibronic excita-
tions, providing another road to quantum nanomechanics. 

Voltage-biased junctions are more suitable for electric 
shuttling applications, since electron-number fluctuations in 
the dot do not have any detrimental effect on mechanical 
oscillations (shuttling). In contrast, electron number parity 
effects are significant for temperature-induced magnetic 
shuttling. In our paper it was shown that Coulomb effects, 
by suppressing electron number fluctuations, promote shut-

tling of spin-polarized electrons in temperature-biased 
junctions. This will lead to a strong enhancement of ther-
mo-transport. We also demonstrated in the present paper, 
that thermally induced shuttling is a threshold phenome-
non. This fact inevitably will result in mechanically-
induced nonlinear effects in thermo-transport in a shuttle-
based single-electron transistor. 
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Appendix A: The system of equations for matrix 
elements of dot density operator 

The system of equations for the matrix elements of the 
dot density operator reads

____________________________________________________ 

 0
0 0= ( )(1 ) ( )(1 ) ( ) ( )L L R R L L R Rx f x f x f x f

t
+ + + +

↑ ↓
∂ρ

Γ − ρ + Γ − ρ −Γ ρ −Γ ρ −
∂

  

 1 0 1 0 2 2( )( ) ( )( ) ( ( ) ( ))( );L R L Rx x x x ∗
↑ ↓ ↑↓ ↑↓−ϒ ρ +ρ + ϒ ρ +ρ − ϒ + ϒ ρ +ρ  (A.1) 

 , ,
0 2= ( ) ( )(1 ) ( ) ( ) ( )(1 )U U

H L L L L R RR Ri x f x f x f x f
t

∗ + + + +↑
↑↓ ↑↓ ↑ ↑

∂ρ
− Ω ρ −ρ −Γ − ρ + Γ ρ −Γ ρ + Γ − ρ +

∂
  

 1 0 1 2 2 2( )( ) ( )( ) ( ( ) ( ))( );U U
L R L Rx x x x ∗

↑ ↑ ↑↓ ↑↓+ϒ ρ +ρ + ϒ ρ +ρ + ϒ + ϒ ρ +ρ  (A.2) 

 , ,
2 0= ( ) ( )(1 ) ( ) ( )(1 ) ( )U U

H L L R R R RL Li x f x f x f x f
t

∗ + + + +↓
↑↓ ↑↓ ↓ ↓

∂ρ
Ω ρ −ρ + Γ − ρ −Γ ρ −Γ − ρ + Γ ρ −

∂
 

 1 2 1 0 2 2( )( ) ( )( ) ( ( ) ( ))( );U U
L R L Rx x x x ∗

↓ ↓ ↑↓ ↑↓−ϒ ρ +ρ − ϒ ρ +ρ + ϒ + ϒ ρ +ρ  (A.3) 

 , ,1 1= ( ) ( ) ( )(1 ) ( )(1 )
2 2

U U
H L L R RL Ri iJ x x f f x f f

t
+ + + +↑↓

↑ ↓ ↑↓ ↑↓ ↑↓
∂ρ

− Ω ρ −ρ + ρ − Γ − + ρ − Γ − + ρ −
∂

  

 1 1 1 1
1 1( ( ) ( )) ( ( ) ( ))
2 2

U U
L L R Rx x x x↑↓ ↑↓− ϒ − ϒ ρ + ϒ − ϒ ρ +  

 2 0 2 2 2 0 2 2( )( ) ( )( ) ( )( ) ( )( );U U
L L R Rx x x x↑ ↓ ↓ ↑+ϒ ρ +ρ + ϒ ρ +ρ + ϒ ρ +ρ + ϒ ρ +ρ  (A.4) 

 , , , ,2
2 2= ( )(1 ) ( )(1 ) ( ) ( )U U U U

L R L RL R L Rx f x f x f x f
t

+ + + +
↓ ↑

∂ρ
−Γ − ρ −Γ − ρ + Γ ρ + Γ ρ +

∂
  

 1 2 1 2 2 2( )( ) ( )( ) ( ( ) ( ))( ),U U U U
L R L Rx x x x ∗

↓ ↑ ↑↓ ↑↓+ϒ ρ +ρ − ϒ ρ +ρ − ϒ + ϒ ρ +ρ  (A.5) 
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where  

 /
1 / / 2 2

( ) ( )
( ) = ,

( ) 4
L R

L R L R
H

J x x
x f

J x
− Γ

ϒ
+ Ω

 (A.6) 

 , /
1 / / 2 2

( ) ( )
( ) = ,

( ) 4
U U L R
L R L R

H

J x x
x f

J x
− Γ

ϒ
+ Ω

 (A.7) 

 /
2 / / 2 2

( )
( ) = ,

( ) 4
H L R

L R L R
H

x
x f

J x
− Ω Γ

ϒ
+ Ω

 (A.8) 

 , /
2 / / 2 2

( )
( ) = ,

( ) 4
U U H L R

L R L R
H

x
x f

J x
− Ω Γ

ϒ
+ Ω

 (A.9) 

with /L Rf ± , ,
/

U
L Rf ± defined below Eq. (14).  

 _______  
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Вплив електрон-електронної взаємодії 
на термоіндуктоване шатлювання поляризованих 

за спіном електронів 

О.О. Ільїнська, А.Д. Шкоп, D. Radic, H.C. Park, 
І.В. Кріве, R.I. Shekhter, M. Jonson 

Розглядається одноелектронний транзистор з тепловим 
джерелом енергії, який складається з магнітних електродів і 
рухомого центрального острівця (квантової точки) і знахо-
диться в зовнішньому магнітному полі. Методом матриці 
густини вивчається можливість механічної нестійкості в цій 
системі, яка викликана магнітною обмінною взаємодією між 
поляризованими за спіном електронами. Аналітично доведе-
но, що у випадку, коли електрони на квантовій точці не взає-
модіють, такої механічної нестійкості немає. Для ненульової 
електрон-електронної взаємодії на квантовій точці чисельно 
знайдені критичні магнітні поля, що відокремлюють режим 
механічної нестійкості та електронного шатлювання від ре-
жиму механічних коливань, що загасають. Показано, що 
термоіндуктоване магнітне шатлювання поляризованих за 
спіном електронів — це порогове явище, і знайдено залеж-
ність порогової різниці температур від параметрів системи. 

Ключові слова: термоіндуктований одноелектронний шатл, 
магнітна обмінна взаємодія, поляризовані за спіном електрони. 

Влияние электрон-электронного взаимодействия 
на термоиндуцированное шаттлирование 

спин-поляризованных электронов 

О.А. Ильинская, А.Д. Шкоп, D. Radic, H.C. Park, 
И.В. Криве, R.I. Shekhter, M. Jonson 

Рассматривается одноэлектронный транзистор с тепло-
вым источником энергии, состоящий из магнитных электро-
дов и подвижного центрального островка (квантового дота), 
помещенный во внешнее магнитное поле. Методом матрицы 
плотности изучается возможность механической неустойчи-
вости в этой системе, вызванной магнитным обменным 
взаимодействием между спин-поляризованными электрона-
ми. Аналитически доказано, что, если электроны на доте не 
взаимодействуют, такой механической неустойчивости нет. 
Для ненулевого электрон-электронного взаимодействия на 
доте численно найдены критические магнитные поля, отде-
ляющие режим механической неустойчивости и электронно-
го шаттлирования от режима затухающих механических ко-
лебаний. Показано, что термоиндуцированное магнитное 
шаттлирование спин-поляризованных электронов — это по-
роговый процесс, и найдена зависимость пороговой разности 
температур от параметров системы. 

Ключевые слова: термоиндуцированный одноэлектронный 
шаттл, магнитное обменное взаимодействие, спин-поляризо-
ванные электроны. 
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