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A thermally driven single-electron transistor with magnetic leads and a movable central island (a quantum

dot) subject to an external magnetic field is considered. The possibility of a mechanical instability caused by

magnetic exchange interactions between spin-polarized electrons in this system was studied by the density

matrix method. We proved analytically that for noninteracting electrons in the dot there is no such mechanical

instability. However, for finite strengths of the Coulomb correlations in the dot we numerically found critical

magnetic fields separating regimes of mechanical instability and electron shuttling on the one hand and damped

mechanical oscillations on the other. It was shown that thermally induced magnetic shuttling of spin-polarized

electrons is a threshold phenomenon, and the dependence of the threshold bias temperature on model parameters

was calculated.
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1. Introduction

Single-electron shuttling is a nonlinear, nonequilibrium,
and temporally nonlocal nanoelectromechanical phenome-
non first predicted in Refs. 1 and 2. Intriguingly, the simple
classical oscillation of a charged particle between the
plates of a voltage-biased capacitor (electric pendulum)
acquires new features in the mesoscopic regime, which
lead to novel physical effects. The interplay between elec-
tron tunneling, Coulomb blockade of tunneling and retar-
dation effects on the mechanical oscillations of a movable
quantum dot (QD), placed between voltage-biased leads of
a mesoscopic transistor, yields a mechanical instability
resulting in QD oscillations. This leads to a strong (expo-
nential) increase of the electric current through the
mesoscopic device, which can significantly contribute to
new functionalities of molecular transistors [2] (see also

the review [3]). There are various experiments, dealing
with shuttle-like electron devices (see, e.g., Refs. 4 and 5).
An electric field, produced by a bias voltage acting on a
QD charged from the source electrode, always attracts the dot
to the drain electrode, thus providing a necessary condition
for electron shuttling. If the dot is not pinned and dissipation
in the mechanical subsystem is weak, electron shuttling al-
ways occurs when the (symmetrically applied) bias voltage
exceeds a threshold value [2], V >V, = (2/e)(de+hw),
where 3¢ = g — € is the energy of the single QD electron
level measured from the Fermi energy of electrons in the
leads, e, o is the angular frequency of dot oscillations,
and —e is electron charge. In the shuttle regime of electron
transport the amplitude of dot oscillations saturates (limit-
ing cycle) at a certain value A, > A (where A is the char-
acteristic tunneling length) due to the specific nonlinear
and nonlocal in time dynamics of the mechanical subsys-
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tem. Formally, saturation is explained by the fact that the
calculated positive (when shuttling occurs) work done by
the electric field during a closed dot trajectory stops to
grow when the oscillation amplitude reaches its satura-
tion value and both tunneling charging and discharging of
the QD are strongly enhanced. (Note that the charge of
the QD is changed due to electron tunneling to and from
the dot.) A specific feature of the shuttling regime (peri-
odic dot oscillations) of electron transport in single-
electron transistors (SET) is a strong suppression of low-
frequency noise compared with the shot noise, measured
in a standard SET [6].

In a single-electron transistor with magnetic leads (see,
e.g., Ref. 7, where a fullerene-based transistor with nickel
leads was studied) electric shuttling of spin-polarized elec-
trons can be controlled by an external magnetic field thus
making the SET a new spintronic device [8]. In Ref. 9 a
new mechanism of shuttling of spin-polarized electrons
was suggested. It is based on the assumption that (magne-
tic) exchange forces, produced by the interaction of the
electron spin in the dot with the magnetization in the leads,
is larger than the electric force in a voltage-biased device.
This assumption is supported by experiments such as
Ref. 7, where the exchange field experienced by an elec-
tron spin in the dot was observed to be (in energy units) of
the order of 10 meV. Spin accumulation in the QD at zero
temperature appears due to tunneling of a spin-polarized
electron from the source electrode. The exchange interac-
tion between the magnetic moment associated with this
spin and the magnetization of the leads gives rise to an
exchange force that attracts the dot to the source and repels
it from the drain. The exchange interaction itself can there-
fore not result in a magnetic shuttle current. In what fol-
lows we will consider fully and oppositely polarized leads
(spin-up polarization in the source electrode and spin-down
polarization in the drain electrode). To get electron transfer
in this situation one has to introduce an external magnetic
field H (oriented perpendicular to the magnetization in the
leads), which induces spin precession and opens up for a
current to flow. This is because a QD occupied by a spin-
down electron is attracted to the drain electrode thus mak-
ing magnetic shuttling possible. For the case when there is
a Coulomb blockade of tunneling magnetic shuttling was
indeed proven to exist at low magnetic fields [9].

Thermally induced magnetic shuttling, where the ener-
gy source for shuttling is a temperature difference between
the leads (while their chemical potentials are the same),
was considered in Ref. 10. It was shown there that, despite
the presence of temperature-induced dissipation, in the
Coulomb blockade regime the phenomenon of magnetic
shuttling occurs at high temperature difference 87 > I' (I’
is the dot level width [tunnel coupling energy] as deter-
mined by the rate of tunneling between dot and leads) in a
finite region of magnetic fields H 4 < H < H ;.
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The aim of the present paper is to develop a theory of
the magnetic shuttle [9,10] for the case of a finite Coulomb
correlation energy U. We analytically solve the mechani-
cal-stability problem for our system and show that for
noninteracting electrons, U = 0, magnetic shuttling is not
realized. For a voltage-biased magnetic device, the time
evolution of mechanical quantum dot oscillations for dif-
ferent bias voltages is numerically studied. For a thermally
biased device, the critical value U = U,,, when the shuttling
phenomenon becomes possible, is calculated numerically
using analytically derived equations for the magnetic shut-
tle dynamics. Our main result here is the dependence of an
upper and a lower critical magnetic field on the strength of
the Coulomb correlations U . These critical fields separate
a regime where an initial fluctuation in the position of the
QD develops into QD shuttling and a regime where such a
fluctuation is damped out. It is shown also that thermo-
induced shuttling is a threshold phenomenon and that the
threshold value of the temperature difference found numer-
ically is of the order of the sum of the level detuning
de = gy —ep and the energy 7w of the vibron quantum.

2. Hamiltonian and kinetic equations

We consider a movable quantum dot, placed in the
middle of the gap between the leads of spin-polarized elec-
trons (for equal chemical potentials in the leads our model
is sketched in Fig. 1). The Hamiltonian of our system is a
sum of three different terms, A = H, + H,; + H,. The leads
of noninteracting spin-polarized electrons (we assume full

280 +U
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H ) ()
@H ——>=x

Fig. 1. (Color online) Schematic picture of a thermally driven
magnetic shuttle. The leads, fully magnetized in opposite direc-
tions, are kept at equal chemical potentials p ~ g but at diffe-
rent temperatures 77 > Tp. A movable quantum dot with a single-
electron energy level, g, spin-split by an external magnetic field
H and magnetic exchange interactions with the leads, is coupled
to the leads by electron tunneling [#7 2 (x) and Jj ,p (x) are posi-
tion-dependent tunneling amplitudes and exchange energies]. The
external magnetic field, directed perpendicular to the magnetiza-
tion in the leads, induces spin flips between spin-up and spin-
down electron dot states, thus enabling an electron current. The
energy of the doubly occupied dot is 2y + U, where U is the
Coulomb correlation energy.
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polarization and consider opposite magnetization of the
leads; we choose that electrons in the source, L-electrode,
are spin-up polarized and in the drain, R-electrode, are
spin-down polarized) are described by the Hamiltonian

g ¥
Hy =D &k, 4y a0k j»
k)

j=LR=TJ, 1))

where a};’j (ai,;) is the creation (annihilation) operator
with the momentum & (g j is the electron energy) in the
lead j=L,R.

The Hamiltonian of the quantum dot (QD) is a sum of
two contributions, H; = HS + HY, describing, respective-
ly, the interacting-electrons and vibron subsystems in the
QD. We will model the vibronic subsystem by the Hamil-
tonian, a le , of a harmonic oscillator

~2 2
H;J:p_Jr%;CZ. 2)

Here x and p are the center-of-mass coordinate and the
corresponding momentum of the QD, m is the mass of the
QD and o is the angular frequency of the dot vibrations.
The electronic part, 49, reads

HS = D &g Rctes -y (c?q + CICT ) + U@CTCI% , (3
(e}

where g5 (%) =gy —(c/2)J(X) [with =T,d=+, ] is the
spin- and position-dependent energy of the Zeeman split
dot level g in the exchange field J(x)=J(%)-Jg (%)
(here J;, p(X)=J;,p exp(FX/A ) is the exchange energy
per unit spin between ferromagnetic leads, L, R, and the
spin on the dot, and A ; is the characteristic decay length of
the exchange interaction). In Eq. (3) Qg /i = gugH/(2h)
is the Larmor frequency of electron precession in the ex-
ternal magnetic field H, directed perpendicular to the
antiparallel magnetization in the leads, g is the gyromag-
netic ratio, ng is the Bohr magneton; U is the Coulomb
repulsion energy. Notice that coordinate dependence of
energy €, (X) introduces an electron-vibron interaction in
our model. This interaction appears also in the tunneling
Hamiltonian

H =t (®)y g +tg®)Y clag g +he, @)
k k

when one takes into account the coordinate dependence
of the tunneling amplitudes, 7; z(%). We will model this
X-dependence by the one-parameter exponential function
t7,p(X) =exp(FX/2)), where A is the characteristic tunnel-
ing length, and the dot coordinate, X, is measured from the
isolated dot position. In what follows we will consider X and
P (see Eq. (2)) as classical variables and assume that the equi-
librium position of the isolated dot corresponds to x = 0.

In this section our aim is to derive an equation of mo-
tion for the dot center-of-mass coordinate x(z). We solve

this nonlinear and nonlocal in time problem to lowest
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order in the dot tunneling coupling energy I';, namely,

2 . .
I'; <max{T;,eV} (here I'; =2nvp [t; ", j=L,R, vp is
the density of states at the Fermi energy, eV =p; —pp,

and T p and p; p are the temperatures and chemical po-

tentials of the leads described by the Fermi distribution
function). We use the density operator method to solve
the problem. For conditions outlined above, which physi-
cally imply sequential electron tunneling through the dot,
the density operator p can be represented as a product of

the equilibrium density matrix of the leads and the QD
density operator p,;. Then all electronic degrees of freedom

in the leads can be averaged out in the Liouville-von
Neumann equation for density operator. The relevant Fock
space is spanned by four electron states. These are the
ground state (empty QD) | 0), the states corresponding to a

QD singly occupied by a spin-up (spin-down) electron,
Ty = c; ) | 0), and the doubly occupied electron state,

| 2) :c;cI |0). In this space the matrix elements of p,
po =(0[pg4 |0),

pr =Tpa D). oy =(Upa ). pry =(T1pa ) =l
py =(2|p,4|2). The diagonal components of the density

form a 6-vector with components

operator satisfy  the normalization condition
Po+tpr+py+pr =1

Following the procedure, worked out in detail in Refs. 8
and 10, it is straightforward to derive a set of linear differ-
ential equations (see Appendix) for the elements of the
density matrix (perturbation theory with respect to the tun-
neling level width allows one to make the kinetic equations
local in time). The mechanical equation for x(¢) in terms of
the QD population probabilities (p j) is readily derived
from the Hamiltonian (2), (3)
d_zx_i_mzx:_iTr{f)d ol }: 1 aJ(x)

m 2m Ox

" e (Pr=py)- )

Equations (A.1)—(A.5) (see Appendix) and Eq. (5) form a
closed set of equations for our problem. They are used for
numerical simulations of the position of the dot center-of-
mass coordinate x = x(¢).

Note that only the difference of the spin-up and spin-
down dot populations enters the r.h.s. of the mechanical
equation of motion, Eq. (5). In what follows we will call
this linear combination of probabilities the mechanically
“active” one. This allows us to reduce by one the number
of independent kinetic equations by considering the linear
combinations of p;. It is easy to show that the symmetric
spin-neutral quantities Ry =pg +p, and py +py =1-R,
are decoupled from the equations for the four other linear

combinations:
Ri=po=p2, Ra=pr—-py,

. x X (6)

Ry =—i(pry —pry)s Ry =prp+pry-
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The system of equations for R i J=1-4, written in vector
form, reads (7 =1)

| R(t)) = A{x(t),U} | R(O))+| Bix(2),U}), 7

with  A{x(1),U} = A {x(£),U} + Ag {x(0),U} + A, {x(t),U}.
Here we introduced matrices related to tunneling (subin-
dex TI'), external magnetic field (subindex H') and ex-
change interaction (subindex J). They are represented in
the following form:

FEf™ -F>% 0 0
) 1 -F>~ F7Y 0 0
XUy === 0 o £ o0 |®
0 0 0o FF
0 0 0 -H.
A 0 0 20, H-
Ag{ix(),U=| 0 20, 0 o O
H, H- 0 0
-J- -J. 0 0
) 1 J. JZI 0 0
AJ{x(t),U}:E 0 0 -—J- Jx| (10
0 0 —Jkx) J-

In Eq. (7) the vector B (which appears when we use the
normalization condition, Trp, =1, to reduce the number
of independent variables) takes the form

Eom—Jf

—F>m+J]

1

| B{x(1)}) = 5 0 : (11
2HT

Here the quantities F/ k where j,k=(+,-), H} and J]
(here n==1) depend on the tunneling coupling energies
I, g[x(#)] and the Fermi distribution functions f7 r(€)
and f; p(e+U),

=00+ [ D0 T ]+

(12)
k[T P 2R ),

HY =T (0 +TR () [ +

[T @ @ oy ik + 2w,

(13)

JY = HMJ(x)/Qp. (14)
In Egs. (12)—(14) the following notation is introduced:
Fe()=TL()EMp().  2fig = fir(E)E [ p(E})
and 2f] 5" = f1 p(E_ +U)% f; g(E, +U). Here f;(e) =
= {1+exp[(s—uj)/Tj]}_1 is the Fermi distribution func-

tionin j = L, R electrode, and

2 2
+«/J () +49 s

E+:80_ >

To proceed further with analytical calculations we analyze
the onset of instability, when the displacement x(¢) is small
(but much larger than the amplitude of the zero-point fluc-
tuations x, ~ +/%1/ (mw) so that our classical description of
the vibronic subsystem is justified).

We solve the equation system (7) by expanding R;(¢) to
linear order in the displacement x, which is assumed to be
small. Hence, R;(?) = Rio +Rl-1 (t), where Ri1 () oc x(t). At
first we consider noninteracting electrons, U =0, and a
symmetric junction, I'; (x=0)=Tp(x=0)=I, J; (x=0)=
=Jp(x=0)=J.Then the equations for Rll and Ri are de-
coupled from the equations for R% and R%. Therefore the
analysis of the mechanical instability in this particular case
is reduced to a simple problem — one has to solve two
coupled linear equations,

R (T 204\ R
&) 20y TR
F/(ZQH)jx(t)’

{ (16)

—a(fy +/r )[
where a >0 (the exchange force) is minus the derivative
of the exchange energy, J(x) ~ —awx. Substituting the solu-
tion R; into Eq. (5), we obtain the rate of change, r, of the
amplitude of nanomechanical vibrations x(¢) oc exp(i€2¢)
atU =0:

S0 —Qp)—f;(g +QH)><
Qp

2
r=ImQ = 1% D

16m LR

2 + (ho)? +4Q% ]

. 17
T2 - (ho)? +49Q% 1 + 4(ho)*T? 7

Since the Fermi distribution function f ki (¢) is a decreasing

function of energy (¢ > 0) and Qy > 0 by definition, 7(H)
is always negative for H #0. This means that for
noninteracting electrons (U = 0) there is no mechanical insta-
bility for the considered magnetic device. On the other hand,
in Ref. 10 (see also Ref. 9) it was analytically proven that in
the regime of Coulomb blockade (formally U — oo and there-
fore p, = 0) the shuttling regime of electron transport is real-

ized at low magnetic fields Q; < (v/7/2)4/T? + (hw)? . This
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means that for finite U there is a critical value, U = U,,, when
there is a crossover from the shuttling regime to a regime
where mechanical dot fluctuations are damped out. Notice
that in the limit Q7 — 0 Eq. (17) is transformed to the mag-
netic friction coefficient

ha? r 1

ry(T)~ ——ﬁ—cosh_2 (MJ, (18)
m T +(ho)” T

first introduced in Ref. 10, where T is the temperature of the
left lead, and the temperature of the right lead equals zero.

In other words Coulomb correlations promote electron
shuttling in a magnetic nanomechanical device, Ref. 11. The
dependence of the critical Coulomb energy on temperature
and other model parameters was studied in detail in Ref. 11.

3. Influence of electron-electron correlations on
electron shuttling in a voltage-biased magnetic device

In this section we consider the influence of Coulomb
correlations on the instability of mechanical vibrations in a
voltage-biased magnetic device. In our model, Egs. (1)—(4),
we neglect electric forces, acting on electrons in the
QD, compared with magnetic forces. In experiments on
a Cgo-based molecular transistor [7] the exchange interac-
tion between the electron spin on the fullerene and magnetic
(Ni) leads was shown to be strong (of the order of 10 meV).
The electric field, acting on a charged molecule, strongly
depends on the device geometry but can be roughly esti-
mated to be E ~ V/d, where d is the distance between the
leads. In what follows, when studying the influence of
electron-electron interaction on the functionality of mag-
netic shuttle, we will assume that the exchange force
~ J/L; exceeds the electric force. Indeed, we estimated
that the maximum ratio of electric force to exchange force
for bias voltages from Fig. 2 (see below) is about 0.3, there-
fore electric forces can be neglected. In this case the bias volt-
age plays the role of an energy supply for a purely magnetic
device, controlled by the external magnetic field H. We will
also assume a large temperature difference (7; > Tp) in
our device. This situation favors the shuttling regime, by
providing an extra energy supply, and by suppressing tem-
perature-induced dissipation in the drain (right lead), as
well as facilitating electron tunneling to empty states in the
right electrode.

To analyze the fully developed shuttle vibrations one
has to deal with the nonlinear and nonlocal spintro-
mechanics numerically. In Fig. 2 we present results of nu-
merical simulations for the case of a symmetric junction,
solving the system of equations for the components of the
density matrix [Egs. (A.1)—(A.5) in the Appendix], coupled
to the mechanical equation of motion, Eq. (5). The eight
panels in the figure show the time evolution for different
bias voltages of the amplitude A(¢) of the mechanical QD
oscillations after an initial spontaneous fluctuation of the
QD position. The evolution is shown on a time scale more
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Fig. 2. Time evolution of mechanical QD oscillations after an
initial spontaneous fluctuation in QD position plotted for different
bias voltages. The upper and lower borders of the dark areas form
the envelope of the (unresolved) oscillations, whose amplitude
A(t) is half the vertical distance between these borders. The me-
chanical displacement is scaled to the characteristic tunneling
length A and time to #/I". All energies are scaled to I'; , in par-
ticular, the bias voltage parameter eV/I'; — V' . Parameters, used
in simulations, are the following: temperature 7/I'; =1, mechani-
cal frequency fiw/I"; =1, magnetic field energy Qg /T'; =0.7,
exchange energy J/I'; =1.5, level detuning energy de/I'; =2
and the Coulomb correlation energy U/I"; =10 . Junction is con-
sidered symmetrical (I'; =T'g ) and tunneling length is equal to
the exchange length (A=A ), dimensionless electromechanical
coupling constant, entering the r.h.s. of mechanical equation, writ-
ten in dimensionless variables, « =#h2J/(mAx,T7)=0.09. In
plots (a)—(d) we see the onset of the instability, taking place for
V'=494. The instability is well developed on the interval
V €(4.94,13.37) [plots (e)—(f)]. At critical value of bias voltage
V. =13.37 the instability deteriorates and the system becomes
stable for larger values of V' [plots (g)—(h)].

than three orders of magnitude longer than the oscillation
period. At low temperatures 7 < I', 8¢ the influence of the
electron subsystem on the mechanical vibrations occurs
only when the bias voltage exceeds the energy E_, see
Eq. (15), of a spin-up electron on the dot. As was shown
earlier [2], the shuttling regime of electron transport at
Ty g =0 is realized for a non-symmetrically applied bias
voltage V' when el >el =08e+hw. The plots in
Figs. 2(a)—(d) demonstrate the onset and time development
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of electron shuttling in our magnetic device. We see that
the critical voltage [plot (c)], determined for the case of a
finite temperature 7; =1I" of the source lead, is close to the
above theoretical value. In this section we focus on the
spintromechanically interesting regime of electron
transport when ¥ > V};,. Then single occupation of the dot
level is possible due to electron tunneling from the source
electrode, and double occupation at zero temperature may
occur only at energies exceeding the excitation energy of
the doubly occupied electron state p; > U +¢g. If the bias
voltage is such that p; is close to but still lower than this
value (see Fig. 1) double occupation occurs as a result of
thermal fluctuations, which allows temperature to control
the influence of the Coulomb blockade phenomenon on the
nanomechanics.

Doubly occupied QD electron states, having zero total
spin, do not interact with the exchange field and can there-
fore not contribute to electron shuttling. By increasing the
population of these states (by increasing the temperature),
a transition from the shuttling regime of oscillations to the
regime of damped mechanical oscillations occurs at a cer-
tain (critical) value of the ratio p,/p| = n,. One can rough-
ly estimate this quantity when the activation energy of the
two-electron state U™ =gy +U —p; > T; =T. We assume
that under certain conditions (see below) only the two
quantities p, and p determine the mechanical behavior in
the critical region. The two coupled linear equations for the-
se probabilities are readily derived from Egs. (A.5), (A.3) in
the limit Q;; — 0. In the steady state regime (p i =0) and
for fr =0, f;(U)~exp(-U"/T) <1, the equations take
the simple form

[T (@) +T g(ay)lpy =T p(ay)fL.U)py,

Ip(ay)py =Tr(a,)py- (19)

Here a,, is the dimensionless amplitude (measured in units
of the tunneling length 1) of developed shuttle oscillations
at the dot position, most favorable for electron tunneling
from the source electrode to the [)-state (this process
populates the mechanically inactive doubly occupied state,
which in the critical region stops the shuttling). A nontrivi-
al solution of Eq. (19) exists when I';(a,,)/Tr(a,)=
=TI Tpexpa,)>1. It reads n.~f(U)=x=
~Tp(a,)/T(a,)<1. Therefore our simple analysis
predicts a linear dependence of the critical value U : on
temperature for low temperatures and low magnetic fields,
ot
U, ~=T|In—=+2a,, | (20)
['g
Numerical simulations are in agreement with this predic-
tion (see Ref. 11).

A remarkable feature of the plots is that when a shuttle
instability occurs the amplitude of mechanical oscillations
saturates at a certain value despite the fact that we do not
include any phenomenological mechanical friction in
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Eq. (5). The intrinsic magnetic friction, Eq. (18), is small
in our system at temperatures 7 < de. This self-saturation
is a specific property of the nonlinear dynamics of our
magnetic shuttle [9] (see also Ref. 2).

4. Coulomb effects in a thermally driven magnetic
shuttle

Now we set u; =up =ep and consider electron shut-
tling driven by the difference in the temperatures of the
leads, 87 =T7; —T. In Ref. 10 it was shown that in the
Coulomb blockade regime (U — ) thermally induced
shuttling occurs in a finite range of magnetic fields
H_ <H <H_,,. The corresponding upper magnetic ener-

gy, Qi% at 07 > T (a symmetric junction was studied)

saturates to the value Qj’,z=(xﬁ/2)\/1"2+(h(o)2. The

lower magnetic energy Qi} is determined by magnetic
friction, Eq. (18). In Ref. 10 the lower magnetic energy was
found to scale, for temperature 7 >>1TI', as H | oc JT(/T).
The “window” 8H ., where thermally induced electron shut-
tling occurs, is of the order of H_, (see Fig. 2 in Ref. 10)
and in dimensionless quantities (normalized by I') this
window is not large. Then the question arises — is there a
possibility for thermally induced shuttling in the case when
Coulomb blockade is not pronounced (finite U )? Analytic
calculations, Eq. (17), showed that for noninteracting elec-
trons (U = 0) at arbitrary temperatures in the leads electron
shuttling is absent in our model. Therefore there is critical
value of Coulomb correlation energy U = U, when shut-
tling is replaced by damping of mechanical vibrations.

To answer the question posed above we will numerical-
ly solve Egs. (A.1)—(A.5). It is reasonable to consider a
situation where the temperatures in both leads are finite
and 7; > Tp; we also assume 7; >1I"; and T > I'p (the-
se inequalities are necessary to justify the perturbation ap-
proach, when p; =pp, for the derivation of the kinetic
equations). We will study the dependence of the upper and
lower critical magnetic fields at finite Coulomb correlation
energy U on the temperature difference 87 and on the
average temperature 7 =(7; +75)/2. The numerical ap-
proach developed in the previous section allows one to
obtain the dependence of the critical magnetic fields,
which separate “shuttling” and “vibronic” regions of me-
chanical oscillations, on different parameters of our model.
Here we consider the dependence of the critical magnetic
fields on the strength U of the Coulomb interaction, and
on the temperatures of the leads.

In Fig. 3 the dependence of Qﬁ’d on U for given 6T
and 7 is presented. It is clearly seen from the plot that in the
regime of Coulomb blockade U > T the shuttling for large
values of 87 occurs in a finite range of 8Q%; = Qf} —Qi}
(numerically close to analytic values, predicted in Ref. 10
for U — o). The window for shuttling weakly depends on
U down to U ~ T, when the Coulomb blockade is lifted
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Fig. 3. (Color online) Dependence of the critical magnetic field
Q% (measured in energy units, Qg = gupH/2) on the Coulomb
correlation energy U . The critical field separates shuttling (shad-
ed) and damping regions of quantum dot oscillations. The
upper critical field Qi[z is plotted as a blue curve, the lower
critical field Qf} —as ared curve. In the Coulomb blockade regime,
U>T; (T =50T;Tg =30), the window 8Q; = Q57 — Q) for
shuttling is in agreement with analytical results [10]. At U ~ T
the Coulomb blockade is lifted and 8Qj; shrinks to zero. A
symmetric (I'y =Tp =T, Jy=Jg=J, A=%y) and voltage
unbiased junction is considered. We used the following parame-
ters in the simulations: J =0.2I", iw = 0.1T", level detuning ener-
gy 6e =10T".

and 8Q%; shrinks to zero at some critical value of the ratio
p2/py, when temperature-induced mechanically inactive
doubly populated electron states stop electron shuttling
(see the discussion in the previous section).

Figure 4 demonstrates the behavior of the critical mag-
netic fields as a function of temperature differences 87 for
different values of the mechanical frequency . In Ref. 10,
where analytic expressions for the critical magnetic fields
were obtained, only the high-temperature limit 867 — oo
was considered for T, =0. We see from the figure that
temperature-induced electron shuttling is a threshold phe-
nomenon. The threshold value 67}, strongly depends on
level energy detuning d¢ (as it should be), mechanical fre-
quency and average temperature 7'. It is well known [2]
that for an electric shuttle (i.e., one driven by electric forces)
at T = 0 the threshold bias voltage (if the bias is symmetri-
cally applied) is eV}, /2 = de+ hiw. The sharp onset of me-
chanical instability at this voltage occurs at temperatures
T < ely,. Finite temperatures smooth out the sharpness in
the critical region. So it is not evident from a qualitative
picture of the “shuttle instability” that the threshold &7},
for a magnetic shuttle is determined by the sum of detun-
ing energy and vibron energy 7i®. Numerical simulations,
Fig. 4, show that the threshold 67 does not satisfy (as it
was expected) a simple formula such as that valid for the
threshold bias voltage of an electric shuttle. However, nu-
merically 87y, is still of the order of the sum of level de-
tuning energy d¢ and vibron energy #m. Our calculations
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Fig. 4. (Color online) Dependence of the critical magnetic field
(in energy units, Q% = gupH,/2) on the temperature difference
between the leads, 67 =T7; —Tg. The plots demonstrate the
growth of the threshold value 67}, with the increase of the me-
chanical vibration frequency w: curve / corresponds to iw =T,
curve 2 — how =3I, curve 3 — hw=>50. The shuttle regime
corresponds to the area between the lower and upper critical
fields (shaded region for the case of /iw=5I"). The parameters
used in simulations: U =100T", Tp =3T", J =1I', 8¢ =10T".

show that the threshold temperature difference increases
with the increase of d¢ (as it should be). More interesting
is that 87y, grows when the mechanical frequency o is
increased (see Fig. 4).

The dependence of the threshold temperature difference
on the average temperature 7 is illustrated in Fig. 5. It is
clearly seen from the figure that the threshold 87 for shut-
tling at “high temperatures” (T > d¢) depends on the aver-
age temperature. In this region 87y, 2> T'. At temperatures
T < ¢ the threshold 87y, weakly depends on 7' (see the
lower curve in Fig. 5 where 8Ty, is slightly smaller than

1
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Fig. 5. (Color online) Dependence of the threshold temperature
difference 867y, on the average temperature 7 = (7 + Tg)/2 for
different values of 8¢: curve / corresponds to ¢ =3I, curve 2 —
6e=5I", and curve 3 — 8¢ =10I". The Coulomb blockade re-
gime, U =300 > T, is considered and J = 0.3T", iwo=0.2T".
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Coulomb effects on thermally induced shuttling of spin-polarized electrons

the average temperature). Notice that shuttling vanishes
when the temperature in the drain (“R”) lead exceeds Oe.
In this case magnetic friction, Eq. (18), strongly impedes
shuttling and a mechanical instability occurs only for very
large values of 87.

5. Conclusion

The phenomenon of electron shuttling, first predicted
for charge transport in mesoscopic transistors [1] (electric
shuttle), was then considered for superconducting [12] (see
also the review Ref. 13) and magnetic systems [8,9]. The
fusion of electron spin dynamics with nanomechanics,
called spintromechanics [14], allows one to control mechan-
ical oscillations by electric and magnetic gates. Moreover, a
mechanical subsystem, integrated into electrical and
spintronic circuits, could be used not only for energy pump-
ing into a system, but also for cooling of vibronic excita-
tions, providing another road to quantum nanomechanics.

Voltage-biased junctions are more suitable for electric
shuttling applications, since electron-number fluctuations in
the dot do not have any detrimental effect on mechanical
oscillations (shuttling). In contrast, electron number parity
effects are significant for temperature-induced magnetic
shuttling. In our paper it was shown that Coulomb effects,
by suppressing electron number fluctuations, promote shut-

tling of spin-polarized electrons in temperature-biased
junctions. This will lead to a strong enhancement of ther-
mo-transport. We also demonstrated in the present paper,
that thermally induced shuttling is a threshold phenome-
non. This fact inevitably will result in mechanically-
induced nonlinear effects in thermo-transport in a shuttle-
based single-electron transistor.
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Appendix A: The system of equations for matrix
elements of dot density operator

The system of equations for the matrix elements of the
dot density operator reads

B0 - 1 (01 1 + TR~ S0Py =T (7 P0 =T fif o -
=Y (X)(po +pp) + Y 1r(X)(Pg + Py ) — Yoz () + Yop ()Pt +P1L): (A.1)
opr _ . x + + U+ U+
— =10 (Pry =P =T (U= f oy +TL (S Po ~T (S pr +T (1= f " Ipa +
+ Y12 (X)(Pg +Pp) + YTR ()P +P2) + (Y21 (¥) + YR (D)Pyy +Phy); (A2)
a% = iQ (pry —Pry) + T N1 = 1)y =T () f py TR )Py +TR(x) S5 o -
“Y{L Py +p2) = Y1 (X)(Pg +py )+ (XS (0)+ Lo (X)(Pry +P1y): (A3)
ai% =—iQy (pr —py ) +i/ (X)pyy —%rL(x)(l —fi 17 pry —%rR(xm —fR + I pry -
O =Y @pry 4 (10~ TPy, +
Y5 (¥)Po + )+ YT (N)(py +p2)+ Yag(¥)(po +Py )+ YR (X)(py +p2); (A4)
%2 =T ()= py ~TrA= £ Ipa + T () .S py +T (0S5 oy +
+ YT, (Py +p2) = YTR(X)(Pr +P2) = (Y5, (X)+ Y5R (X))(Pyy +P1y), (A5)
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 9 1215



O.A. llinskaya, A.D. Shkop, D. Radic, H.C. Park, L.V. Krive, R.I. Shekhter, and M. Jonson

where

Y050 = fip e
VT2 (x)+407
_ U~ JORr(X)

Y () = 1 oy
JE(x)+40%

- Quly p(®)

Yopp(¥) = fip LR

T2 (x)+4Q%

Qulpr()

U _ oU,-
YZL/R(X)_fL/R T
I (x)+4Qy

(A.6)

(A.7)

(A.8)

(A.9)

with f77, f1/x defined below Eq. (14).
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Bnnve enekTpoH-eneKkTPOHHOI B3aeMOoAil
Ha TepMOIHOYKTOBaHE LUATMOBaHHA NONSpM30BaHUX
3a CNiHOM eNeKTPOHIB

0O.0. InbiHcbka, A.[. Wkon, D. Radic, H.C. Park,
I.B. Kpise, R.l. Shekhter, M. Jonson

Po3risiiaeThess OAHOETICKTPOHHMIT TPAH3UCTOP 3 TEILUIOBUM
JDKEpPENIOM eHepril, sSIKUi CKIaIa€eThCsl 3 MarHITHUX €IeKTPOLIB i
PYXOMOTO LEHTPAIBLHOTO OCTPIiBIS (KBaHTOBOI TOYKM) i 3HAaXoO-
JIUThCS B 30BHIIIHEOMY MarHiTHOMy mouii. MerogoMm Marpuii
TYCTHHU BHBYA€ETHCS MOKJIMBICTH MEXaHIYHOI HECTIMKOCTI B Lilt
CHCTEMI, SIKa BUKJIMKAaHA MarHiTHOIO OOMIHHOIO B3a€MOIIEI0 MiX
MOJISIPU30BaHUMU 32 CITIHOM €JIEKTPOHAMHU. AHANITHYHO JOBEC-
HO, 1110 y BUIAJIKY, KOJIM €IEKTPOHHU Ha KBAaHTOBI TOYIL HE B3ae-
MOJIIIOTh, TaKOi MEXaHIYHOI HecTilikocTi Hemae. [T HeHyJIbOBOL
CJICKTPOH-EJICKTPOHHOI B3a€MO/Ii Ha KBAHTOBIM TOYIlI YHCETHHO
3HAMEHI KPUTHYHI MArHITHI MOJS, IO BiJOKPEMIIIOIOTH PEXUM
MEXaHIYHOI HEeCTIMKOCTi Ta eNIeKTPOHHOrO MIATIIOBAaHHS Bif pe-
JKUMY MEXaHIYHHX KOJMBaHb, LIO 3aracarTh. lloKa3aHO, IO
TEPMOIHJYKTOBAaHE MAarHiTHE MIATIIOBAHHA IOJAPU30BAHUX 32
CIIHOM EJICKTPOHIB — L€ MOPOTOBE SBHILE, 1 3HANUICHO 3aJIeXK-
HICTh OPOrOBOT PI3HUII TEMIIEPaTyp BiJ MapamMeTpiB CHCTEMH.

KitouoBi coBa: TepMOIHTYKTOBaHHI OJHOEICKTPOHHUH IIATII,
MarHiTHa oOMiHHA B3a€MO/Iisl, OJISIPH30BaHi 3a CIiHOM €JIEKTPOHHU.

BrnnsiHne anekTpoH-aNeKTPOHHOIO B3aMMOAENCTBUSA
Ha TepMOVHAYLMPOBaHHOE LWaTTNINpOBaHme
CMUWH-NOMSIPU30BaHHbIX 3NIEKTPOHOB

O.A. nbuHckasa, A.. Wkon, D. Radic, H.C. Park,
W.B. Kpuse, R.l. Shekhter, M. Jonson

PaccmaTtpuBaeTcst OHOZJIEKTPOHHBIA TPAH3UCTOP C TEIUIO-
BbIM MCTOYHHMKOM 3HEPrUM, COCTOSILUI U3 MarHUTHBIX 2JIEKTPO-
JIOB U TOJBIKHOTO IIEHTPATbHOTO OCTPOBKA (KBAaHTOBOTO JI0TA),
MIOMEILEHHBIM BO BHEIIHEE MarHUTHOE noje. MeTooM MaTpulbl
TUIOTHOCTH M3y4aeTcsi BO3MOXHOCTh MEXAHHUECKOH HEyCTOHUH-
BOCTH B OJTOH CHCTEME, BBI3BAHHOM MAarHUTHBIM OOMEHHBIM
B3aHMOJIEHCTBHEM MEXIy CIHH-TOJSPH30BAHHBIMHU 3JIEKTPOHA-
MU. AHAJIUTUYECKU J0KAa3aHO, YTO, €CIIU DJICKTPOHBI HA JOTE HE
B3aMMOJICHUCTBYIOT, TaKOM MEXaHUYECKOM HEYyCTOHYMBOCTH HET.
JUi1 HEeHyIeBOro 3IEKTPOH-2IEKTPOHHOIO B3aMMOJCHCTBHSA Ha
JOTE YHMCIEHHO HaMIEeHBbl KPUTHYECKHE MarHUTHbIE MOJA, OTAE-
JSIOINUE PEXHUM MEXaHHMYECKOU HEYCTOHMUMBOCTH U AIEKTPOHHO-
TO IIATTJINPOBAHUS OT PEXMMa 3aTyXaIOIIUX MEXaHMYECKHX KO-
nebanuid. [lokazaHo, YTO TEPMOMHIYIUPOBAHHOE MATrHHTHOE
MIATTIMPOBAHKUE CITHH-TIOSIPH30BAHHBIX 3JEKTPOHOB — 3TO MO-
POrOBBIi IIpoLiece, U HaliiecHa 3aBUCUMOCTb IIOPOTOBOH pa3sHOCTU
TeMIIepaTyp OT NapaMeTPOB CUCTEMBIL.

Kuroueswie ciioBa: TepMOHHZ[yHHpOBaHHbIﬁ OZ[HOBHeKTpOHHBIfI
1IaTTJ]I, MAarHUTHOC oOMeHHOE BSaHMOHCﬁCTBHe, CIIMH-TIOJISIPU30-

BaHHBIC 3JICKTPOHBI.
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