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The Mayer group expansion for solids proposed earlier is applied in prediction of the location of polymorphic 
phase transition line between the cubic and layered phases of polymeric nitrogen. The comparison with existing 
measurements revealed that theoretical calculations based on the proposed potential model calibrated on ab initio 
energy calculations are in agreement with existing experimental data. Predicted location of the polymorphic tran-
sition line and specific behavior of thermal properties of both phases in a wide temperature range is discussed. 
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1. Introduction

In recent years, interest in studying the polymerized 
phases of highly compressed nitrogen, which began back 
in the 90s of the last century [1] in connection with the 
prospect of creating new high-energy-density materials, 
has significantly increased. Along with experimental stud-
ies of various polymeric nitrogen phases [2–7], extensive 
ab initio calculations of their structures were carried out 
(see, e. g., [8] and references therein). Nevertheless, the 
problem of the phase diagram configuration of the highly 
compressed nitrogen remains still open, since usually in 
experiments mainly the metastable polymeric structures 
were observed. 

Computer simulations and ab initio calculation methods 
have been significantly developed in recent years and have 
been applied to a wide variety of crystal structures. How-
ever, even the most advanced approaches to this kind not 
always are able to predict the appearance and stability of 
certain crystalline phases and, moreover, they are unable to 
explain the unusual behavior of some thermal properties of 
crystalline solids.  

Recently the authors proposed a consistent theoretical 
approach of the Helmholtz free energy evaluation, based 
on the Mayer group expansion method [9]. This method 
treats the average displacements of particles from their crys-
tal lattice sites as a small parameter, and takes into account 
corrections on pair, triple, etc. correlations between these 
displacements.  

Initially, it was successfully applied to highly anhar-
monic Lennard-Jones crystal [9]. Lately, this method was 

extended on estimation of the Helmholtz free energy of 
simplest molecular solids, and made it possible to predict 
the location of polymorphic transition between the phases 
of heavy methane on its phase diagram [10]. 

In this work, we present a new illustration of the effec-
tiveness of the above approach in estimating the location of 
the polymorphic transition in highly compressed nitrogen 
crystal from the known cubic gauche nitrogen (cg-N) 
phase to the orthorhombic layered polymeric (LP-N) 
phase, discovered and experimentally studied recently [4]. 

We propose a new potential model for both these phas-
es, calibrated on the reliable ab initio calculation data [1]. 
This model is a modification of the model that we pro-
posed earlier and have already been used in Monte Carlo 
simulation of the solid polymeric nitrogen in cg-N phase 
[11]. We apply this model not only to assess the stability 
region of the layered LP-N phase of polymeric nitrogen, 
but also to predict the behavior of thermal properties in 
both cg-N and LP-N phases within the Mayer group ex-
pansion approach.  

2. Technique of the Mayer group expansion

Essentially, the method proposed in [9] is as follows. 
We consider a perfect crystal of N atoms in volume V. The 
position of each atom is defined by its radius vector 

{ }= , ,i i i ix y zr , and the potential energy NU  of crystalline
lattice is assumed to be the sum of pair interatomic potentials: 

( )
1

,N i j
i j N

U
≤ < ≤

= Φ∑ r r . (1)
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Within the approach proposed in [9] Eq. (1) can be re-
written as 

 ( ) ( ) ( )0
1

1 1
+  ,N i ij i jN

i N i j N
U U u w

≤ ≤ ≤ < ≤

= ∆ +∑ ∑r r r , (2) 

where ( ) ( ) ( )0 0 0

1
( , )i jN

i j N
U

≤ < ≤

= Φ∑ r r  is the “static energy”, the 

minimal energy corresponding to all atoms located in their 
equilibrium cell positions ( )0

ir ; 1 ( )iu ∆r  is one-particle po-

tential energy of ith atom displaced on ( )0
i i i∆ = −r r r  from 

its equilibrium position inside its static environment in the 
lattice cell, referred to the energy of this atom in its equilib-
rium position ( )0

ir in the lattice; ( , )ij i jw r r  are so-called 
“pair correlation potentials”, depending on current positions 
of the displaced atomic pairs i and j.  

The Mayer group expansion of the excess (with respect 
to the ideal atomic gas) Helmholtz free energy of the clas-
sical monatomic crystal can be written as [9] 

( ) ( ) ( ) ( )0
2 3ln , ,fNF U NkT v v W v T W v T ∆ = − + + +  . (3) 

Here k denotes Boltzmann constant, v = V/N is the 
atomic Wigner–Seitz cell volume and T is the absolute 
temperature. The static potential energy ( )0

NU  depending 
only on the volume plays here a role of the zeroth approx-
imation. So-called “free volume” ( , )f fv v v T=  is the first 
term of the Mayer group expansion Eq. (3). The expression 
for the free volume is well-known [12]: 

 ( )
1

1( ), ef
v

u kTv v T d− ∆= ∫ r r . (4) 

Integration over atomic coordinates in Eq. (4) is carried 
out over the atomic Wigner–Seitz cell 1v . The potential 
energy 1 ( )iu ∆r  of an atom inside its static environment can 
be written as 

( ) ( ) ( )( ) ( ) ( )( )0 0 0 0
1

1
, ,i i i j i j

j N
j i

u
≤ ≤
≠

 ∆ = Φ + ∆ − Φ  ∑r r r r r r . (5) 

The following terms in the Mayer group expansion Eq. (3) 
represent, correspondingly, contributions of the binary 

2 ( , )W v T , triple 3 ( , )W v T  etc. correlations between dis-
placements of atoms from their lattice sites [9]. The pair-
correlation term is 

 ( )
1

2 1 1 1 1 12
1

1 exp [ ( )+ ( )]
2

j

j j j
f j v v

W f u u kT d d
v >

= − ∆ ∆∑ ∫ ∫ r r r r .  

  (6) 

Here /e 1ijw kT
ijf −= −  is an analog of the Mayer’s f-function 

where the pair interaction potential ( )rΦ  is replaced by the 
so-called pair correlation potential:  

( ) ( ) ( )( ) ( ) ( )( )0 0 0 0, , ,ij i j i i j j i i jw = Φ + ∆ + ∆ −Φ + ∆ −r r r r r r r r r  

 ( ) ( )( ) ( ) ( )( )0 0 0 0, ,i j j i j−Φ + ∆ + Φr r r r r , (7) 

which turns to zero if at least one of atoms the pair enters 
its lattice site.  

The corresponding expression for the triple correlation 
contribution is as follows: 

 ( )
1

3 1 13
1 1

1 3 +
6

j l

j l jl
f j l v v v

l j

W f f f
v > >

≠

= ×∑ ∑ ∫ ∫ ∫   

 ( )1 1 1 1 1exp [ ( )+ ( )+ ( )]j l j lu u u kT d d d× − ∆ ∆ ∆r r r r r r . (8) 

Integration in Eqs. (7) and (8) is carried out within the 
corresponding Wigner–Seitz cells and summation is per-
formed over all atomic pairs surrounding the selected 
(first) one [9]. 

As it was mentioned above, the ability of this approach 
(combined with the Monte Carlo method for rotational 
degrees of freedom) to predict location of polymorphic 
phase transition lines on phase diagrams of molecular crys-
tals has been recently demonstrated on the example of the 
heavy methane [10].  

In this work we study the effectiveness of this method 
in calculating the Helmholtz free energy and other thermo-
dynamic properties of the polymeric phases of nitrogen, as 
well as in predicting their location on phase diagram. Po-
tential model needed to describe interatomic interactions in 
corresponding crystal structures is discussed in the next 
section. 

3. Potential energy model  
We start from the general expression for potential ener-

gy of N nitrogen atoms in polymeric phase given by 
Eq. (1). Each atom is chemically bonded to the three near-
est atoms forming the corresponding polymeric structure. 
Pair potentials ( , )i jΦ r r  expressed in terms of distances 

between the atoms ijr , bond lengths ijL  and the valent an-

gles ( ) ( ) ( ){ }1 2 3, ,i i i i= θ θ θθ  between pairs of these bonds 

attached to ith atom can be written as follows: 

 ( ) ( ) ( )0 , ,ij ij ij i jr u LΦ = Φ +r θ θ . (9) 

The term 0 ( )ijrΦ  takes into account the additive central 
non-valent interaction of all atomic pairs, and the valent 
contribution ( , , )ij i ju L θ θ  presents the energy of chemical 
bonding. It depends on the bond length ijL , as well as on 
six valent angles between the pairs of bonds attached to 
each atom. Thus, the potential energy of the polymeric 
crystal is presented in the form 

 ( ) ( )
( )

0
1 1

, ,N ij ij i j
i j N ij N

U r u L
≤ < ≤ ≤ ≤

= Φ +∑ ∑ θ θ . (10) 
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The first sum here is over all pairs of atoms, and the se-
cond only over atoms chemically bonded to each other. 
The valent contribution in the model applied is specified as 
a product of three factors: 

 ( ) ( ) ( ) ( ), , , ,ij i j ij i ij j V iju L q L q L u L= ⋅ ⋅θ θ θ θ .  

The valent contribution ( )V iju L  is defined by the Morse 
potential: 

 ( ) ( ){ } ( ){ }exp 2 2expV e e eu L D L R L R = − β − − −β −  .  

The angular dependence of the energy of the valent in-
teraction is determined by factors ( , )ij iq L θ  depending both 
on the bond length and on three angles between the bonds 
attached to ith atom. The analytical form of these factors is 
given as follows [11]: 

 ( )
( ){ }

2,
1 exp ,

q L
z L

=
+ −

θ
θ

, (11) 

where 

 ( ) ( ) ( )2 2, i e i ez L L R c c= α − + γ − +θ   

 ( )( ) ( )1 4e i e i iL R c c c+ δ − − + ε − ∆ . (12) 

In turn, here 

 ( ) ( ) ( )( )1 2 32 2 21 cos cos cos
3i i i ic = θ + θ + θ , (13) 

( ) ( ) ( ) ( )2 21 2 1 32 2 2 2cos cos cos cosi i i i i
   ∆ = θ − θ + θ − θ +      

 

 ( ) ( ) 22 32 2cos cosi i
 + θ − θ  

. (14) 

In the original version of this model, the non-valent 
atom-atom potential 0 ( )ijrΦ  was purely repulsive and was 
represented by a simple inverse power function [11].  

However, such model cannot be directly applied to the 
layered LP-N phase, because its stability is largely deter-
mined by the mutual attraction of its layers. In this case the 
energy of non-valent (mainly dispersion) attraction of 
atoms should be taken into account explicitly.  

Hence, in this work the potential model [11] was modi-
fied as follows. The non-valent attraction of atoms was 
represented in the framework of atom-atom interactions, 
which proved to be effective in describing highly com-
pressed reacting systems [13]. At short interatomic dis-
tances this potential approximates the energy of non-valent 
atom-atom repulsion (i. e., the weighted average energy of 
interaction of nitrogen atoms in 1Σ , 3Σ , 5 Σ , and 7 Σ  
states of N2 molecule [14]), and at longer distances the 
dispersion contribution added ensuring the stability of the 
layered LP-N phase structure.  

The resulting non-valent interaction was represented by 
the Buckingham potential: 

 ( ) ( ) 6
0 0 0 0expij ij ijr A B r C r −Φ = − − . (15) 

All parameters of the potential model (9)–(15) were de-
fined first for the layered orthorhombic LP-N crystal and 
the parameters of the non-valent potential (15) obtained 
were used for both cg-N and LP-N phases.  

It should be noted that in all our calculations of the lay-
ered LP-N phase, its structure was represented by the sim-
plified version of the BP (black phosphorus) structure [1] 
in which all the valent angles ( )k

iθ  (k = 1, 2, 3) between the 
bonds attached to each atom are the same. As it was 
demonstrated in Ref. 1, the differences in energies of such 
LP-N and BP-N structures are insignificant. 

Values of parameters A0, B0, C0, De, Re, α, β, γ, δ and ce 
were fitted to reproduce the dependence of the ab initio 
static potential energy of the layered BP-structure [1] with-
in the volume range 3.5–6.75 Å3/at, as well as the follow-
ing its features at volume corresponding to the minimal 
energy [1]: 

— valent angle between bonds θ = 102.2°; 
— bond length L = 1.54 Å; 
— unit cell parameters a = 2.299 Å, b = 7.268 Å, 

c = 3.036 Å.  
For cg-N structure, the same values of A0, B0, and C0 in 

Eq. (15) as for the LP-N phase were kept, and the numeri-
cal values of De, Re, α, β, γ, δ and ce parameters were fitted 
to reproduce the following ab initio calculations [1] re-
sults: 

— volume dependence of the static energy in the same 
range 3.5–6.75 Å3/at; 

— values of the valent angle θ = 114° and bond length 
L = 1.40 Å at zero pressure; 

— energy variation at the valent angles change from 114° 
to 103° (presented in Ref. 1 as a sensitivity study result). 

The only parameter on which the energy of the static 
lattice does not depend at all is ε. Its value was determined, 
as in the original version of this model [11] first for cg-N 
structure, from the requirement of isotropy of the individu-
al atom potential field when it displaces from its equilibri-
um position in the static cg-N lattice at zero pressure. The 
sensitivity study performed for LP-N phase showed that 
the results are only weakly dependent on the variation of 
this parameter. Therefore, for the LP-N phase we set the 
same value (ε = –190) as was obtained for cg-N phase. The 
potential model parameters determined for both phases are 
presented in Table 1. 

To assess the quality of the adopted model in description 
of the input ab initio data [1] we calculated bulk compres-
sion moduli B0 near the energy minimum estimated in Ref. 1 
as B0 = 340.7 GPa for cg-N phase and B0 = 316.9 GPa for 
the layered phase. Corresponding values calculated on the 
basis of the potential model with parameters presented in 
Table 1 are B0 = 335 GPa in cg-N and B0 = 285 GPa in LP-N 
phase that is in reasonable agreement with the original ab 
initio data [1], as well as with estimates made in Ref. 4. 
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4. Calculating the Helmholtz free energy of polymeric 
nitrogen  

We evaluated the Helmholtz free energy and other 
thermodynamic functions in both cg-N and LP-N phases 
applying potential model (10)–(15) and Mayer group ex-
pansion (3). 

In our calculations we used generated fragments of cg-N 
and LP-N crystal structures, containing N = 216 atoms 
located in the sites of the corresponding lattices (Fig. 1).  

The energy of the static lattice per atom was determined 
by summing the pair interaction energies of single atoms 
(i = 1) located in centers of these fragments with all other 
atoms of the corresponding fragments:  

 ( ) ( )( )0 0
1

2

1/ ,
2N j

j N
U N

≤ ≤

= Φ∑ r r .  

At each given value of the atomic volume, the static en-
ergy of the fragment was minimized by varying: 1) valent 
angles between the bonds, 2) the bond length, and 3) ratios 
a/c and b/c between the unit cell parameters (for LP-N 
structure only).  

When calculating the free volume ( , )fv v T  according to 
Eq. (4) (triple integral), as well as correlation corrections 
W2 [Eq. (6)] and W3 [Eq. (8)] (six- and nine-fold integrals, 
correspondingly) we applied the same Chebyshev–Hermite 
numerical integration method of the highest algebraic de-
gree of precision [15] with the 2exp ( )x− weight function 
which was used in our earlier calculations of the Helmholtz 
free energy of the Lennard-Jones crystal [9].  

These calculations came down to evaluating the 
weighted amount ( )

1
i i

i n
w g

≤ ≤

ξ∑  of the integrands values at 

n nodes of the reduced coordinates /i i ikT xξ = α ∆ , 
where the elastic constants iα  (i = 1, 2, 3), corresponding 
to the first (harmonic) approximation to the single-particle 
potential ( )(harm) 2

1
1 3

i i
i

u x
≤ ≤

∆ = α ∆∑r , were determined by 

setting small displacements of the central atom and compu-
ting 1( )u ∆r  according to Eq. (5).  

The same scheme with the same dimensionless varia-
bles was applied in evaluation of pair W2 and triple W3 
correlation contributions. Numbers of the integrand values 
needed to evaluate fv , W2, and W3 were corresponding-

ly: 3n , 6n  and 9n . Calculations carried out with different 
numbers of nodes n showed that the increase in the number 
of nodes over n = 7 along each Cartesian coordinate leads 
to the refinement of the results only in fourth decimal place, 
so in all our final calculations the number of Chebyshev–
Hermite nodes was set to n = 7. The results of the free vol-
ume calculations were compared with their values calculated 
in harmonic approximation, and the contribution of the 
anharmonicity was estimated. Detailed calculations of the 
Helmholtz free energy ( , )F V T , pressure /P F V= −∂ ∂ , as 
well as the heat capacity and coefficient of thermal expan-

sion 1
T

P

V
V T

∂ β =  ∂ 
 were performed at temperatures 

T = 100–2000 K in the volume range 3.5–6.75 Å3/at.  

5. Results and discussion  

Analyzing the results of these calculations, it should be 
noted that at low temperatures the main contribution to the 
Helmholtz free energy, as well as to pressure and com-
pressibility, gives the zeroth-order term in Mayer group 
expansion (static lattice). The contribution of the first term 
in Mayer group expansion (free volume) at T = 300 K is 
only about –10 %, and both correlation corrections are 
small (about 0.1 % for the LP-N phase and about –1.5 % 
for the cg-N phase). 

The calculated thermodynamic properties of the poly-
merized phases of nitrogen were compared with available 
limited experimental data [3–5]. This comparison is pre-
sented in Fig. 2.  

As one can see, the agreement is quite satisfactory, alt-
hough most of the available experimental data refer to 
metastable regions of both phases (dashed lines in Fig. 2). 

Table 1. Parameters of the potential model (9)–(12) for cubic gauche (cg-N) and layered orthorhombic (LP-N) polymeric structures 

Phase De, eV Re, Å α, Å–2 β γ δ, Å–1 ce A0, eV B0, Å–1 C0, eV⋅Å6 

cg-N 2.165 1.502 –2.524 1.938 –222.5 –16.11 0.0416 
8772 5.061 8.738 

LP-N 2.507 1.367 10.526 3.784 –36.33 –15.87 0.1632 

 

Fig. 1. Fragments of the cg-N (left) and LP-N (right) polymeric 
phase structures used in calculations. 
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However, this agreement is primarily due to the reliability of 
the underlying ab initio calculations of Mailhiot et al. [1], 
because the thermal contribution to the P–V dependence in 
both polymeric phases here is rather small. 

Prediction of the pressure-temperature dependence of 
the cg-N to LP-N phase transition line, as mentioned 
above, was of the greatest interest in this work. According 
to the underlying ab initio data [1], at zero temperature this 
transition should occur at pressure of about 250 GPa, what 
was confirmed by recent experiments [8]. 

We used the well-known Maxwell method, constructing 
the common tangent to the curves of the Helmholtz free ener-
gy as a function of volume on each isotherm. It should be 
stressed that these calculations were performed without using 
any experimental data, but only on the basis of the described 
above models calibrated on ab initio calculations [1].  

The predicted phase transition line is shown in Fig. 3 by 
the solid line, where it is compared with the location of this 
transition proposed by Tomasino et al. [4] (dashed line). 
Authors of Ref. 4 supposed a positive slope of the bounda-
ry between the cg-N and the LP-N phases, reasoned by the 
“higher density of the LP-N phase compared to cg-N and 
the strong presence of cg-N in the region of stability of 
LP-N (not vice versa), and the lack of LP-N in the region 
of cg-N stability between 100 and 125 GPa” [4].  

Our calculations, in contrast, show the negative slope of 
the transition line. This is due to the fact that in LP-N phase 
entropy is higher and volume is less than in the coexisting 
cg-N phase. The predicted jumps of the volume and entro-

py along the transition line are approximately constant: 
0.4v∆ ≅  Å3/at and 2.5S R∆ ≅  (R Nk=  is gas constant), 

up to its intersection with the melting line.  
Another point of considerable interest in this work was 

behavior of other thermodynamic properties of polymer-
ized nitrogen, especially the thermal expansion coefficient 

Tβ . Estimations of Tβ  in cg-N solid made in our early 
Monte Carlo simulations [16] showed its essential de-
crease with the increasing pressure up to negative values 
at P > 100 GPa. This effect was explained by the fact that 
increasing temperature leads to the increase of atomic vi-
bration amplitudes which in turn lead to decreasing the 
length of valent bonds and valent angles, and, as a result, 
atoms become closer to each other.  

Fig. 2. Volumes in polymeric phases of nitrogen at room temper-
ature. Comparison of our calculations with experimental data 
in cg-N phase (1 — [4], 2 — [3], 3 — [5]) and in LP-N phase 
(4 — [4]). Solid parts of lines correspond to stable, dashed lines — to 
metastable states. 

Fig. 3. Phase diagram of highly compressed solid nitrogen: 1 — the 
predicted transition from molecular N2 to cg-N phase [11] (dash-
dotted line), 2 — cg-N to LP-N phase transition line (this work), 
3 — location of the cg-N to LP-N transition proposed in Ref. 4. 

Fig. 4. Free volumes in LP-N (above) and cg-N (below) phases at 
room temperature (solid lines). Dashed lines — harmonic appro-
ximation.  
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Within the framework of the Mayer group expansion ap-
proach, it is possible to study the behavior of the thermal 
expansion in more detail and find out what factors determine 
its behavior. In the first approximation, the value of the 
thermal expansion coefficient Tβ  is determined by the de-
pendence of the free volume ( , )fv v T  Eq. (4) from both the 
atomic volume and temperature. Analysis of our results 
showed that the anharmonicity of the atomic vibrations in 
static environment, which determine the free volume, is very 
small in both cg-N and LP-N phases (Fig. 4). At the same 
time, the anharmonic contribution remains very noticeable 
both in binary and triple correlation corrections (Fig. 5). 

This means that the contribution of the first term of the 
Mayer group expansion Eq. (3) to the coefficient Tβ  is 
determined in both phases mainly by the unusual volume 
dependence of the harmonic contributions to the free vol-
ume represented by dashed lines in Fig. 4. 

The peculiarity of these dependences is their nonmono-
tonicity. In the region of strong compression, the free vol-
ume begins to increase with increasing pressure instead of 
the usual decrease. This unusual behavior is mainly due to 
decrease of the elastic constants iα  at strong compression 
which leads to decrease in the contribution of the first term 
of Mayer group expansion to Tβ  with increasing pressure 
in both phases. 

It should also be mentioned that the contributions to Tβ  
from the next terms of the Mayer group expansion: pair W2 
and triple W3 correlations between the atomic displace-
ments are very different. The coefficient of thermal expan-
sion in both polymeric phases turned out to be especially 
sensitive to the pair correlations between displacements of 
neighboring atoms. The main contribution to Tβ  in cg-N 
phase (more than 90 %) is due to these pair correlations. 
The contribution of triple correlations to the thermal ex-
pansion coefficient is much smaller, it is about 2 % in the 
cg-N phase and about 0.5 % in LP-N phase. This is clearly 
seen when comparing these contributions along the transi-
tion line as it illustrated in Fig. 6. 

We have also evaluated the corresponding contributions 
to the heat capacity of polymeric phases both with pressure 
(at room temperature) and with temperature (along the 
transition line). It was found that the pressure practically 
does not affect the heat capacity, which remains close to its 
classic harmonic value 3R. The heat capacity increases 
along the transition line with increasing temperature, but 
only slightly (by 7 % in cg-N phase and by 4 % in LP-N 
phase when temperature reaches 2000 K). This is also due 
to small anharmonicity of the atomic vibrations in both 
polymeric structures. 

Fig. 5. Volume dependence of the pair W2 (above) and triple W3 (below) correlation contributions at different temperatures. 
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6. Conclusions  

Characterizing the above results in general, it should be 
noted that they clearly demonstrate the effectiveness of the 
Mayer group expansion method in predicting the behavior 
of thermodynamic properties of the polymeric phases of 
crystalline nitrogen. A good agreement was found between 
the predicted and measured properties of both phases at 
room temperature.  

Unfortunately, it is not yet possible to compare the pre-
dicted location of the cg-N to LP-N phase transition line 
with direct measurements, because in all existing experi-
ments [6–9, 17] mainly the metastable polymeric structures 
were studied. 

As it follows from our calculations, the predicted nega-
tive slope of the transition line is mainly determined by the 
contribution of the first terms of the Mayer group expan-
sion Eq. (3), corresponding to the well-known free-volume 
theory of Lennard-Jones and Devonshire [12]. 

Despite this, the next term in the expansion Eq. (3), 
which takes into account pair correlations between atomic 
displacements in the crystal lattice, turned out to be very 
important in assessing the behavior of thermal properties, 
in particular, of the thermal expansion. This gives the main 
contribution to Tβ  both in the cg-N and LP-N phases, and 
together with the first-order term, determines the area of its 
negative values in cg-N phase. 

At the same time, the contribution of the triple correla-
tions to both the thermal and caloric properties appears to 
be insignificant in both polymeric phases. This can be re-
garded as a sign of sufficiently rapid convergence of the 
Mayer group expansion at least in the region of state pa-
rameters considered in this paper.  

It should also be emphasized that when using the pro-
posed approach it is important to have reliable ab initio 
data for calibration of the potential model. Our attempt to 
use for this purpose recent ab initio calculations [18] in-
stead of the classical results [1], did not lead to a reasona-
ble agreement with experimental data [3–5] as it presented 
in Fig. 3. 

In conclusion, we note that the successful prediction of 
the polymorphic transition in both molecular [6] and poly-
merized crystals based on the Mayer group expansion meth-
od increases the interest to verifying its effectiveness in pre-
dicting other polymorphic phase transitions, e. g., to asses-
sing the location of the transition lines between the ε- and 
ζ-phases of molecular nitrogen and the polymeric cg-N phase, 
as well as to extending this approach to quantum crystals. 
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Групове розкладання Майєра для твердих тіл: 
застосування до поліморфного переходу у сильно 

стисненому азоті 

Є. С. Якуб, Л. М. Якуб 

Групове розкладання Майєра для кристалічних твердих 
тіл, запропоноване раніше, застосовується для прогнозування 
лінії поліморфного фазового переходу між кубічною та ша-
руватою фазами полімерного азоту. Порівняння з існуючими 
експериментами виявило, що теоретичні розрахунки на 
основі запропонованої потенційної моделі, відкаліброваної 
на неемпіричні розрахунки енергії, узгоджуються з існую-
чими експериментальними даними. Обговорюється прогно-
зоване розташування лінії поліморфного переходу на фазовій 
діаграмі та специфіка поведінки теплових властивостей обох 
фаз у широкому температурному діапазоні. 

Ключові слова: полімерний азот, поліморфний перехід, нега-
тивне теплове розширення.
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