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Synchrotron radiation is applied to study visible and UV luminescence spectra and their excitation spectra of 
undoped as well as In and Sb doped cadmium iodide crystals at 10 K. The origin of principal luminescence 
bands and the role of impurities in the formation of emission centers are discussed. The luminescence properties 
have been explained based on the electronic structure of CdI2 crystals. 
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Introduction 

Cadmium compounds such as cadmium zinc telluride 
(CdZnTe) and cadmium telluride (CdTe) showing good 
detection efficiency and high energy resolution, demon-
strate themselves as attractive detection materials in many 
applications for detecting x-ray and gamma radiation at 
room temperature, such as medical and industrial images, 
industrial measurements and non-destructive testing, safety 
and monitoring, nuclear safeguards and non-proliferation, 
as well as astrophysics [1–4]. Cadmium iodide (CdI2) crys-
tals are long known for their descent scintillating proper-
ties which have been extensively studied by spectroscopic 
techniques [5–12]. Comparing it with other scintillators 
and phosphors [13–21] it shows comparable detector char-
acteristics in some parameters, and therefore it is still of 
interest, especially when considering its improvement by 
doping [22–24]. 

Among existing and potential application areas of CdI2, 
one can mention detectors, photolithography, and optical 
recording. In the solid electrolyte system CdI2–AgI addi-
tion of cadmium iodide effectively lowers the superionic 
transition temperature from 146 °C (in pure silver iodide) 
to about 110 °C [25–29]. It has been identified that at heli-
um temperatures there exist yellow (Y), green (G), and UV 

emission bands [30–32]. This luminescence is generally 
ascribed to excitons composed of p-states of iodine and 
s-states of cadmium [33, 34]. Donors and acceptors come 
into play as the temperature increases as confirmed by 
thermoluminescence studies [35]. The layered structure of 
crystals makes it likely for the impurities to enter different 
crystallographic positions therefore possibly serving as 
centers for recombination [5–7, 36]. From this point of 
view, it is interesting to see how luminescence properties 
change upon doping under high-density excitation.  

The aim of the present work is to shine a light on the 
electronic processes in nominally pure as well as in doped 
with In and Sb cadmium iodide crystals exploiting high 
energy synchrotron radiation as a source of excitation. 

Experimental 

Cadmium iodide crystals were grown from melt by 
means of the Bridgman technique [37]. The impurities 
doping was done by adding 0.1 mol % of the In or Sn met-
als into the initial melt. After the completion of the growth 
process, samples were cut along cleavage planes taking 
into account that the adjacent layers of the crystal are held 
together by relatively weak forces. The final specimens 
had a thickness of approximately 50 mm. 
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Luminescence excitation spectra and emission spectra 
of pure and doped cadmium iodide crystals were studied at 
the temperature of 10 K using the SUPERLUMI setup of 
line I of DORIS III storage ring at the DESY synchrotron 
facility [38, 39]. This experimental set-up was a unique 
tool for investigations of different types of wide bandgap 
bulk and nanomaterials [40–45]. 

The mathematical treatment of collected data and the 
deconvolution of the experimental spectra into individual 
Gaussian components were performed by means of the 
OriginLab Origin software package. 

Results and discussion 

The luminescence spectrum of the nominally pure cad-
mium iodide at 10 K under 13.77 eV excitation is shown in 
Fig. 1. The shape of the spectrum does not depend on the 
excitation energy in VUV spectral range. The de-convolution 
of the luminesce spectrum to the Gauss components allows 
us to identify three principle emission bands denoted hereaf-
ter as Y, G, and UV and emphasized on the graph with re-
spective energies shown above the peaks.  

The fitting procedure based on the data shown in Fig. 1 
could refine peak positions, which are 2.03 eV for Y-band, 
2.44 eV for G-band and 3.37 eV for UV-band. These val-
ues are fairly close to those, observed earlier (2.16, 2.50 
and 3.35 eV, respectively) [36–38]. It was suggested that 
the origin of these emission bands to is connected with the 
radiative recombination of the self-trapped exciton in 

2 4–
6[Cd I ]+ −  a molecular complex that possesses octahedral 

symmetry D3d.  
For doped crystals, three above mentioned bands can 

still be resolved at 10 K (see Fig. 2), however the lumines-
cence bands Y and UV are significantly suppressed. Slight 
variations of the exact peak positions in Figs. 1 and 2 most 
likely related to the accuracy of the fitting procedure ap-
proximations. 

The differences between the luminescence spectra ob-
served in undoped and doped cadmium iodide crystals can 
be explained assuming the following model. Dopant ions 
and intrinsic lattice defects, such as vacancies or interstitial 
atoms, are forming nanosized clusters. Driving forces that 
facilitate the formation of clusters originate from elastic, 
Coulomb or chemical interactions between cluster compo-
nents. Nanosized clusters exhibit discrete energy spectra. 
Some of energy levels that fall within the bandgap of the 
crystal can serve as centers for radiative or non-radiative 
recombination effectively responsible for additional ab-
sorption, photoconductivity, and other features [46–48]. It 
is assumed that at least three types of nanocluster-like for-
mations can be created and impurity atoms may selectively 
“amplify” some of them.  

Figure 3 shows the photoluminescence excitation spec-
trum (1, red curve) of CdI2 for G-band which is the most 
prominent one in both pure and doped crystals. On the 
same energy scale, the reflectivity spectrum of cadmium 
iodide crystal is presented (2, blue curve). 

As one can see from Fig. 3, in the range 5.7–6.2 еV 
there is an anticorrelation in the structures of luminescence 
excitation and reflectivity spectra. The peak at 5.9 eV in 
the luminescence excitation spectrum coincides with the 
minimum in the reflectivity spectrum. At the same time, 

Fig. 1. (Color online) Photoluminescence spectrum of pristine 
cadmium iodide under synchrotron radiation excitation (13.77 eV) 
at 10 K. The spectrum is de-convoluted to the Gauss components, 
which are shown as solid and dashed lines. 

Fig. 2. (Color online) Photoluminescence spectra of cadmium 
iodide doped by In (a) or Sb (b) ions at 10 K. The excitation en-
ergy is 13.77 eV. 
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exciton peaks denoted as X1 and X2 in the reflectivity spec-
trum correspond to the minima in the luminescence excita-
tion spectrum (It should be noted that three additional 
anomalies A, B, C were also found in the spectra.). This 
type of anticorrelation is known for the luminescence exci-
tation spectra of self-trapped excitons [50] and lumines-
cence excitation spectra of core-valence luminescence 
[51]. Such behavior is explained by luminescence damping 
on surface defects and losses due to reflection. At the ener-
gies of the reflection peak light penetration depth is small 
and the majority of electronic excitations are formed in the 
near-surface layer. High concentration of defects in this 
layer facilitates non-radiative recombination of such exci-
tations, consequently decreasing the emission intensity in 
the intrinsic absorption range.  

Note that CdI2 crystals are very different from alkali 
and alkaline earth metal halides, where the F centers, self-
trapping of holes (Vk center), and exciton defect formation 
are well known and thoroughly studied [52–54]. 

Conclusions 

Low-temperature photoluminescence from layered 
cadmium iodide crystals was studied using synchrotron 
radiation as an excitation source. Main emission lines 
characteristic for CdI2 scintillator crystal were identified 
and refined with Gaussian decomposition. Spectral features 
of pristine CdI2 luminescence were compared to those of 
cadmium iodide doped by indium and antimony ions. The 
model suggesting the formation of nanoclusters that alter 
the distribution of luminescence intensities of principal 
yellow, green, and ultraviolet bands is discussed. 

Luminescence excitation spectrum of cadmium iodide 
is analyzed with respect to its reflectivity spectrum. 
Anticorrelated extremal points in these spectra may be due 
to high probability of non-radiative recombination pro-
cesses in the near-surface area of the crystals. 
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Низькотемпературна люмінесценція CdI2 
під впливом синхротронного випромінювання 

I. Karbovnyk, V. Pankratov, S. Velgosh, I. Bolesta, 
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Синхротронне випромінювання застосовано з метою ви-
вчення видимих та УФ спектрів люмінесценції та збудження 
люмінесценції чистих та легованих домішками In та Sb криста-
лів йодиду кадмію при температурі 10 К. Обговорюється приро-
да головних смуг люмінесценції тa роль домішок у формуванні 
центрів випромінювання. Люмінесцентні властивості пояснено 
особливістю електронної структури кристалів CdI2. 

Ключові слова: синхротронне випромінювання, люмінесценція, 
CdI2, центри випромінювання.
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