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We obtain a general expression for the differential entropy per particle (DEP) for three-dimensional Dirac

systems as a function of chemical potential, temperature and magnetic field. It is shown that in the presence of

magnetic field the dependence of DEP on the chemical potential near a charge neutral point is quite different

from the corresponding dependence in graphene. Specifically, we observe a flat region with almost zero DEP

near the charge neutral point which grows with the increase of the magnetic field followed then by decreasing

oscillations due to contributions from the Landau levels. In contrast, in graphene there is a sharp peak observed

for the chemical potential in the temperature vicinity of the Dirac point.
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1. Introduction

Entropy of many-body systems plays a fundamental
role characterizing their thermodynamical, heat transfer
and thermoelectric properties, however, it is always hard to
measure it directly. The experiment presented in [1] is not
an exception, because the directly measured quantity is
temperature derivative of the chemical potential, ou/oT.
This technique allowed to study two-dimensional (2D)
electron gas with a three orders of magnitude higher reso-
lution than the other methods, and thus it can be very help-
ful in probing interaction effects in 2D electron systems.
The experiment [1] is based on the idea that modulation of
the sample temperature changes the chemical potential
and, hence, causes recharging of the gated structure, where
the 2D electrons and the gate act as two plates of a capaci-
tor. Thus, ou/oT is directly extracted from the measured
recharging current.

The differential entropy per particle (DEP), s=0S/0n,
where S is the entropy per unit volume and 7 is the elec-
tron density, is then found from the Maxwell relation

S:(a_sj :_[@_uj _ M
a]’l T aT n

The quantized peaks of the entropy per electron in a quasi-
two-dimensional electron gas with a parabolic dispersion
were recently studied in [2]. Further we studied [3,4] the

behavior of s as a function of chemical potential, tempera-
ture and gap magnitude for the gapped Dirac materials, e.g.
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silicene, germanene. It was demonstrated in [4] that the dis-
appearance of the characteristic entropy resonance can be
considered as a signature of the topological phase transition
in germanene. Layered transition-metal dichalcogenides
represent another class of materials that can be shaped into
monolayers. They are truly two-dimensional (2D) semicon-
ductors with a direct large band gap of the order of 1-2 eV,
so that the peaks in the DEP can be seen at much higher
temperatures [5]. All these results were summarized in the
review article [6].

While in the experimental paper [1] the DEP s of 2D
electron gas in perpendicular magnetic field was also in-
vestigated, all the above-mentioned theoretical works were
limited to the case of zero external magnetic field. In the
present work we study the behavior of s in three-dimen-
sional (3D) Dirac semimetals in the presence of quantizing
magnetic field.

Dirac semimetals in 3D are three-dimensional ana-
logues of graphene and present a new class of materials
with nontrivial topological properties (for a review see, for
example, [7] and references therein). Their low-energy
fermionic excitations are described by a 3D Dirac Hamil-
tonian. Historically, bismuth provides the first example of
a material whose low-energy quasiparticle excitations at
certain point of the Brillouin zone are described by the 3D
massive Dirac equation [8—11] while massless Dirac
fermions were observed in an alloy Bij_Sb, with the
antimony concentration of about x=0.03 [12]. Recently,
the 3D Dirac fermions were experimentally discovered in
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compounds NazBi and Cd3zAsy [13—15]. We show that the
behavior of the DEP as a function of doping in Dirac semi-
metals in the presence of a magnetic field is significantly
different from its behavior in 2D Dirac systems, like
graphene.

The paper is organized as follows. We begin by pre-
senting in Sec. 2 the model and discuss the density of
states (DOS). The analytical expression for the DEP and
numerical results are presented in Sec. 3. In Conclusion,
Sec. 4, we summarize the obtained results. The DOS and
DEP for a finite scattering rate are derived in Appendix.

2. Models of Dirac semimetals

A Dirac semimetal is a material in which the conduc-
tion and valence bands touch only at isolated points within
the Brillouin zone (BZ). Near these points the dispersion is
linear and the low energy theory is described by a Dirac
Hamiltonian. Perhaps the most famous Dirac material is
graphene, but Dirac semimetals can also exist in three di-
mensions. The corresponding low energy Hamiltonian val-
id in the vicinity of the two Weyl nodes K and K' of op-
posite chirality reads

_ h'UFGk 0 (2)
0  —hogok )

where vy is the Fermi velocity, 6=(c7,6,,63) are Pauli
matrices, and k is the waver-vector measured from the
K, K' points.

In contrast to graphene, where any perturbation propor-
tional to o3 would gap out the band touching, the single
Weyl node (K or K') Hamiltonian is robust against such a
perturbation since it already uses all three of the Pauli ma-
trices. However, the Hamiltonian (2) of 3D Dirac semi-
metal is not robust against more general perturbations
since there are additional Dirac matrices in the 4x4 repre-
sentation. The robustness can be imposed by requiring that
the Hamiltonian is invariant under time reversal (7) sym-
metry and inversion symmetry (P). Then there must be four
bands linearly dispersing around any band touching point in
the BZ. One can easily check that the Dirac semimetal Ham-
iltonian is invariant under time reversal symmetry

% —1 iGz 0
T'H (KT " =H(k), T= N 3)
0 1G9
and inversion symmetry
—1 0 GO
PH(-k)P™' =H(k), P= , 4)
Oy 0

where o) is 2x2 unit matrix. In Weyl semimetal at least
one of these symmetries is broken. Only the Dirac semi-
metals are considered in this work.

In an external magnetic field the Hamiltonian (2) ac-
quires the following form in a configurational space:
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We consider the external magnetic field B=BzZ applied
along the positive z axis, and use the gauge 4, =4, =0
and A, =—By. The spectrum at K (£=1) and K’ (§=1)
points and is given by the expressions

_EJhUFkZ , n= 0,

Epe = (6)
e {i«/(thkz)2+Aﬁ, n>1,

2nhv’ |eB
e 28] ™

is the energy scale that characterizes the energies of the
Landau levels. The corresponding density of states, D(e),
is defined as

where

i T Z§(c—E ®)

DO)=—5
2nl E=+ n=
where [/=./hc/|eB| is the magnetic length and 1/ 2nl?
is the degeneracy of a Landau level. Integrating Eq. (8)
over the wave-vector k,, one arrives at the expression (cf.
Eq. (7) for the DOS for one K point in Ref. 16)

D(e)=—— N I ()

1+2 (?
2 th12 Z /6 _

The first term in square brackets is due to the contribution
of zero Landau level. The DOS for the Dirac semimetal in
the limit of zero magnetic field can be obtained directly
from Eq. (9) by keeping the quantity A, constant, while
B — 0 and n— . This reproduces the known result

2
€

D = .
0700 (hvp)3 IJE o o)

(10)

It is instructive to compare Eq. (9) with the DOS (per
spin) for the 2D massless Dirac fermions in graphene [17]

Dy, (€)= 6(e)+2(8(e A,)+0(e+A,)) |

n=l1

(an

The specific of the DOS (11) is that it does not involve
integration over momentum and for the clean case contains
O-functions. In Fig. 1 we show both the DOS (9) of the
Dirac semimetal (lower panel) and 2D massless Dirac fer-
mions (11) (upper panel) as functions of the energy. The
zero field limits are shown too. To represent the DOS in
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Fig. 1. (Color online) The DOS as a function of energy € in the
units of the energy A; for the Dirac semimetal (lower panel) and
graphene (top panel). The 2D Landau levels are broadened by the

width y=10_5 Ay. The zero field DOS is shown by the dash-
dotted lines.

the figure the &-functions spikes of the 2D DOS were
smeared out to the Lorentzians, viz.

8(€) > ——1—, 12
O — (12)

where y is the scattering rate. Besides the asymmetric
shape of the DOS peaks in the 3D case, the specific of the
Dirac semimetal is that below the magnetic energy, |e¢[|<A,
the DOS is identically zero.

3. Differential entropy per particle

As discussed above (see Eq. (1)), the DEP is directly re-
lated to the temperature derivative of the chemical poten-
tial at a fixed charge density of carriers or carrier imbal-
ance n (n=n, —n_, where n,_ and n_ are the densities of
electrons and holes, respectively). The DEP can be ob-
tained using the thermodynamic identity

-1
SRR

or), \oT u ou )r
For the DOS being an even function of energy, the charge

density of carriers at finite temperature and a magnetic
field can be written as [3,17]
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(T, B) = %j deD(e){tanh?—T“— tanh ez_ﬂ. (14)

Calculating the derivatives over 7' and p and using Eq. (13),
we find that the DEP is given by the general relation [2,3,6]:

! IjowdeD(e)(e ) cosh™? (ez_Tuj

T © ofe—p
j_oodeD(e)cosh (ZT j

s(u.T)= (15)

Its behavior as a function of chemical potential for 3D Di-
rac semimetal in a magnetic field at finite temperature is
shown in Fig. 2 by blue curve. It follows from Eq. (15) that
s(u,7)—0 when u— 0. In fact, there is a rather large flat
region with almost zero differential entropy, s(u,7)=0,
near the charge neutral point =0 followed by decreasing
oscillations due to contributions from the Landau levels.
The behavior near p=0 is in sharp contrast to the behavior
in graphene in a magnetic field where there is instead a
sharp peak observed for the chemical potential in the
temperature vicinity of the Dirac point, |u|~ T (red curve
in Fig. 2). The prominent peak in graphene is due to the
contribution of zero Landau level (compare two DOS,
Eq. (9) and Eq. (11)). Oscillations of the DEP as a function
of the chemical potential are clearly seen in both systems,
and the maxima of oscillations correspond to the chemical
potential crossing a Landau level. In the 2D case the DEP
oscillates around zero value, because the peaks of the DOS
have a symmetric shape, while the asymmetric shape of the
3D Dirac semimetal results in nonzero background value
of the DEP.

The dependence of the DEP on the applied magnetic
field for 3D Dirac semimetal is shown in Fig. 3. One ob-
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Fig. 2. (Color online) The differential entropy per particle s as a
function of the chemical potential p in eV in the Dirac semimetal
(solid blue curve) and graphene (dashed red line). To show both
plots on the same graph, the results for graphene are divided by
the factor 11.29. The magnetic field B=0.2 T, the temperature
T=10 K and the Fermi velocity is vp = 10° mys .
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Fig. 3. (Color online) The differential entropy per particle s as a
function of the magnetic field B in Tesla in the 3D Dirac
semimetal for the two different values of the temperature. The
chemical potential p©=0.05eV and the Fermi velocity is
vp =10 mss .

serves the oscillatory behavior of the DEP. The amplitude
of the oscillations increases as the magnetic field grows.
The oscillations disappear when A;(B=2T)=0.05¢eV
reaches the value of the Fermi energy. It is also clear that
the oscillations are better resolved for the smaller value of
the temperature. Similar behavior of the DEP is observed
in experiments on 2D electron gas with a parabolic disper-
sion (see Figs. 1f-h in Ref. 1).

Oscillations in DEP as a function of the carrier density
and magnetic field were clearly seen in the experiments
with clean two-dimensional electron system in silicon-
based structures [1], while similar experiments for 2D and
3D Dirac systems were not performed yet.

The low-temperature expansion for s(u,7) can be
obtained straightforwardly from Eq. (15) after the change
of the variable € - 2Te+p and then expanding integrands
in series in 7. For example, in the first order in tempe-
rature we find
L0}

S(H,T)Q—

. 16
3 D (e

For finite scattering rate y one should use the DOS D(y,y),
Eq. (A.1).

4. Conclusions

In the present paper we studied the DEP for three-
dimensional Dirac systems as a function of chemical po-
tential, temperature and magnetic field. This quantity is
related through the Maxwell relation to the temperature
derivative of the chemical potential, which in turn is meas-
ured directly in experiments where modulation of the sam-
ple temperature causes recharging of the gated structure
[1]. We show that DEP near the charge neutral point has a
flat region (plateau). Its size grows with the increase of the
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magnetic field. Starting from the first Landau level, the
DEP oscillates when the chemical potential crosses Landau
levels exhibiting Lifshitz-like transitions.

In 2D gapless Dirac systems like graphene, the behavior
of the DEP in the vicinity of the charge neutral point p=0
is quite different: instead of a plateau there is a big peak
when the chemical potential is in the temperature vicinity
of the Dirac point. Recently, oscillations in DEP were
clearly seen in the experiments with clean two-dimensional
electron system in silicon-based structures [1]. We expect
that similar experiments for 2D and 3D Dirac systems, not
performed yet, might reveal specific features expected in
the behavior of the DEP in the applied magnetic field.
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Appendix
DOS and charge carrier density for 3D Dirac systems
in a magnetic field at finite scattering rate

For a constant scattering rate y, and using the Lorentzian
broadening of each Landau level, Eq. (12), the DOS (8) can
be written as

D(e,y)=

- Zy
212 hopl ,,Z;A'[ [x2 _AZ

1 1
g (x+e)2 +y2 +(x—e)2 +y2 }

The integral can be evaluated through elementary func-
tions, but is better to keep it in the current compact form.
Clearly, for y=0 the DOS reduces to Eq. (9). This expres-
sion for DOS is used for numerical calculation of the en-
tropy per particle (15) at finite scattering rate. More con-
venient expression for the entropy per particle can be
obtained evaluating integrals over energy. We calculate
first the charge carrier density (14) with the DOS D(e,y)
from (A.1) using the integral

(A.1)

j—dxtaghxzzil W(L'b_’aj, (A.2)
S (x+a) +b” D] 2

where W(z) is the digamma function. The last one can be
derived using

tanhx =2 ﬁ, (A.3)
=0 T (n+1/2)" +x
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integrating over x, and evaluating then the sum. We obtain

2r th12 n=1

><Im[‘l’(l+—y+i(“+x)j—‘l-’(l+—y+i(_u+x)ﬂ .
2 2nT 2 2nT

1 2 & < dxx
"(T,M,B,Y):z— M+;Z _[—X
A

(A4)
For the derivatives we find
0 o0
on(T,u,B,y) _ - 1 . ZJ‘ dxx y
or mhopl"T 5 A, ﬂxz —A,zl
« Im y+i(— u-l—x) ( ’Y+l( u+x)]
2T 2
Y+l(u+x)q,( v+l(u+X)j ’ (A5)
2T 2 2nT
on(T,u,B,y) _ 1 5
op 21t il
I [ [ y+z( ;,t+x)j
n IA A/ X —Az 2nT
Ly ( wj (A.6)
2 2nT

The differential entropy per particle is calculated then by
means of Eq. (13). The limit of zero scattering rate, y=0,
is obtained by using the formula

2
Re‘P’(%ij:n—;

. (A7)
2 cosh? nx

In the first order expansion in 7 we obtain from Egs. (A.5)
and (A.6)

on(Tw.Byy) 2Ty

or 3nlhopl? gAj A x2

){ X—U _ X+ :lz
(-2 +7° P [(rrw)? +92T

_mTdDwy) o A8)
3 du b b
on(T,, B,
W D(w,y), T—0. (A.9)

The differential entropy per particle is given by Eq. (16)
with the DOS dependent on y, Eq. (A.1).
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OudepeHuiansHa eHTpOnia Ha YaCTUHKY
B AipakiBCbKOMY HaniBMeTani B 30BHiLLHbOMY
MarHiTHOMYy noni

I.B. CyxeHko, C.I. Lapanos., B.I1. lN'ycuHiH

Jlnst TPUBUMIPHUX AipaKiBChbKHX CHCTEM OTPUMAHO 3araib-
HUI BHpa3, M0 onucye AudepeHIiiiHy eHTPOMil0 Ha YaCTHHKY
(JIEY) B 3amexHOCTI Bif XIMIYHOTO HOTEHIlially, TeMIIEpaTypH
Ta MarHiTHOro nossi. [lokasaHo, U0 B MPUCYTHOCTI MarHiTHOTO
ot 3anexHicte JJEY Big xiMmoTeHmiany moOiu3y 3apsaoBO-
HEUTpaIbHOI TOYKH ICTOTHO BiAPI3HSAETHCS BiA BiAMOBIAHOI 3a-
nexHoCTi y rpadeni. 3okpema, MobIM3y HEHTpPAIbHOI TOUKH 3a-

psiy CHOCTepiraeThes IUIaTo 3 Maibke HynboBoro JIEY, sike pos-
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MIAPIOETHCS 31 30UIBIICHHSIM MarHiTHOTO TIOJIS, a TIOTIM BUHHKA-
FOTh OCIIWIAIIT, IO 3racaroTh, MOB'sI3aHi 3 BHECKOM piBHIB JlaH-
nay. HaBmaku, y rpadeni crocrepiraetbCs rOCTpH MK XiMIO-
TeHIiaTy Mo0Iu3y TeMneparypu Touku Jlipaka.

Kurouosi cnosa: 3D mipakiBebki cucteMu, AndepeHiianbHa eHT-
portisi, XIMIYHHH IMOTEHIiaJ]l, MATHITHE TTOJIE.

OundcbepeHymnansHas 3HTPONUA Ha YacTuly
B AMPaAKOBCKOM MoOMymMeTarnne Bo BHELUHEM
MarHUTHOM none

U.B. CyxeHko, C.I. Lapanos, B.IN. IN'ycblHWH
JInst TpeXMepHBIX TUPAKOBCKUX CHCTEM IIOJIy4eHO o0Iiee BbI-

paxxeHHe, omuchiBatoniee AuddepeHIHanbHyI0 JHTPOIUIO Ha
gactury ([AOY) B 3aBHCHMOCTH OT XMMHYECKOTO IOTEHIIHAIA,

Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 3

TeMIIepaTypbl U MarHuTHoOro nois. IlokazaHo, 4To B IPUCYTCT-
BUM MAarHUTHOTO IOJA 3aBHCHMOCTh JIDU oT xummoreHnmuana
BOJM3U 3apsA0BO-HEUTPAIbHON TOUKH CYLIECTBEHHO OTJIHYAETCs
OT COOTBETCTBYIOIIEH 3aBUCHMOCTH B rpadeHe. B wactHOCTH,
BOJIM3M HEHTPAIIbHON TOYKH 3apsiia HaOMoJaeTcsl IIaTo C MOYTH
nynesodl JI9Y, koTopoe paciiupsieTcs ¢ yBEIMYCHUEM MAarHWT-
HOTO T0JIsI, @ 3aTe€M BO3HUKAIOT 3aTyXalOIIUE OCLMIUISINY, CBSI-
3aHHBIE C BKJIagoM ypoBHel Jlannay. Hamportus, B rpadene Ha-
OmrofaeTcss OCTPBIM MUK XHUMIIOTEHIMANa BOJM3H TEMIIEpaTyphl
Touku J{upaxa.

Kutouessie cnoBa: 3D pupakoBckue cuctembl, AuddepeHunans-
Hasl SHTPOIINS, XUMIYECKUH IIOTEHINAN, MarHUTHOE TOJIe.
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